The human antibody response to dengue virus infection

Wahala M P B Wahala, Aravinda M de Silva, Wahala M P B Wahala, Aravinda M de Silva

Abstract

Dengue viruses (DENV) are the causative agents of dengue fever (DF) and dengue hemorrhagic fever (DHF). Here we review the current state of knowledge about the human antibody response to dengue and identify important knowledge gaps. A large body of work has demonstrated that antibodies can neutralize or enhance DENV infection. Investigators have mainly used mouse monoclonal antibodies (MAbs) to study interactions between DENV and antibodies. These studies indicate that antibody neutralization of DENVs is a "multi-hit" phenomenon that requires the binding of multiple antibodies to neutralize a virion. The most potently neutralizing mouse MAbs bind to surface exposed epitopes on domain III of the dengue envelope (E) protein. One challenge facing the dengue field now is to extend these studies with mouse MAbs to better understand the human antibody response. The human antibody response is complex as it involves a polyclonal response to primary and secondary infections with 4 different DENV serotypes. Here we review studies conducted with immune sera and MAbs isolated from people exposed to dengue infections. Most dengue-specific antibodies in human immune sera are weakly neutralizing and bind to multiple DENV serotypes. The human antibodies that potently and type specifically neutralize DENV represent a small fraction of the total DENV-specific antibody response. Moreover, these neutralizing antibodies appear to bind to novel epitopes including complex, quaternary epitopes that are only preserved on the intact virion. These studies establish that human and mouse antibodies recognize distinct epitopes on the dengue virion. The leading theory proposed to explain the increased risk of severe disease in secondary cases is antibody dependent enhancement (ADE), which postulates that weakly neutralizing antibodies from the first infection bind to the second serotype and enhance infection of FcγR bearing myeloid cells such as monocytes and macrophages. Here we review results from human, animal and cell culture studies relevant to the ADE hypothesis. By understanding how human antibodies neutralize or enhance DENV, it will be possible to better evaluate existing vaccines and develop the next generation of novel vaccines.

Keywords: antibody; antibody dependent enhancement; dengue virus; neutralization.

Figures

Figure 1
Figure 1
Structure of dengue virus envelope protein (A) and the dengue virus particle (B). (A) E protein on the mature virion is a homodimer and each subunit has three domains designated I (red), II (yellow) and III (blue). (B) Arrangement of E proteins on the surface of the virion. Both images A and B are from [12].
Figure 2
Figure 2
Maturation of dengue virions. Dengue virions bud into the endoplasmic reticulum as immature, non-infectious particles. The surface of immature particles has a jagged appearance because prM and E proteins are initially assembled as trimeric spikes that protrude away from the envelope. In the trans-Golgi compartment a cellular protease cleaves prM protein to generate the mature M protein, which also results in the rearrangement of E protein trimers to form dimers that lie flat on the surface of the envelope creating the smooth surface observed in mature, infectious virions released into the extracellular space. The images reproduced here are from [19].
Figure 3
Figure 3
Location of mouse MAb epitopes on DENV E protein. The figure is based on the structure of the ectodomain of DENV3 E protein solved by Modis and colleagues [7]. (A) The image depicts the major regions on domains I (red) and II (yellow) recognized by mouse MAbs. (B) An enlarged view of domain III (blue) displaying the lateral ridge and A strand epitopes recognized by strongly neutralizing mouse MAbs. Figure originally published in [22].
Figure 4
Figure 4
Quaternary structure epitope recognized by West Nile human MAb CR4354. The figure depicts a raft of three E protein homo dimers, which is the basic building block of the flavivirus envelope. The domains of E protein are color coded as described in figure 1. The approximate footprint of human MAb CR4354 is circled. Note that the foot print encompasses EDI/II and EDIII from adjacent dimers. One hundred and twenty CR4354 epitopes are predicted to be available on a virion for antibody binding. Figure adapted from [57,59].

References

    1. Mackenzie J.S., Gubler D.J., Petersen L.R. Emerging flaviviruses: The spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nat. Med. 2004;10:S98–S109.
    1. Roehrig J.T. Antigenic structure of flavivirus proteins. Adv. Virus Res. 2003;59:141–175.
    1. Rothman A.L. Immunology and immunopathogenesis of dengue disease. Adv. Virus Res. 2003;60:397–419.
    1. Halstead S.B. Neutralization and antibody-dependent enhancement of dengue viruses. Adv. Virus Res. 2003;60:421–467.
    1. Kanai R., Kar K., Anthony K., Gould L.H., Ledizet M., Fikrig E., Marasco W.A., Koski R.A., Modis Y. Crystal structure of West Nile virus envelope glycoprotein reveals viral surface epitopes. J. Virol. 2006;80:11000–11008.
    1. Modis Y., Ogata S., Clements D., Harrison S.C. A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc. Natl. Acad. Sci. U. S. A. 2003;100:6986–6991.
    1. Modis Y., Ogata S., Clements D., Harrison S.C. Variable surface epitopes in the crystal structure of dengue virus type 3 envelope glycoprotein. J. Virol. 2005;79:1223–1231.
    1. Nybakken G.E., Nelson C.A., Chen B.R., Diamond M.S., Fremont D.H. Crystal structure of the West Nile virus envelope glycoprotein. J. Virol. 2006;80:11467–11474.
    1. Rey F.A., Heinz F.X., Mandl C., Kunz C., Harrison S.C. The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution. Nature. 1995;375:291–298.
    1. Zhang Y., Zhang W., Ogata S., Clements D., Strauss J.H., Baker T.S., Kuhn R.J., Rossmann M.G. Conformational changes of the flavivirus E glycoprotein. Structure. 2004;12:1607–1618.
    1. Kuhn R.J., Zhang W., Rossmann M.G., Pletnev S.V., Corver J., Lenches E., Jones C.T., Mukhopadhyay S., Chipman P.R., Strauss E.G., et al. Structure of dengue virus: Implications for flavivirus organization, maturation, and fusion. Cell. 2002;108:717–725.
    1. Mukhopadhyay S., Kuhn R.J., Rossmann M.G. A structural perspective of the flavivirus life cycle. Nat. Rev. Microbiol. 2005;3:13–22.
    1. Kaufmann B.R., Nybakken G.E., Chipman P.R., Zhang W., Diamond M.S., Fremont D.H., Kuhn R.J., Rossmann M.G. West Nile virus in complex with the Fab fragment of a neutralizing monoclonal antibody. Proc. Natl. Acad. Sci. U. S. A. 2006;103:12400–12404.
    1. Perera R., Khaliq M., Kuhn R.J. Closing the door on flaviviruses: Entry as a target for antiviral drug design. Antivir. Res. 2008;80:11–22.
    1. Cherrier M.V., Kaufmann B., Nybakken G.E., Lok S.M., Warren J.T., Chen B.R., Nelson C.A., Kostyuchenko V.A., Holdaway H.A., Chipman P.R., et al. Structural basis for the preferential recognition of immature flaviviruses by a fusion-loop antibody. EMBO J. 2009;28:3269–3276.
    1. Junjhon J., Edwards T.J., Utaipat U., Bowman V.D., Holdaway H.A., Zhang W., Keelapang P., Puttikhunt C., Perera R., Chipman P.R., et al. Influence of pr-M cleavage on the heterogeneity of extracellular dengue virus particles. J. Virol. 2010;84:8353–8358.
    1. Dejnirattisai W., Jumnainsong A., Onsirisakul N., Fitton P., Vasanawathana S., Limpitikul W., Puttikhunt C., Edwards C., Duangchinda T., Supasa S., et al. Cross-reacting antibodies enhance dengue virus infection in humans. Science. 2010;328:745–748.
    1. Rodenhuis-Zybert I.A., van der Schaar H.M., da Silva Voorham J.M., van der Ende-Metselaar H., Lei H.Y., Wilschut J., Smit J.M. Immature dengue virus: A veiled pathogen? PLoS Pathog. 2010;6:e1000718.
    1. Perera R., Kuhn R.J. Structural proteomics of dengue virus. Curr. Opin. Microbiol. 2008;11:369–377.
    1. Pierson T.C., Diamond M.S. Molecular mechanisms of antibody-mediated neutralisation of flavivirus infection. Expet. Rev. Mol. Med. 2008;10:e12.
    1. Dowd K.A., Pierson T.C. Antibody-mediated neutralization of flaviviruses: A reductionist view. Virology. 2011;411:306–315.
    1. Wahala W.M., Donaldson E.F., de Alwis R., Accavitti-Loper M.A., Baric R.S., de Silva A.M. Natural strain variation and antibody neutralization of dengue serotype 3 viruses. PLoS Pathog. 2010;6:e1000821.
    1. Lok S.-M., Kostyuchenko V., Nybakken G.E., Holdaway H.A., Battisti A.J., Sukupolvi-Petty S., Sedlak D., Fremont D.H., Chipman P.R., Roehrig J.T., et al. Binding of a neutralizing antibody to dengue virus alters the arrangement of surface glycoproteins. Nat. Struct. Mol. Biol. 2008;15:312–317. doi: 10.1038/nsmb.1382.
    1. Stiasny K., Brandler S., Kossl C., Heinz F.X. Probing the flavivirus membrane fusion mechanism by using monoclonal antibodies. J. Virol. 2007;81:11526–11531.
    1. Thompson B.S., Moesker B., Smit J.M., Wilschut J., Diamond M.S., Fremont D.H. A therapeutic antibody against West Nile virus neutralizes infection by blocking fusion within endosomes. PLoS Pathog. 2009;5:e1000453.
    1. Chan K.R., Zhang S.L.-X., Tan H.C., Chan Y.K., Chow A., Lim A.P.C., Vasudevan S.G., Hanson B.J., Ooi E.E. Ligation of Fc gamma receptor IIB inhibits antibody-dependent enhancement of dengue virus infection. Proc. Natl. Acad. Sci. U. S. A. 2011;108:12479–12484.
    1. Imrie A., Meeks J., Gurary A., Sukhbaatar M., Truong T.T., Cropp C.B., Effler P. Antibody to dengue 1 detected more than 60 years after infection. Viral Immunol. 2007;20:672–675.
    1. Halstead S.B., Rojanasuphot S., Sangkawibha N. Original antigenic sin in dengue. Am. J. Trop. Med. Hyg. 1983;32:154–156.
    1. Midgley C.M., Bajwa-Joseph M., Vasanawathana S., Limpitikul W., Wills B., Flanagan A., Waiyaiya E., Tran H.B., Cowper A.E., Chotiyarnwon P., et al. An in-depth analysis of original antigenic sin in dengue virus infection. J. Virol. 2011;85:410–421.
    1. Fish S., Zenowich E., Fleming M., Manser T. Molecular analysis of original antigenic sin. I. Clonal selection, somatic mutation, and isotype switching during a memory B cell response. J. Exp. Med. 1989;170:1191–1209.
    1. Virelizier J.L., Allison A.C., Schild G.C. Antibody responses to antigenic determinants of influenza virus hemagglutinin. II. Original antigenic sin: A bone marrow-derived lymphocyte memory phenomenon modulated by thymus-derived lymphocytes. J. Exp. Med. 1974;140:1571–1578. doi: 10.1084/jem.140.6.1571.
    1. Kosasih H., Yusuf H., Sudjana P., Alisjahbana B., Wuryadic S., Akterono, Tan R.I., Yuwonoc D., Beckett C., Porter K.R., et al. Report of four volunteers with primary, secondary and tertiary dengue infections during a prospective cohort study. Dengue Bulletin. 2006;30:87–92.
    1. Myers R.M., Varkey M.J. A note on sequential dengue infection, presumptive and proved, with report of an instance of a third proved attack in one individual. Indian J. Med. Res. 1971;59:1231–1236.
    1. Koraka P., Suharti C., Setiati T.E., Mairuhu A.T., Van Gorp E., Hack C.E., Juffrie M., Sutaryo J., Van Der Meer G.M., Groen J., et al. Kinetics of dengue virus-specific serum immunoglobulin classes and subclasses correlate with clinical outcome of infection. J. Clin. Microbiol. 2001;39:4332–4338.
    1. Koraka P., Murgue B., Deparis X., Setiati T.E., Suharti C., van Gorp E.C., Hack C.E., Osterhaus A.D., Groen J. Elevated levels of total and dengue virus-specific immunoglobulin E in patients with varying disease severity. J. Med. Virol. 2003;70:91–98.
    1. Thein S., Aaskov J., Myint T.T., Shwe T.N., Saw T.T., Zaw A. Changes in levels of anti-dengue virus IgG subclasses in patients with disease of varying severity. J. Med. Virol. 1993;40:102–106.
    1. Watanaveeradej V., Endy T.P., Samakoses R., Kerdpanich A., Simasathien S., Polprasert N., Aree C., Vaughn D.W., Ho C., Nisalak A. Transplacentally transferred maternal-infant antibodies to dengue virus. Am. J. Trop. Med. Hyg. 2003;69:123–128.
    1. Hofmeister Y., Planitzer C.B., Farcet M.R., Teschner W., Butterweck H.A., Weber A., Holzer G.W., Kreil T.R. Human IgG Subclasses: In vitro neutralization of and in vivo protection against West Nile virus. J. Virol. 2011;85:1896–1899.
    1. Valdes K., Alvarez M., Pupo M., Vazquez S., Rodriguez R., Guzman M.G. Human dengue antibodies against structural and nonstructural proteins. Clin. Diagn. Lab. Immunol. 2000;7:856–857.
    1. Churdboonchart V., Bhamarapravati N., Peampramprecha S., Sirinavin S. Antibodies against dengue viral proteins in primary and secondary dengue hemorrhagic fever. Am. J. Trop. Med. Hyg. 1991;44:481–493.
    1. Lai C.Y., Tsai W.Y., Lin S.R., Kao C.L., Hu H.P., King C.C., Wu H.C., Chang G.J., Wang W.K. Antibodies to envelope glycoprotein of dengue virus during the natural course of infection are predominantly cross-reactive and recognize epitopes containing highly conserved residues at the fusion loop of domain II. J. Virol. 2008;82:6631–6643.
    1. AbuBakar S., Azmi A., Mohamed-Saad N., Shafee N., Chee H.Y. Antibody responses of dengue fever patients to dengue 2 (New Guinea C strain) viral proteins. Malays. J. Pathol. 1997;19:41–51.
    1. Abubakar S., Azila A., Suzana M., Chang L.Y. Antigenic cell associated dengue 2 virus proteins detected in vitro using dengue fever patients sera. Malays. J. Pathol. 2002;24:29–36.
    1. Lazaro-Olan L., Mellado-Sanchez G., Garcia-Cordero J., Escobar-Gutierrez A., Santos-Argumedo L., Gutierrez-Castaneda B., Cedillo-Barron L. Analysis of antibody response in human dengue patients from the Mexican coast using recombinant antigens. Vector Borne Zoonotic Dis. 2008;8:69–79.
    1. Falgout B., Bray M., Schlesinger J.J., Lai C.J. Immunization of mice with recombinant vaccinia virus expressing authentic dengue virus nonstructural protein NS1 protects against lethal dengue virus encephalitis. J. Virol. 1990;64:4356–4363.
    1. Lin C.-F., Wan S.-W., Cheng H.-J., Lei H.-Y., Lin Y.-S. Autoimmune pathogenesis in dengue virus infection. Viral Immunol. 2006;19:127–132.
    1. dos Santos F.B., Miagostovich M.P., Nogueira R.M., Schatzmayr H.G., Riley L.W., Harris E. Analysis of recombinant dengue virus polypeptides for dengue diagnosis and evaluation of the humoral immune response. Am. J. Trop. Med. Hyg. 2004;71:144–152.
    1. Crill W.D., Hughes H.R., Delorey M.J., Chang G.J. Humoral immune responses of dengue fever patients using epitope-specific serotype-2 virus-like particle antigens. PLoS One. 2009;4:e4991.
    1. Wahala W.M., Kraus A.A., Haymore L.B., Accavitti-Loper M.A., de Silva A.M. Dengue virus neutralization by human immune sera: Role of envelope protein domain III-reactive antibody. Virology. 2009;392:103–113.
    1. Oliphant T., Nybakken G.E., Austin S.K., Xu Q., Bramson J., Loeb M., Throsby M., Fremont D.H., Pierson T.C., Diamond M.S. Induction of epitope-specific neutralizing antibodies against West Nile virus. J. Virol. 2007;81:11828–11839.
    1. Sánchez M.D., Pierson T.C., DeGrace M.M., Mattei L.M., Hanna S.L., Del Piero F., Doms R.W. The neutralizing antibody response against West Nile virus in naturally infected horses. Virology. 2007;359:336–348.
    1. de Alwis R., Beltramello M., Messer W.B., Sukupolvi-Petty S., Wahala W.M., Kraus A., Olivarez N.P., Pham Q., Brian J., Tsai W.Y., et al. In-depth analysis of the antibody response of individuals exposed to primary dengue virus infection. PLoS Negl. Trop. Dis. 2011;5:e1188.
    1. Beltramello M., Williams K.L., Simmons C.P., Macagno A., Simonelli L., Quyen N.T., Sukupolvi-Petty S., Navarro-Sanchez E., Young P.R., de Silva A.M., et al. The human immune response to Dengue virus is dominated by highly cross-reactive antibodies endowed with neutralizing and enhancing activity. Cell Host Microbe. 2010;8:271–283. doi: 10.1016/j.chom.2010.08.007.
    1. Schieffelin J., Costin J., Nicholson C., Orgeron N., Fontaine K., Isern S., Michael S., Robinson J. Neutralizing and non-neutralizing monoclonal antibodies against dengue virus E protein derived from a naturally infected patient. Virol. J. 2010;7:28.
    1. Traggiai E., Becker S., Subbarao K., Kolesnikova L., Uematsu Y., Gismondo M.R., Murphy B.R., Rappuoli R., Lanzavecchia A. An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nat. Med. 2004;10:871–875.
    1. Lai C.J., Goncalvez A.P., Men R., Wernly C., Donau O., Engle R.E., Purcell R.H. Epitope determinants of a chimpanzee dengue virus type 4 (DENV-4)-neutralizing antibody and protection against DENV-4 challenge in mice and rhesus monkeys by passively transferred humanized antibody. J. Virol. 2007;81:12766–12774.
    1. Kaufmann B.R., Vogt M.R., Goudsmit J., Holdaway H.A., Aksyuk A.A., Chipman P.R., Kuhn R.J., Diamond M.S., Rossmann M.G. Neutralization of West Nile virus by cross-linking of its surface proteins with Fab fragments of the human monoclonal antibody CR4354. Proc. Natl. Acad. Sci. U. S. A. 2010;107:18950–18955.
    1. Vogt M.R., Moesker B., Goudsmit J., Jongeneelen M., Austin S.K., Oliphant T., Nelson S., Pierson T.C., Wilschut J., Throsby M., et al. Human monoclonal antibodies against West Nile virus induced by natural infection neutralize at a postattachment step. J. Virol. 2009;83:6494–6507.
    1. Purdue News. Scientists solve structure of dengue virus. [(accessed on 1 September 2011)]. Available online: .
    1. Rico-Hesse R. Microevolution and virulence of dengue viruses. Adv. Virus Res. 2003;59:315–341.
    1. Holmes E.C. RNA virus genomics: A world of possibilities. J. Clin. Invest. 2009;119:2488–2495.
    1. Blaney J.E., Jr., Matro J.M., Murphy B.R., Whitehead S.S. Recombinant, live-attenuated tetravalent dengue virus vaccine formulations induce a balanced, broad, and protective neutralizing antibody response against each of the four serotypes in rhesus monkeys. J. Virol. 2005;79:5516–5528.
    1. Endy T.P., Nisalak A., Chunsuttitwat S., Vaughn D.W., Green S., Ennis F.A., Rothman A.L., Libraty D.H. Relationship of preexisting dengue virus (DV) neutralizing antibody levels to viremia and severity of disease in a prospective cohort study of DV infection in Thailand. J. Infect. Dis. 2004;189:990–1000.
    1. Zulueta A., Martín J., Hermida L., Alvarez M., Valdés I., Prado I., Chinea G., Rosario D., Guillén G., Guzmán M.G. Amino acid changes in the recombinant Dengue 3 Envelope domain III determine its antigenicity and immunogenicity in mice. Virus Res. 2006;121:65–73.
    1. Li L., Barrett A.D.T., Beasley D.W.C. Differential expression of domain III neutralizing epitopes on the envelope proteins of West Nile virus strains. Virology. 2005;335:99–105.
    1. Sánchez M.D., Pierson T.C., McAllister D., Hanna S.L., Puffer B.A., Valentine L.E., Murtadha M.M., Hoxie J.A., Doms R.W. Characterization of neutralizing antibodies to West Nile virus. Virology. 2005;336:70–82.
    1. Brien J.D., Austin S.K., Sukupolvi-Petty S., O'Brien K.M., Johnson S., Fremont D.H., Diamond M.S. Genotype-specific neutralization and protection by antibodies against dengue virus type 3. J. Virol. 2010;84:10630–10643.
    1. Shrestha B., Brien J.D., Sukupolvi-Petty S., Austin S.K., Edeling M.A., Kim T., O'Brien K.M., Nelson C.A., Johnson S., Fremont D.H., et al. The development of therapeutic antibodies that neutralize homologous and heterologous genotypes of dengue virus type 1. PLoS Pathog. 2010;6:e1000823.
    1. Sukupolvi-Petty S., Austin S.K., Engle M., Brien J.D., Dowd K.A., Williams K.L., Johnson S., Rico-Hesse R., Harris E., Pierson T.C., et al. Structure and function analysis of therapeutic monoclonal antibodies against dengue virus type 2. J. Virol. 2010;84:9227–9239.
    1. Messer W.B., Yount B., Hacker K.E., Donaldson E.F., Huynh J.P., de Silva A.M., Baric R.S. Development and characterization of a reverse genetic system for studying dengue virus serotype 3 strain variation and neutralization. PLoS Negl. Trop. Dis. 2011 submitted for publication.
    1. Dunn M., Rossi S., Carter D., Vogt M., Mehlhop E., Diamond M., Ross T. Enhancement of anti-DIII antibodies by the C3d derivative P28 results in lower viral titers and augments protection in mice. Virol. J. 2010;7:95.
    1. Mehlhop E., Nelson S., Jost C.A., Gorlatov S., Johnson S., Fremont D.H., Diamond M.S., Pierson T.C. Complement protein C1q reduces the stoichiometric threshold for antibody-mediated neutralization of West Nile virus. Cell Host Microbe. 2009;6:381–391.
    1. Mehlhop E., Ansarah-Sobrinho C., Johnson S., Engle M., Fremont D.H., Pierson T.C., Diamond M.S. Complement protein C1q inhibits antibody-dependent enhancement of flavivirus infection in an IgG subclass-specific manner. Cell Host Microbe. 2007;2:417–426.
    1. Mehlhop E., Fuchs A., Engle M., Diamond M.S. Complement modulates pathogenesis and antibody-dependent neutralization of West Nile virus infection through a C5-independent mechanism. Virology. 2009;393:11–15.
    1. Avirutnan P., Mehlhop E., Diamond M.S. Complement and its role in protection and pathogenesis of flavivirus infections. Vaccine. 2008;26:I100–I107.
    1. Halstead S.B., Mahalingam S., Marovich M.A., Ubol S., Mosser D.M. Intrinsic antibody-dependent enhancement of microbial infection in macrophages: disease regulation by immune complexes. Lancet Infect. Dis. 2010;10:712–722.
    1. Laoprasopwattana K., Libraty D.H., Endy T.P., Nisalak A., Chunsuttiwat S., Ennis F.A., Rothman A.L., Green S. Antibody-dependent cellular cytotoxity mediated by plasma obtained before secondary dengue virus infections: Potential involvement in early control of viral replication. J. Infect. Dis. 2007;195:1108–1116.
    1. Kurane I., Hebblewaite D., Brandt W.E., Ennis F.A. Lysis of dengue virus-infected cells by natural cell-mediated cytotoxicity and antibody-dependent cell-mediated cytotoxicity. J. Virol. 1984;52:223–230.
    1. Kyle J.L., Balsitis S.J., Zhang L., Beatty P.R., Harris E. Antibodies play a greater role than immune cells in heterologous protection against secondary dengue virus infection in a mouse model. Virology. 2008;380:296–303.
    1. Libraty D.H., Acosta L.P., Tallo V., Segubre-Mercado E., Bautista A., Potts J.A., Jarman R.G., Yoon I.K., Gibbons R.V., Brion J.D., et al. A prospective nested case-control study of Dengue in infants: Rethinking and refining the antibody-dependent enhancement dengue hemorrhagic fever model. PLoS Med. 2009;6:e1000171. doi: 10.1371/journal.pmed.1000171.
    1. Kaufman B.M., Summers P.L., Dubois D.R., Cohen W.H., Gentry M.K., Timchak R.L., Burke D.S., Eckels K.H. Monoclonal antibodies for dengue virus prM glycoprotein protect mice against lethal dengue infection. Am. J. Trop. Med. Hyg. 1989;41:576–580.
    1. Vogt M.R., Dowd K.A., Engle M., Tesh R.B., Johnson S., Pierson T.C., Diamond M.S. Poorly neutralizing cross-reactive antibodies against the fusion loop of West Nile virus envelope protein protect in vivo via Fc-{gamma} receptor and complement-dependent effector mechanisms. J. Virol. 2011
    1. Baumgarth N.C.Y., Rothaeusler K., Yang Y., Herzenberg L.A. B cell lineage contributions to antiviral host responses. Curr. Top. Microbiol. Immunol. 2008;319:41–61.
    1. Halstead S.B. Dengue. Lancet. 2007;370:1644–1652.
    1. Kliks S.C., Nimmanitya S., Nisalak A., Burke D.S. Evidence that maternal dengue antibodies are important in the development of dengue hemorrhagic fever in infants. Am. J. Trop. Med. Hyg. 1988;38:411–419.
    1. Chau T.N., Hieu N.T., Anders K.L., Wolbers M., Lien le B., Hieu L.T., Hien T.T., Hung N.T., Farrar J., Whitehead S., et al. Dengue virus infections and maternal antibody decay in a prospective birth cohort study of Vietnamese infants. J. Infect. Dis. 2009;200:1893–1900.
    1. Chau T.N., Quyen N.T., Thuy T.T., Tuan N.M., Hoang D.M., Dung N.T., Lien le B., Quy N.T., Hieu N.T., Hieu L.T., et al. Dengue in Vietnamese infants—Results of infection-enhancement assays correlate with age-related disease epidemiology, and cellular immune responses correlate with disease severity. J. Infect. Dis. 2008;198:516–524.
    1. Kliks S.C., Nisalak A., Brandt W.E., Wahl L., Burke D.S. Antibody-dependent enhancement of dengue virus growth in human monocytes as a risk factor for dengue hemorrhagic fever. Am. J. Trop. Med. Hyg. 1989;40:444–451.
    1. Laoprasopwattana K., Libraty D.H., Endy T.P., Nisalak A., Chunsuttiwat S., Vaughn D.W., Reed G., Ennis F.A., Rothman A.L., Green S. Dengue virus (DV) enhancing antibody activity in preillness plasma does not predict subsequent disease severity or viremia in secondary dv infection. J. Infect. Dis. 2005;192:510–519.
    1. Halstead S.B., Shotwell H., Casals J. Studies on the pathogenesis of Dengue infection in monkeys. II. Clinical laboratory responses to heterologous infection. J. Infect. Dis. 1973;128:15–22. doi: 10.1093/infdis/128.1.15.
    1. Goncalvez A.P., Engle R.E., St.Claire M., Purcell R.H., Lai C.-J. Monoclonal antibody-mediated enhancement of dengue virus infection in vitro and in vivo and strategies for prevention. Proc. Natl. Acad. Sci. U. S. A. 2007;104:9422–9427.
    1. Yauch L.E., Shresta S. Mouse models of dengue virus infection and disease. Antivir. Res. 2008;80:87–93.
    1. Zellweger R.M., Prestwood T.R., Shresta S. Enhanced infection of liver sinusoidal endothelial cells in a mouse model of antibody-induced severe dengue disease. Cell Host Microbe. 2010;7:128–139.
    1. Balsitis S.J., Williams K.L., Lachica R., Flores D., Kyle J.L., Mehlhop E., Johnson S., Diamond M.S., Beatty P.R., Harris E. Lethal antibody enhancement of dengue disease in mice is prevented by Fc modification. PLoS Pathog. 2010;6:e1000790.
    1. Ubol S., Halstead S.B. How innate immune mechanisms contribute to antibody-enhanced viral infections. Clin. Vaccine Immunol. 2010;17:1829–1835.
    1. Chareonsirisuthigul T., Kalayanarooj S., Ubol S. Dengue virus (DENV) antibody-dependent enhancement of infection upregulates the production of anti-inflammatory cytokines, but suppresses anti-DENV free radical and pro-inflammatory cytokine production, in THP-1 cells. J. Gen. Virol. 2007;88:365–375. doi: 10.1099/vir.0.82537-0.
    1. Ubol S., Phuklia W., Kalayanarooj S., Modhiran N. Mechanisms of immune evasion induced by a complex of dengue virus and preexisting enhancing antibodies. J. Infect. Dis. 2010;201:923–935.
    1. Boonnak K., Dambach K.M., Donofrio G.C., Tassaneetrithep B., Marovich M.A. Cell type specificity and host genetic polymorphisms influence antibody-dependent enhancement of dengue virus infection. J. Virol. 2011;85:1671–1683.
    1. Kou Z., Lim J.Y.H., Beltramello M., Quinn M., Chen H., Liu S.-n., Martnez-Sobrido L., Diamond M.S., Schlesinger J.J., de Silva A., et al. Human antibodies against dengue enhance dengue viral infectivity without suppressing type I interferon secretion in primary human monocytes. Virology. 2011;410:240–247. doi: 10.1016/j.virol.2010.11.007.
    1. Rolph M.S., Zaid A., Rulli N.E., Mahalingam S. Downregulation of interferon-β in antibody-dependent enhancement of dengue viral infections of human macrophages is dependent on interleukin-6. J. Infect. Dis. 2011;204:489–491.
    1. Colpitts T.M., Rodenhuis-Zybert I., Moesker B., Wang P., Fikrig E., Smit J. prM-antibody renders immature West Nile virus infectious in vivo. J. Gen. Virol. 2011;92:2281–2285. doi: 10.1099/vir.0.031427-0.
    1. Mathew A., West K., Kalayanarooj S., Gibbons R.V., Srikiatkhachorn A., Green S., Libraty D., Jaiswal S., Rothman A.L. B-cell responses during primary and secondary dengue virus infections in humans. J. Infect. Dis. 2011;204:1514–1522.

Source: PubMed

3
Předplatit