Zinc and respiratory tract infections: Perspectives for COVID‑19 (Review)

Anatoly V Skalny, Lothar Rink, Olga P Ajsuvakova, Michael Aschner, Viktor A Gritsenko, Svetlana I Alekseenko, Andrey A Svistunov, Demetrios Petrakis, Demetrios A Spandidos, Jan Aaseth, Aristidis Tsatsakis, Alexey A Tinkov, Anatoly V Skalny, Lothar Rink, Olga P Ajsuvakova, Michael Aschner, Viktor A Gritsenko, Svetlana I Alekseenko, Andrey A Svistunov, Demetrios Petrakis, Demetrios A Spandidos, Jan Aaseth, Aristidis Tsatsakis, Alexey A Tinkov

Abstract

In view of the emerging COVID‑19 pandemic caused by SARS‑CoV‑2 virus, the search for potential protective and therapeutic antiviral strategies is of particular and urgent interest. Zinc is known to modulate antiviral and antibacterial immunity and regulate inflammatory response. Despite the lack of clinical data, certain indications suggest that modulation of zinc status may be beneficial in COVID‑19. In vitro experiments demonstrate that Zn2+ possesses antiviral activity through inhibition of SARS‑CoV RNA polymerase. This effect may underlie therapeutic efficiency of chloroquine known to act as zinc ionophore. Indirect evidence also indicates that Zn2+ may decrease the activity of angiotensin‑converting enzyme 2 (ACE2), known to be the receptor for SARS‑CoV‑2. Improved antiviral immunity by zinc may also occur through up‑regulation of interferon α production and increasing its antiviral activity. Zinc possesses anti‑inflammatory activity by inhibiting NF‑κB signaling and modulation of regulatory T‑cell functions that may limit the cytokine storm in COVID‑19. Improved Zn status may also reduce the risk of bacterial co‑infection by improving mucociliary clearance and barrier function of the respiratory epithelium, as well as direct antibacterial effects against S. pneumoniae. Zinc status is also tightly associated with risk factors for severe COVID‑19 including ageing, immune deficiency, obesity, diabetes, and atherosclerosis, since these are known risk groups for zinc deficiency. Therefore, Zn may possess protective effect as preventive and adjuvant therapy of COVID‑19 through reducing inflammation, improvement of mucociliary clearance, prevention of ventilator‑induced lung injury, modulation of antiviral and antibacterial immunity. However, further clinical and experimental studies are required.

Figures

Figure 1
Figure 1
The proposed protective mechanisms of zinc in COVID-19. 1. Zinc significantly improves cilia morphology (54) and increases ciliary beat frequency (55) thus improving mucociliary clearance and removal of bacteria and virus-containing particles. By up-regulating tight junction proteins ZO-1 and claudin-1 (57) and increasing antioxidant activity of respiratory epithelia (56) zinc also increases barrier function of the latter. In turn, coronavirus infection was shown to impair mucociliary clearance (50) predisposing the lung for further viral and bacterial aggression. 2. Zinc may also possess antiviral activity through inhibition of RdRp and blocking further replication of viral RNA as demonstrated for SARS-CoV (38). Indirect evidence also indicates that Zn2+ may decrease activity of ACE2 (49), known to be the receptor for SARS-CoV-2 (47). 3. Modulation of antiviral immunity by zinc may also limit SARS-CoV-2 infection at least through up-regulation of IFNα production (63) and increasing its antiviral activity (64). The latter may be mediated through IFNα-induced JAK1/STAT1 signaling and up-regulation of antiviral proteins (RNaseL and PKR) known to degrade viral RNA and inhibit its translation (65). 4. Excessive inflammatory response resulting in overproduction of proiflammatory cytokines and cytokine storm is known to play a significant role in COVID-19 pathogenesis (103). In turn, zinc possesses anti-inflammatory activity through inhibition of IKK activity and subsequent NF-κB signaling resulting in down-regulation of proinflammatory cytokine production (122,124). Modulation of regulatory T-cell functions by Zinc may also limit excessive inflammatory response (125,126) as well as the downregulation of proinflammatory cytokine production (127,123). 5. Given a high risk of bacterial co-infection in viral pneumonia (128), Zn-induced inhibition of S. pneumoniae growth through modulation of bacterial Mn(II) homeostasis (137) may also be beneficial. 6. Zinc status is also associated with risk factors for high COVID-19 mortality. Specifically, ageing, immune deficiency, as well as metabolic diseases such as obesity, diabetes, and atherosclerosis, are known to be both risk factors for high disease mortality (31,32) and zinc deficiency (149). In turn, Zn supplementation may have beneficial effect in modulation of at least some of these risk factors. ACE2, angiotensin-converting enzyme 2; IFN, interferon; IKK, IκB kinase; NF-κB, nuclear factor-κB; ARDS, acute respiratory distress syndrome.

References

    1. Prasad AS. Discovery of Zinc for Human Health and Biomarkers of Zinc Deficiency. In: Collins JF, editor. Molecular, Genetic, and Nutritional Aspects of Major and Trace Minerals. Academic Press; Cambridge: 2017. pp. 241–260.
    1. Wessels I, Maywald M, Rink L. Zinc as a gatekeeper of immune function. Nutrients. 2017;9:1286. doi: 10.3390/nu9121286.
    1. Maywald M, Wessels I, Rink L. Zinc signals and immunity. Int J Mol Sci. 2017;18:2222. doi: 10.3390/ijms18102222.
    1. Haase H, Rink L. Multiple impacts of zinc on immune function. Metallomics. 2014;6:1175–1180. doi: 10.1039/c3mt00353a.
    1. Gammoh NZ, Rink L. Zinc in infection and inflammation. Nutrients. 2017;9:624. doi: 10.3390/nu9060624.
    1. Aftanas LI, Bonitenko EYu, Varenik VI, Grabeklis AR, Kiselev MF, Lakarova EV, Nechiporenko SP, Nikolaev VA, Skalny AV, Skalnaya MG. Element status of population of Central Federal Region. In: Skalny AV, Kiselev MF, editors. Element status of population of Russia. Part II. ELBI-SPb; Saint Petersburg: 2011. p. 430.
    1. Walker CLF, Rudan I, Liu L, Nair H, Theodoratou E, Bhutta ZA, O'Brien KL, Campbell H, Black RE. Global burden of childhood pneumonia and diarrhoea. Lancet. 2013;381:1405–1416. doi: 10.1016/S0140-6736(13)60222-6.
    1. Bailey RL, West KP, Jr, Black RE. The epidemiology of global micronutrient deficiencies. Ann Nutr Metab. 2015;66(Suppl 2):22–33. doi: 10.1159/000371618.
    1. Yasuda H, Tsutsui T. Infants and elderlies are susceptible to zinc deficiency. Sci Rep. 2016;6:21850. doi: 10.1038/srep21850.
    1. Wapnir RA. Zinc deficiency, malnutrition and the gastrointestinal tract. J Nutr. 2000;130(Suppl):1388S–1392S. doi: 10.1093/jn/130.5.1388S.
    1. Bonaventura P, Benedetti G, Albarède F, Miossec P. Zinc and its role in immunity and inflammation. Autoimmun Rev. 2015;14:277–285. doi: 10.1016/j.autrev.2014.11.008.
    1. Chabosseau P, Rutter GA. Zinc and diabetes. Arch Biochem Biophys. 2016;611:79–85. doi: 10.1016/j.abb.2016.05.022.
    1. Olechnowicz J, Tinkov A, Skalny A, Suliburska J. Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism. J Physiol Sci. 2018;68:19–31. doi: 10.1007/s12576-017-0571-7.
    1. Kozlowski H, Luczkowski M, Remelli M, Valensin D. Copper, zinc and iron in neurodegenerative diseases (Alzheimer's, Parkinson's and prion diseases) Coord Chem Rev. 2012;256:2129–2141. doi: 10.1016/j.ccr.2012.03.013.
    1. Berry M, Gamieldien J, Fielding BC. Identification of new respiratory viruses in the new millennium. Viruses. 2015;7:996–1019. doi: 10.3390/v7030996.
    1. Peiris JSM. Richman DD, Whitley RJ, Hayden FG. Clinical Virology. 4th edition. ASM Press; Washington: 2016. Coronaviruses; pp. 1244–1265.
    1. Docea AO, Tsatsakis A, Albulescu D, Cristea O, Zlatian O, Vinceti M, Moschos SA, Tsoukalas D, Goumenou M, Drakoulis N, et al. A new threat from an old enemy: Re-emergence of coronavirus (Review) Int J Mol Med. 2020;45:1631–1643.
    1. Goumenou M, Spandidos DA, Tsatsakis A. [Editorial] Possibility of transmission through dogs being a contributing factor to the extreme Covid 19 outbreak in North Italy. Mol Med Rep. 2020;21:2293–2295.
    1. Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int J Antimicrob Agents. 2020;55:105924. doi: 10.1016/j.ijantimicag.2020.105924.
    1. Liu J, Cao R, Xu M, Wang X, Zhang H, Hu H, Li Y, Hu Z, Zhong W, Wang M. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov. 2020;6:16. doi: 10.1038/s41421-020-0156-0.
    1. Khachfe HH, Chahrour M, Sammouri J, Salhab H, Makki B, Fares MY. An epidemiological study on COVID-19: A rapidly spreading disease. Cureus. 2020;12:e7313.
    1. World Health Organization (WHO) Coronavirus disease 2019. Events as they happen. WHO; Geneva: 2020. . Updated April 9, 2020.
    1. World Health Organization (WHO) Coronavirus disease (COVID-2019). Situation report - 81. WHO; Geneva: 2020. . Accessed April 10, 2020.
    1. Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun. 2020;109:102433. doi: 10.1016/j.jaut.2020.102433.
    1. Ñamendys-Silva SA. Respiratory support for patients with COVID-19 infection. Lancet Respir Med. 2020;8:e18. doi: 10.1016/S2213-2600(20)30110-7.
    1. Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, Wu Y, Zhang L, Yu Z, Fang M, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020 Feb 24; doi: 10.1016/S2213-2600(20)30079-5. Epub ahead of print.
    1. Docea AO, Goumenou M, Calina D, Arsene AL, Dragoi CM, Gofita E, Pisoschi CG, Zlatian O, Stivaktakis PD, Nikolouzakis TK, et al. Adverse and hormetic effects in rats exposed for 12 months to low dose mixture of 13 chemicals: RLRS part III. Toxicol Lett. 2019;310:70–91. doi: 10.1016/j.toxlet.2019.04.005.
    1. Hernández AF, Docea AO, Goumenou M, Sarigiannis D, Aschner M, Tsatsakis A. Application of novel technologies and mechanistic data for risk assessment under the real-life risk simulation (RLRS) approach. Food Chem Toxicol. 2020;137:111123. doi: 10.1016/j.fct.2020.111123.
    1. Fountoucidou P, Veskoukis AS, Kerasioti E, Docea AO, Taitzoglou IA, Liesivuori J, Tsatsakis A, Kouretas D. A mixture of routinely encountered xenobiotics induces both redox adaptations and perturbations in blood and tissues of rats after a long-term low-dose exposure regimen: The time and dose issue. Toxicol Lett. 2019;317:24–44. doi: 10.1016/j.toxlet.2019.09.015.
    1. Tsatsakis AM, Kouretas D, Tzatzarakis MN, Stivaktakis P, Tsarouhas K, Golokhvast KS, Rakitskii VN, Tutelyan VA, Hernandez AF, Rezaee R, et al. Simulating real-life exposures to uncover possible risks to human health: A proposed consensus for a novel methodological approach. Hum Exp Toxicol. 2017;36:554–564. doi: 10.1177/0960327116681652.
    1. Tsatsakis A, Tyshko NV, Docea AO, Shestakova SI, Sidorova YS, Petrov NA, Zlatian O, Mach M, Hartung T, Tutelyan VA. The effect of chronic vitamin deficiency and long term very low dose exposure to 6 pesticides mixture on neurological outcomes - A real-life risk simulation approach. Toxicol Lett. 2019;315:96–106. doi: 10.1016/j.toxlet.2019.07.026.
    1. Wu C, Chen X, Cai Y, Zhou X, Xu S, Huang H, Wu C, Chen X, Cai Y, Zhou X, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan. JAMA Intern Med. 2020 Mar 13; doi: 10.1001/jamainternmed.2020.0994. Epub ahead of print.
    1. Huang R, Zhu L, Xue L, Liu L, Yan X, Wang J, Zhang B, Xu T, Ji F, et al. Clinical findings of patients with coronavirus disease 2019 in Jiangsu province, China: A retrospective, multi-center study. SSRN, 2020. . Accessed Febryary 28, 2020.
    1. Jiang F, Deng L, Zhang L, Cai Y, Cheung CW, Xia Z. Review of the clinical characteristics of coronavirus disease 2019 (COVID-19) J Gen Intern Med. 2020 Mar 4; doi: 10.1007/s11606-020-05762-w. Epub ahead of print.
    1. Haase H, Rink L. The immune system and the impact of zinc during aging. Immun Ageing. 2009;6:9. doi: 10.1186/1742-4933-6-9.
    1. Zhang L, Liu Y. Potential interventions for novel coronavirus in China: A systematic review. J Med Virol. 2020;92:479–490. doi: 10.1002/jmv.25707.
    1. Read SA, Obeid S, Ahlenstiel C, Ahlenstiel G. The role of zinc in antiviral immunity. Adv Nutr. 2019;10:696–710. doi: 10.1093/advances/nmz013.
    1. Sandstead HH, Prasad AS. Zinc intake and resistance to H1N1 influenza. Am J Public Health. 2010;100:970–971. doi: 10.2105/AJPH.2009.187773.
    1. te Velthuis AJ, van den Worm SH, Sims AC, Baric RS, Snijder EJ, van Hemert MJ. Zn(2+) inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog. 2010;6:e1001176. doi: 10.1371/journal.ppat.1001176.
    1. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W, Xiao G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30:269–271. doi: 10.1038/s41422-020-0282-0.
    1. Liu J, Zheng X, Tong Q, Li W, Wang B, Sutter K, Trilling M, Lu M, Dittmer U, Yang D. Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS-CoV, MERS-CoV, and 2019-nCoV. J Med Virol. 2020;92:491–494. doi: 10.1002/jmv.25709.
    1. Xue J, Moyer A, Peng B, Wu J, Hannafon BN, Ding WQ. Chloroquine is a zinc ionophore. PLoS One. 2014;9:e109180. doi: 10.1371/journal.pone.0109180.
    1. Guastalegname M, Vallone A. Could chloroquine/hydroxy-chloroquine be harmful in Coronavirus disease 2019 (COVID-19) treatment? Clin Infect Dis. 2020 Mar 24; doi: 10.1093/cid/ciaa321. Epub ahead of print.
    1. Dabbagh-Bazarbachi H, Clergeaud G, Quesada IM, Ortiz M, O'Sullivan CK, Fernández-Larrea JB. Zinc ionophore activity of quercetin and epigallocatechin-gallate: From Hepa 1-6 cells to a liposome model. J Agric Food Chem. 2014;62:8085–8093. doi: 10.1021/jf5014633.
    1. Lin MH, Moses DC, Hsieh CH, Cheng SC, Chen YH, Sun CY, Chou CY. Disulfiram can inhibit MERS and SARS coro-navirus papain-like proteases via different modes. Antiviral Res. 2018;150:155–163. doi: 10.1016/j.antiviral.2017.12.015.
    1. Sargsyan K, Chen T, Grauffel C, Lim C. Identifying COVID-19 drug-sites susceptible to clinically safe Zn-ejector drugs using evolutionary/physical principles. OSF Preprints, 2020. . Accessed February 13, 2020.
    1. Xu L, Tong J, Wu Y, Zhao S, Lin BL. Targeted oxidation strategy (TOS) for potential inhibition of Coronaviruses by disulfiram - a 70-year old anti-alcoholism drug. ChemRxiv. In Press.
    1. Hoffmann M, Kleine-Weber H, Krüger N, Mueller MA, Drosten C, Pöhlmann S. The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. bioRxiv. In Press.
    1. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46:586–590. doi: 10.1007/s00134-020-05985-9.
    1. Speth R, Carrera E, Jean-Baptiste M, Joachim A, Linares A. Concentration-dependent effects of zinc on angiotensin-converting enzyme-2 activity (1067.4) FASEB J. 2014;28(Suppl 1):1067.4.
    1. Chilvers MA, McKean M, Rutman A, Myint BS, Silverman M, O'Callaghan C. The effects of coronavirus on human nasal ciliated respiratory epithelium. Eur Respir J. 2001;18:965–970. doi: 10.1183/09031936.01.00093001.
    1. Maret W. Analyzing free zinc(II) ion concentrations in cell biology with fluorescent chelating molecules. Metallomics. 2015;7:202–211. doi: 10.1039/C4MT00230J.
    1. Essaidi-Laziosi M, Brito F, Benaoudia S, Royston L, Cagno V, Fernandes-Rocha M, Piuz I, Zdobnov E, Huang S, Constant S, et al. Propagation of respiratory viruses in human airway epithelia reveals persistent virus-specific signatures. J Allergy Clin Immunol. 2018;141:2074–2084. doi: 10.1016/j.jaci.2017.07.018.
    1. Pittet LA, Hall-Stoodley L, Rutkowski MR, Harmsen AG. Influenza virus infection decreases tracheal mucociliary velocity and clearance of Streptococcus pneumoniae. Am J Respir Cell Mol Biol. 2010;42:450–460. doi: 10.1165/rcmb.2007-0417OC.
    1. Darma A, Ranuh RG, Merbawani W, Setyoningrum RA, Hidajat B, Hidayati SN, Andaryanto A, Sudarmo SM. Zinc supplementation effect on the bronchial cilia length, the number of cilia, and the number of intact bronchial cell in zinc deficiency rats. Indones Biomed J. 2020;12:78–84. doi: 10.18585/inabj.v12i1.998.
    1. Woodworth BA, Zhang S, Tamashiro E, Bhargave G, Palmer JN, Cohen NA. Zinc increases ciliary beat frequency in a calcium-dependent manner. Am J Rhinol Allergy. 2010;24:6–10. doi: 10.2500/ajra.2010.24.3379.
    1. Truong-Tran AQ, Carter J, Ruffin R, Zalewski PD. New insights into the role of zinc in the respiratory epithelium. Immunol Cell Biol. 2001;79:170–177. doi: 10.1046/j.1440-1711.2001.00986.x.
    1. Roscioli E, Jersmann HP, Lester S, Badiei A, Fon A, Zalewski P, Hodge S. Zinc deficiency as a codeterminant for airway epithelial barrier dysfunction in an ex vivo model of COPD. Int J Chron Obstruct Pulmon Dis. 2017;12:3503–3510. doi: 10.2147/COPD.S149589.
    1. Wittekindt OH. Tight junctions in pulmonary epithelia during lung inflammation. Pflugers Arch. 2017;469:135–147. doi: 10.1007/s00424-016-1917-3.
    1. Günzel D, Yu AS. Claudins and the modulation of tight junction permeability. Physiol Rev. 2013;93:525–569. doi: 10.1152/physrev.00019.2012.
    1. Ishida T. Review on the role of Zn2+ ions in viral pathogenesis and the effect of Zn2+ ions for host cell-virus growth inhibition. Am J Biomed Sci Res. 2019;2 doi: 10.34297/AJBSR.2019.02.000566. AJBSR.MS.ID.000566.
    1. Krenn BM, Gaudernak E, Holzer B, Lanke K, Van Kuppeveld FJM, Seipelt J. Antiviral activity of the zinc ionophores pyrithione and hinokitiol against picornavirus infections. J Virol. 2009;83:58–64. doi: 10.1128/JVI.01543-08.
    1. Korant BD, Kauer JC, Butterworth BE. Zinc ions inhibit replication of rhinoviruses. Nature. 1974;248:588–590. doi: 10.1038/248588a0.
    1. Cakman I, Kirchner H, Rink L. Zinc supplementation reconstitutes the production of interferon-α by leukocytes from elderly persons. J Interferon Cytokine Res. 1997;17:469–472. doi: 10.1089/jir.1997.17.469.
    1. Berg K, Bolt G, Andersen H, Owen TC. Zinc potentiates the antiviral action of human IFN-α tenfold. J Interferon Cytokine Res. 2001;21:471–474. doi: 10.1089/10799900152434330.
    1. Lin FC, Young HA. Interferons: Success in anti-viral immunotherapy. Cytokine Growth Factor Rev. 2014;25:369–376. doi: 10.1016/j.cytogfr.2014.07.015.
    1. Singh M, Das RR. Zinc for the common cold. Cochrane Database Syst Rev. 2013;2013:CD001364.
    1. Hemilä H. Zinc lozenges and the common cold: A meta-analysis comparing zinc acetate and zinc gluconate, and the role of zinc dosage. JRSM Open. 2017;8:2054270417694291. doi: 10.1177/2054270417694291.
    1. Hemilä H. Zinc lozenges may shorten the duration of colds: A systematic review. Open Respir Med J. 2011;5:51–58. doi: 10.2174/1874306401105010051.
    1. Che Z, Sun J. Investigation on relationship between whole blood zinc and Fe elements with children pneumonia caused by respiratory syncytial virus. Int J Lab Med. 2016;37:2401–2402.
    1. Johnson JK, Harris FL, Ping XD, Gauthier TW, Brown LAS. Role of zinc insufficiency in fetal alveolar macrophage dysfunction and RSV exacerbation associated with fetal ethanol exposure. Alcohol. 2019;80:5–16. doi: 10.1016/j.alcohol.2018.11.007.
    1. Suara RO, Crowe JE., Jr Effect of zinc salts on respiratory syncytial virus replication. Antimicrob Agents Chemother. 2004;48:783–790. doi: 10.1128/AAC.48.3.783-790.2004.
    1. Kaynar AM, Andreas A, Maloy A, Austin W, Pitt BR, Gopal R, Alcorn JF. Zinc deficiency worsens the long-term outcome and exacerbates inflammation in a murine model of influenza-MRSA superinfection. Am J Respir Crit Care Med. 2019;199:A4130.
    1. Haase H, Mocchegiani E, Rink L. Correlation between zinc status and immune function in the elderly. Biogerontology. 2006;7:421–428. doi: 10.1007/s10522-006-9057-3.
    1. Barnett JB, Hamer DH, Meydani SN. Low zinc status: A new risk factor for pneumonia in the elderly? Nutr Rev. 2010;68:30–37. doi: 10.1111/j.1753-4887.2009.00253.x.
    1. Meydani SN, Barnett JB, Dallal GE, Fine BC, Jacques PF, Leka LS, Hamer DH. Serum zinc and pneumonia in nursing home elderly. Am J Clin Nutr. 2007;86:1167–1173. doi: 10.1093/ajcn/86.4.1167.
    1. Bhat MH, Rather AB, Dhobi GN, Koul AN, Bhat FA, Hussain A. Zinc levels in community acquired pneumonia in hospitalized patients; a case control study. Egypt J Chest Dis Tuberc. 2016;65:485–489. doi: 10.1016/j.ejcdt.2015.12.020.
    1. Saleh P, Sadeghpour A, Mirza-Aghazadeh-Attari M, Hatampour M, Naghavi-Behzad M, Tabrizi A. Relationship between plasma levels of zinc and clinical course of pneumonia. Tanaffos. 2017;16:40–45.
    1. Linko R, Karlsson S, Pettilä V, Varpula T, Okkonen M, Lund V, Ala-Kokko T, Ruokonen E, FINNALI Study Group Serum zinc in critically ill adult patients with acute respiratory failure. Acta Anaesthesiol Scand. 2011;55:615–621. doi: 10.1111/j.1399-6576.2011.02425.x.
    1. Saigal P, Hanekom D. Does zinc improve symptoms of viral upper respiratory tract infection? EBP. 2020;23:37–39.
    1. Sharafi S, Allami A. Efficacy of zinc sulphate on in-hospital outcome of community-acquired pneumonia in people aged 50 years and over. Int J Tuberc Lung Dis. 2016;20:685–688. doi: 10.5588/ijtld.15.0653.
    1. Boudreault F, Pinilla-Vera M, Englert JA, Kho AT, Isabelle C, Arciniegas AJ, Barragan-Bradford D, Quintana C, Amador-Munoz D, Guan J, et al. MICU Registry: Zinc deficiency primes the lung for ventilator-induced injury. JCI Insight. 2017;2:e86507. doi: 10.1172/jci.insight.86507.
    1. Chen X, Bian J, Ge Y. Zinc-deficient diet aggravates ventilation-induced lung injury in rats. J Biomed Res. 2012;26:59–65. doi: 10.1016/S1674-8301(12)60008-6.
    1. Visalakshy J, Surendran S, Pillai MPG, Rajendran A, Sherif AA. Could plasma zinc be a predictor for mortality and severity in sepsis syndrome? Int J Res Med Sci. 2017;5:3929–3934. doi: 10.18203/2320-6012.ijrms20173956.
    1. Hoeger J, Simon TP, Beeker T, Marx G, Haase H, Schuerholz T. Persistent low serum zinc is associated with recurrent sepsis in critically ill patients - A pilot study. PLoS One. 2017;12:e0176069. doi: 10.1371/journal.pone.0176069.
    1. Lee PI, Hu YL, Chen PY, Huang YC, Hsueh PR. Are children less susceptible to COVID-19? J Microbiol Immunol Infect. 2020 Feb 25; doi: 10.1016/j.jmii.2020.02.011. Epub ahead of print.
    1. Dong Y, Mo X, Hu Y, Qi X, Jiang F, Jiang Z, Tong S. Epidemiological characteristics of 2143 pediatric patients with 2019 coronavirus disease in China. Pediatrics. In Press.
    1. Kumar N, Jayaprakash S, Kavitha D. Low serum zinc level - a possible marker of severe pneumonia. JMSCR. 2017;5:21554–21570. doi: 10.18535/jmscr/v5i5.53.
    1. Islam SN, Kamal MM, Rahmatullah R, Sadi SKS, Ahsan M. Serum zinc levels in children with acute respiratory infections: Association with sociodemography and nutritional status. Clin Nutr Exp. 2018;22:11–18. doi: 10.1016/j.yclnex.2018.09.002.
    1. Saleh NY, Abo El Fotoh WMM. Low serum zinc level: The relationship with severe pneumonia and survival in critically ill children. Int J Clin Pract. 2018;72:e13211. doi: 10.1111/ijcp.13211.
    1. Yakoob MY, Theodoratou E, Jabeen A, Imdad A, Eisele TP, Ferguson J, Jhass A, Rudan I, Campbell H, Black RE, et al. Preventive zinc supplementation in developing countries: Impact on mortality and morbidity due to diarrhea, pneumonia and malaria. BMC Public Health. 2011;11(Suppl 3):S23. doi: 10.1186/1471-2458-11-S3-S23.
    1. Lassi ZS, Moin A, Bhutta ZA. Zinc supplementation for the prevention of pneumonia in children aged 2 months to 59 months. Cochrane Database Syst Rev. 2016;12:CD005978.
    1. Das RR, Singh M, Shafiq N. Short-term therapeutic role of zinc in children <5 years of age hospitalised for severe acute lower respiratory tract infection. Paediatr Respir Rev. 2012;13:184–191. doi: 10.1016/j.prrv.2012.01.004.
    1. Basnet S, Shrestha PS, Sharma A, Mathisen M, Prasai R, Bhandari N, Adhikari RK, Sommerfelt H, Valentiner-Branth P, Strand TA, Zinc Severe Pneumonia, Study Group. A randomized controlled trial of zinc as adjuvant therapy for severe pneumonia in young children. Pediatrics. 2012;129:701–708. doi: 10.1542/peds.2010-3091.
    1. Srinivasan MG, Ndeezi G, Mboijana CK, Kiguli S, Bimenya GS, Nankabirwa V, Tumwine JK. Zinc adjunct therapy reduces case fatality in severe childhood pneumonia: A randomized double blind placebo-controlled trial. BMC Med. 2012;10:14. doi: 10.1186/1741-7015-10-14.
    1. Bagri NK, Bagri N, Jana M, Gupta AK, Wadhwa N, Lodha R, Kabra SK, Chandran A, Aneja S, Chaturvedi MK, et al. Efficacy of oral zinc supplementation in radiologically confirmed pneumonia: Secondary analysis of a randomized controlled trial. J Trop Pediatr. 2018;64:110–117. doi: 10.1093/tropej/fmx036.
    1. Yuan X, Qian SY, Li Z, Zhang ZZ. Effect of zinc supplementation on infants with severe pneumonia. World J Pediatr. 2016;12:166–169. doi: 10.1007/s12519-015-0072-9.
    1. Shah UH, Abu-Shaheen AK, Malik MA, Alam S, Riaz M, Al-Tannir MA. The efficacy of zinc supplementation in young children with acute lower respiratory infections: A randomized double-blind controlled trial. Clin Nutr. 2013;32:193–199. doi: 10.1016/j.clnu.2012.08.018.
    1. Rerksuppaphol S, Rerksuppaphol L. A randomized controlled trial of zinc supplementation in the treatment of acute respiratory tract infection in Thai children. Pediatr Rep. 2019;11:7954. doi: 10.4081/pr.2019.7954.
    1. Roth DE, Richard SA, Black RE. Zinc supplementation for the prevention of acute lower respiratory infection in children in developing countries: Meta-analysis and meta-regression of randomized trials. Int J Epidemiol. 2010;39:795–808. doi: 10.1093/ije/dyp391.
    1. Martinez-Estevez NS, Alvarez-Guevara AN, Rodriguez-Martinez CE. Effects of zinc supplementation in the prevention of respiratory tract infections and diarrheal disease in Colombian children: A 12-month randomised controlled trial. Allergol Immunopathol (Madr) 2016;44:368–375. doi: 10.1016/j.aller.2015.12.006.
    1. Aggarwal R, Sentz J, Miller MA. Role of zinc administration in prevention of childhood diarrhea and respiratory illnesses: A meta-analysis. Pediatrics. 2007;119:1120–1130. doi: 10.1542/peds.2006-3481.
    1. Khera D, Singh S, Purohit P, Sharma P, Singh K. Prevalence of Zinc deficiency and effect of Zinc supplementation on prevention of acute respiratory infections: A non randomized open label study. SSRN. 2018 doi: 10.2139/ssrn.3273670. . Accessed October 26, 2018.
    1. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS. COVID-19: Consider cytokine storm syndromes and immuno-suppression. Lancet. 2020;395:1033–1034. doi: 10.1016/S0140-6736(20)30628-0.
    1. Biaggio VS, Pérez Chaca MV, Valdéz SR, Gómez NN, Gimenez MS. Alteration in the expression of inflammatory parameters as a result of oxidative stress produced by moderate zinc deficiency in rat lung. Exp Lung Res. 2010;36:31–44. doi: 10.3109/01902140903061787.
    1. Bao S, Knoell DL. Zinc modulates cytokine-induced lung epithelial cell barrier permeability. Am J Physiol Lung Cell Mol Physiol. 2006;291:L1132–L1141. doi: 10.1152/ajplung.00207.2006.
    1. Liu MJ, Bao S, Napolitano JR, Burris DL, Yu L, Tridandapani S, Knoell DL. Zinc regulates the acute phase response and serum amyloid A production in response to sepsis through JAK-STAT3 signaling. PLoS One. 9:e94934.
    1. St Croix CM, Leelavaninchkul K, Watkins SC, Kagan VE, Pitt BR. Nitric oxide and zinc homeostasis in acute lung injury. Proc Am Thorac Soc. 2005;2:236–242. doi: 10.1513/pats.200501-007AC.
    1. Krones CJ, Klosterhalfen B, Butz N, Hoelzl F, Junge K, Stumpf M, Peiper C, Klinge U, Schumpelick V. Effect of zinc pretreatment on pulmonary endothelial cells in vitro and pulmonary function in a porcine model of endotoxemia. J Surg Res. 2005;123:251–256. doi: 10.1016/j.jss.2004.08.024.
    1. Wessels I, Pupke JT, von Trotha KT, Gombert A, Himmelsbach A, Fischer HJ, Jacobs MJ, Rink L, Grommes J. Zinc supplementation ameliorates lung injury by reducing neutrophil recruitment and activity. Thorax. 2020;75:253–261. doi: 10.1136/thoraxjnl-2019-213357.
    1. Biaggio VS, Salvetti NR, Pérez Chaca MV, Valdez SR, Ortega HH, Gimenez MS, Gomez NN. Alterations of the extracellular matrix of lung during zinc deficiency. Br J Nutr. 2012;108:62–70. doi: 10.1017/S0007114511005290.
    1. Luo W, Yu H, Gou J, Li X, Sun Y, Li J, Liu L. Clinical pathology of critical patient with novel Coronavirus pneumonia (COVID-19) Preprints. 2020;2020:2020020407.
    1. Knoell DL, Julian MW, Bao S, Besecker B, Macre JE, Leikauf GD, DiSilvestro RA, Crouser ED. Zinc deficiency increases organ damage and mortality in a murine model of polymicrobial sepsis. Crit Care Med. 2009;37:1380–1388. doi: 10.1097/CCM.0b013e31819cefe4.
    1. Bao S, Liu MJ, Lee B, Besecker B, Lai JP, Guttridge DC, Knoell DL. Zinc modulates the innate immune response in vivo to polymicrobial sepsis through regulation of NF-kappaB. Am J Physiol Lung Cell Mol Physiol. 2010;298:L744–L754. doi: 10.1152/ajplung.00368.2009.
    1. Nowak JE, Harmon K, Caldwell CC, Wong HR. Prophylactic zinc supplementation reduces bacterial load and improves survival in a murine model of sepsis. Pediatr Crit Care Med. 2012;13:e323–e329. doi: 10.1097/PCC.0b013e31824fbd90.
    1. Ganatra HA, Varisco BM, Harmon K, Lahni P, Opoka A, Wong HR. Zinc supplementation leads to immune modulation and improved survival in a juvenile model of murine sepsis. Innate Immun. 2017;23:67–76. doi: 10.1177/1753425916677073.
    1. Slinko S, Piraino G, Hake PW, Ledford JR, O'Connor M, Lahni P, Solan PD, Wong HR, Zingarelli B. Combined zinc supplementation with proinsulin C-peptide treatment decreases the inflammatory response and mortality in murine polymicrobial sepsis. Shock. 2014;41:292–300. doi: 10.1097/SHK.0000000000000127.
    1. Besecker BY, Exline MC, Hollyfield J, Phillips G, Disilvestro RA, Wewers MD, Knoell DL. A comparison of zinc metabolism, inflammation, and disease severity in critically ill infected and noninfected adults early after intensive care unit admission. Am J Clin Nutr. 2011;93:1356–1364. doi: 10.3945/ajcn.110.008417.
    1. Liu MJ, Bao S, Gálvez-Peralta M, Pyle CJ, Rudawsky AC, Pavlovicz RE, Killilea DW, Li C, Nebert DW, Wewers MD, et al. ZIP8 regulates host defense through zinc-mediated inhibition of NF-κB. Cell Rep. 2013;3:386–400. doi: 10.1016/j.celrep.2013.01.009.
    1. Hall SC, Smith DR, Katafiasz DM, Bailey KL, Knoell DL. Novel role of zinc homeostasis in IL-23 regulation and host defense following bacterial infection. J Immunol. 2019;202(Suppl 1):62–6.
    1. Knoell DL, Smith DA, Sapkota M, Heires AJ, Hanson CK, Smith LM, Poole JA, Wyatt TA, Romberger DJ. Insufficient zinc intake enhances lung inflammation in response to agricultural organic dust exposure. J Nutr Biochem. 2019;70:56–64. doi: 10.1016/j.jnutbio.2019.04.007.
    1. Lang CJ, Hansen M, Roscioli E, Jones J, Murgia C, Leigh Ackland M, Zalewski P, Anderson G, Ruffin R. Dietary zinc mediates inflammation and protects against wasting and metabolic derangement caused by sustained cigarette smoke exposure in mice. Biometals. 2011;24:23–39. doi: 10.1007/s10534-010-9370-9.
    1. von Bülow V, Dubben S, Engelhardt G, Hebel S, Plümäkers B, Heine H, Rink L, Haase H. Zinc-dependent suppression of TNF-α production is mediated by protein kinase A-induced inhibition of Raf-1, IκB kinase β, and NF-κB. J Immunol. 2007;179:4180–4186. doi: 10.4049/jimmunol.179.6.4180.
    1. Wessels I, Haase H, Engelhardt G, Rink L, Uciechowski P. Zinc deficiency induces production of the proinflammatory cytokines IL-1β and TNFα in promyeloid cells via epigenetic and redox-dependent mechanisms. J Nutr Biochem. 2013;24:289–297. doi: 10.1016/j.jnutbio.2012.06.007.
    1. Prasad AS, Bao B, Beck FW, Sarkar FH. Zinc-suppressed inflammatory cytokines by induction of A20-mediated inhibition of nuclear factor-κB. Nutrition. 2011;27:816–823. doi: 10.1016/j.nut.2010.08.010.
    1. Wellinghausen N, Martin M, Rink L. Zinc inhibits interleukin-1-dependent T cell stimulation. Eur J Immunol. 1997;27:2529–2535. doi: 10.1002/eji.1830271010.
    1. Rosenkranz E, Metz CH, Maywald M, Hilgers RD, Weßels I, Senff T, Haase H, Jäger M, Ott M, Aspinall R, et al. Zinc supplementation induces regulatory T cells by inhibition of Sirt-1 deacetylase in mixed lymphocyte cultures. Mol Nutr Food Res. 2016;60:661–671. doi: 10.1002/mnfr.201500524.
    1. Kahmann L, Uciechowski P, Warmuth S, Plümäkers B, Gressner AM, Malavolta M, Mocchegiani E, Rink L. Zinc supplementation in the elderly reduces spontaneous inflammatory cytokine release and restores T cell functions. Rejuvenation Res. 2008;11:227–237. doi: 10.1089/rej.2007.0613.
    1. Kim H. Outbreak of novel coronavirus (COVID-19): What is the role of radiologists? Eur Radiol. 2020 Feb 18; doi: 10.1007/s00330-020-06748-2. Epub ahead of print.
    1. Golda A, Malek N, Dudek B, Zeglen S, Wojarski J, Ochman M, Kucewicz E, Zembala M, Potempa J, Pyrc K. Infection with human coronavirus NL63 enhances streptococcal adherence to epithelial cells. J Gen Virol. 2011;92:1358–1368. doi: 10.1099/vir.0.028381-0.
    1. Eijkelkamp BA, Morey JR, Neville SL, Tan A, Pederick VG, Cole N, Singh PP, Ong CY, Gonzalez de Vega R, Clases D, et al. Dietary zinc and the control of Streptococcus pneumoniae infection. PLoS Pathog. 2019;15:e1007957. doi: 10.1371/journal.ppat.1007957.
    1. Coles CL, Sherchand JB, Khatry SK, Katz J, Leclerq SC, Mullany LC, Tielsch JM. Zinc modifies the association between nasopharyngeal Streptococcus pneumoniae carriage and risk of acute lower respiratory infection among young children in rural Nepal. J Nutr. 2008;138:2462–2467. doi: 10.3945/jn.108.095422.
    1. Strand TA, Hollingshead SK, Julshamn K, Briles DE, Blomberg B, Sommerfelt H. Effects of zinc deficiency and pneumococcal surface protein A immunization on zinc status and the risk of severe infection in mice. Infect Immun. 2003;71:2009–2013. doi: 10.1128/IAI.71.4.2009-2013.2003.
    1. Strand TA, Briles DE, Gjessing HK, Maage A, Bhan MK, Sommerfelt H. Pneumococcal pulmonary infection, septicaemia and survival in young zinc-depleted mice. Br J Nutr. 2001;86:301–306. doi: 10.1079/BJN2001399.
    1. Hamza SA, Mousa SM, Taha SE, Adel LA, Samaha HE, Hussein DA. Immune response of 23-valent pneumococcal poly-saccharide vaccinated elderly and its relation to frailty indices, nutritional status, and serum zinc levels. Geriatr Gerontol Int. 2012;12:223–229. doi: 10.1111/j.1447-0594.2011.00749.x.
    1. Mansouri F, Vaziri S, Janbakhsh A, Sayad B, Najafi F, Karimivafa SM, Kashef M, Azizi M. The effect of zinc on the Immune responses of pneumococcal vaccination in elderly. Int J Med Microbiol. 2016;10:67–73.
    1. Osendarp SJ, Prabhakar H, Fuchs GJ, van Raaij JM, Mahmud H, Tofail F, Santosham M, Black RE. Immunization with the heptavalent pneumococcal conjugate vaccine in Bangladeshi infants and effects of zinc supplementation. Vaccine. 2007;25:3347–3354. doi: 10.1016/j.vaccine.2007.01.001.
    1. Jacobsen FE, Kazmierczak KM, Lisher JP, Winkler ME, Giedroc DP. Interplay between manganese and zinc homeostasis in the human pathogen Streptococcus pneumoniae. Metallomics. 2011;3:38–41. doi: 10.1039/C0MT00050G.
    1. McDevitt CA, Ogunniyi AD, Valkov E, Lawrence MC, Kobe B, McEwan AG, Paton JC. A molecular mechanism for bacterial susceptibility to zinc. PLoS Pathog. 2011;7:e1002357. doi: 10.1371/journal.ppat.1002357.
    1. Pasquet J, Chevalier Y, Pelletier J, Couval E, Bouvier D, Bolzinger MA. The contribution of zinc ions to the antimicrobial activity of zinc oxide. Colloids Surf A Physicochem Eng Asp. 2014;457:263–274. doi: 10.1016/j.colsurfa.2014.05.057.
    1. Bhattacharyya P, Agarwal B, Goswami M, Maiti D, Baruah S, Tribedi P. Zinc oxide nanoparticle inhibits the biofilm formation of Streptococcus pneumoniae. Antonie van Leeuwenhoek. 2018;111:89–99. doi: 10.1007/s10482-017-0930-7.
    1. Reddy LS, Nisha MM, Joice M, Shilpa PN. Antimicrobial activity of zinc oxide (ZnO) nanoparticle against Klebsiella pneumoniae. Pharm Biol. 2014;52:1388–1397. doi: 10.3109/13880209.2014.893001.
    1. Kadiyala U, Turali-Emre ES, Bahng JH, Kotov NA, VanEpps JS. Unexpected insights into antibacterial activity of zinc oxide nanoparticles against methicillin resistant Staphylococcus aureus (MRSA) Nanoscale. 2018;10:4927–4939. doi: 10.1039/C7NR08499D.
    1. Ann LC, Mahmud S, Bakhori SKM, Sirelkhatim A, Mohamad D, Hasan H, Seeni A, Rahman RA. Antibacterial responses of zinc oxide structures against Staphylococcus aureus, Pseudomonas aeruginosa and Streptococcus pyogenes. Ceram Int. 2014;40:2993–3001. doi: 10.1016/j.ceramint.2013.10.008.
    1. Sahu D, Kannan GM, Vijayaraghavan R, Anand T, Khanum F. Nanosized zinc oxide induces toxicity in human lung cells. ISRN Toxicol. 2013;2013:316075. doi: 10.1155/2013/316075.
    1. Lin CD, Kou YY, Liao CY, Li CH, Huang SP, Cheng YW, Liao WC, Chen HX, Wu PL, Kang JJ, et al. Zinc oxide nanoparticles impair bacterial clearance by macrophages. Nanomedicine (Lond) 2014;9:1327–1339. doi: 10.2217/nnm.14.48.
    1. Bayle L, Chimalapati S, Schoehn G, Brown J, Vernet T, Durmort C. Zinc uptake by Streptococcus pneumoniae depends on both AdcA and AdcAII and is essential for normal bacterial morphology and virulence. Mol Microbiol. 2011;82:904–916. doi: 10.1111/j.1365-2958.2011.07862.x.
    1. Brown LR, Caulkins RC, Schartel TE, Rosch JW, Honsa ES, Schultz-Cherry S, Meliopoulos VA, Cherry S, Thornton JA. Increased zinc availability enhances initial aggregation and biofilm formation of Streptococcus pneumoniae. Front Cell Infect Microbiol. 2017;7:233. doi: 10.3389/fcimb.2017.00233.
    1. Skalnaya MG, Skalny AV. Essential trace elements in human health: a physician's view. Publishing House of Tomsk State University; Tomsk: 2018.

Source: PubMed

3
Předplatit