Cannabis sativa L. and Nonpsychoactive Cannabinoids: Their Chemistry and Role against Oxidative Stress, Inflammation, and Cancer

Federica Pellati, Vittoria Borgonetti, Virginia Brighenti, Marco Biagi, Stefania Benvenuti, Lorenzo Corsi, Federica Pellati, Vittoria Borgonetti, Virginia Brighenti, Marco Biagi, Stefania Benvenuti, Lorenzo Corsi

Abstract

In the last decades, a lot of attention has been paid to the compounds present in medicinal Cannabis sativa L., such as Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD), and their effects on inflammation and cancer-related pain. The National Cancer Institute (NCI) currently recognizes medicinal C. sativa as an effective treatment for providing relief in a number of symptoms associated with cancer, including pain, loss of appetite, nausea and vomiting, and anxiety. Several studies have described CBD as a multitarget molecule, acting as an adaptogen, and as a modulator, in different ways, depending on the type and location of disequilibrium both in the brain and in the body, mainly interacting with specific receptor proteins CB1 and CB2. CBD is present in both medicinal and fibre-type C. sativa plants, but, unlike Δ9-THC, it is completely nonpsychoactive. Fibre-type C. sativa (hemp) differs from medicinal C. sativa, since it contains only few levels of Δ9-THC and high levels of CBD and related nonpsychoactive compounds. In recent years, a number of preclinical researches have been focused on the role of CBD as an anticancer molecule, suggesting CBD (and CBD-like molecules present in the hemp extract) as a possible candidate for future clinical trials. CBD has been found to possess antioxidant activity in many studies, thus suggesting a possible role in the prevention of both neurodegenerative and cardiovascular diseases. In animal models, CBD has been shown to inhibit the progression of several cancer types. Moreover, it has been found that coadministration of CBD and Δ9-THC, followed by radiation therapy, causes an increase of autophagy and apoptosis in cancer cells. In addition, CBD is able to inhibit cell proliferation and to increase apoptosis in different types of cancer models. These activities seem to involve also alternative pathways, such as the interactions with TRPV and GRP55 receptor complexes. Moreover, the finding that the acidic precursor of CBD (cannabidiolic acid, CBDA) is able to inhibit the migration of breast cancer cells and to downregulate the proto-oncogene c-fos and the cyclooxygenase-2 (COX-2) highlights the possibility that CBDA might act on a common pathway of inflammation and cancer mechanisms, which might be responsible for its anticancer activity. In the light of all these findings, in this review we explore the effects and the molecular mechanisms of CBD on inflammation and cancer processes, highlighting also the role of minor cannabinoids and noncannabinoids constituents of Δ9-THC deprived hemp.

Figures

Figure 1
Figure 1
Chemical structures of main cannabinoids present in Cannabis sativa L. Abbreviation: Δ = heating; ox = oxidation; is = isomerization.
Figure 2
Figure 2
General representation of the signaling pathways involved in CBD anti-inflammatory effects. Cannabinoids reduce peripheral inflammation by acting at TRPV1, CB2, and GPR55 receptors; these interactions lead to downregulation of enzymes involved in the production of prostaglandins, reactive oxygen species, and cytokines. MAPK inhibition and NF-kB downregulation, together with PPARγ-mediated reduction of lipid peroxidation, are also involved in the anti-inflammatory effects of cannabinoids in the CNS. Abbreviations: CBD, cannabidiol; CNS, central nervous system, CB2, cannabinoid receptor 2; TRPV1, receptor potential channel subfamily V member 1; GPR55, orphan G-protein coupled receptor 55; Akt, protein kinase B; ERK, extracellular signal-regulated kinases; NF-kB nuclear factor kappa-light-chain-enhancer of activated B cells; iNOS, inducible nitric oxide synthase; COX2, cyclooxygenase 2; TNF-α, tumor necrosis factor alpha; PPARγ, peroxisome proliferator-activated receptor gamma.
Figure 3
Figure 3
General representation of the signaling pathways involved in CBD anticancer mediated effects. Cannabinoid-induced apoptosis relies on the stimulation of endoplasmic reticular (ER) stress and through stimulation of TRPV channel. The signaling route involving the arrest of cell proliferation is mediated by the antagonism mainly on GPR55, which causes an inhibition of the activation of ERK pathway; in addition, the block of ROCK activation might be responsible for the antimigratory effect elicited by cannabidiol. CBD, cannabidiol; CB2, cannabinoid receptor 2; TRPV1/2, receptor potential channel subfamily V members 1 and 2; GPR55, orphan G-protein coupled receptor 55; ROS, reactive oxygen species; ER, endoplasmic reticulum; p8, protein p8 (Nuclear Protein 1, NUPR1); CHOP, CCAAT/-enhancer-binding protein homologous protein; ATF2, activating transcription factor 2; CREB, cAMP response element-binding protein; Akt, protein kinase B; ROCK Rho-associated protein kinase; NFAT, nuclear factor of activated T-cells; NF-kB, nuclear factor kappa-light-chain-enhancer of activated B cells; PKC, protein kinase C; P38, mitogen-activated protein kinases.

References

    1. Hartsel J. A., Eades J., Hickory B., Makriyannis A. Cannabis sativa and Hemp. Nutraceuticals: Efficacy, Safety and Toxicity. 2016:735–754.
    1. Andre C. M., Hausman J., Guerriero G. Cannabis sativa: The Plant of the Thousand and One Molecules. Frontiers in Plant Science. 2016;7 doi: 10.3389/fpls.2016.00019.
    1. Appendino G., Chianese G., Taglialatela-Scafati O. Cannabinoids: Occurrence and medicinal chemistry. Current Medicinal Chemistry. 2011;18(7):1085–1099. doi: 10.2174/092986711794940888.
    1. Thomas B. F., ElSohly M. A. 1st. Amsterdam: Elsevier; 2015. The analytical chemistry of Cannabis: quality assessment, assurance and regulation of medicinal marijuana and cannabinoid preparations.
    1. European Commission, Food safety, plant variety catalogues, databases and information systems. 2018, .
    1. Hanuš L. O., Meyer S. M., Muñoz E., Taglialatela-Scafati O., Appendino G. Phytocannabinoids: A unified critical inventory. Natural Product Reports. 2016;33(12):1357–1392. doi: 10.1039/C6NP00074F.
    1. Brighenti V., Pellati F., Steinbach M., Maran D., Benvenuti S. Development of a new extraction technique and HPLC method for the analysis of non-psychoactive cannabinoids in fibre-type Cannabis sativa L. (hemp) Journal of Pharmaceutical and Biomedical Analysis. 2017;143:228–236. doi: 10.1016/j.jpba.2017.05.049.
    1. Pellati F., Brighenti V., Sperlea J., Marchetti L., Bertelli D., Benvenuti S. New Methods for the Comprehensive Analysis of Bioactive Compounds in Cannabis sativa L. (hemp) Molecules. 2018;23(10) doi: 10.3390/molecules23102639.
    1. ElSohly M. A., Slade D. Chemical constituents of marijuana: the complex mixture of natural cannabinoids. Life Sciences. 2005;78(5):539–548. doi: 10.1016/j.lfs.2005.09.011.
    1. De Backer B., Debrus B., Lebrun P., et al. Innovative development and validation of an HPLC/DAD method for the qualitative and quantitative determination of major cannabinoids in cannabis plant material. Journal of Chromatography B. 2009;877(32):4115–4124. doi: 10.1016/j.jchromb.2009.11.004.
    1. Izzo A. A., Borrelli F., Capasso R., Di Marzo V., Mechoulam R. Non-psychotropic plant cannabinoids: new therapeutic opportunities from an ancient herb. Trends in Pharmacological Sciences. 2009;30(10):515–527. doi: 10.1016/j.tips.2009.07.006.
    1. Fernández-Ruiz J., Moreno-Martet M., Rodríguez-Cueto C., et al. Prospects for cannabinoid therapies in basal ganglia disorders. British Journal of Pharmacology. 2011;163(7):1365–1378. doi: 10.1111/j.1476-5381.2011.01365.x.
    1. Alexander S. P. H. Therapeutic potential of cannabis-related drugs. Progress in Neuro-Psychopharmacology & Biological Psychiatry. 2016;64:157–166. doi: 10.1016/j.pnpbp.2015.07.001.
    1. Campos A. C., Fogaça M. V., Sonego A. B., Guimarães F. S. Cannabidiol, neuroprotection and neuropsychiatric disorders. Pharmacological Research. 2016;112:119–127. doi: 10.1016/j.phrs.2016.01.033.
    1. Brenneisen R. Chemistry and analysis of phytocannabinoids and other Cannabis constituents. In: ElSohly M. A., editor. Marijuana and the Cannabinoids. Totowa, NJ, USA: Marijuana and the cannabinoids, Humana Press Inc.; 2007. p. 17. (49).
    1. Pisanti S., Malfitano A. M., Ciaglia E., et al. Cannabidiol: State of the art and new challenges for therapeutic applications. Pharmacology & Therapeutics. 2017;175:133–150. doi: 10.1016/j.pharmthera.2017.02.041.
    1. Pollastro F., Minassi A., Fresu L. G. Cannabis Phenolics and their Bioactivities. Current Medicinal Chemistry. 2018;25(10):1160–1185. doi: 10.2174/0929867324666170810164636.
    1. Werz O., Seegers J., Schaible A. M., et al. Cannflavins from hemp sprouts, a novel cannabinoid-free hemp food product, target microsomal prostaglandin E2 synthase-1 and 5-lipoxygenase. PharmaNutrition. 2014;2(3):53–60. doi: 10.1016/j.phanu.2014.05.001.
    1. Allegrone G., Pollastro F., Magagnini G., et al. The Bibenzyl Canniprene Inhibits the Production of Pro-Inflammatory Eicosanoids and Selectively Accumulates in Some Cannabis sativa Strains. Journal of Natural Products. 2017;80(3):731–734. doi: 10.1021/acs.jnatprod.6b01126.
    1. Grivennikov S. I., Greten F. R., Karin M. Immunity, Inflammation, and Cancer. Cell. 2010;140(6):883–899. doi: 10.1016/j.cell.2010.01.025.
    1. Namdar D., Koltai H. Medical Cannabis for the treatment of inflammation. Nat. Prod. Commun. 2018;13:249–254.
    1. Mackie K., Stella N. Cannabinoid receptors and endocannabinoids: evidence for new players. The AAPS Journal. 2006;8(2, article 34):E298–E306. doi: 10.1208/aapsj080234.
    1. Jean-Gilles L., Braitch M., Latif M. L., et al. Effects of pro-inflammatory cytokines on cannabinoid CB1 and CB2 receptors in immune cells. Acta Physiol. 2015;214:63–74.
    1. Fijal K., Filip M. Clinical/therapeutic approaches for cannabinoid ligands in central and peripheral nervous system diseases: Mini review. Clinical Neuropharmacology. 2016;39(2):94–101. doi: 10.1097/WNF.0000000000000132.
    1. Mccoy K. L. Interaction between Cannabinoid System and Toll-Like Receptors Controls Inflammation. Mediators of Inflammation. 2016;2016:18. doi: 10.1155/2016/5831315.5831315
    1. Nagarkatti P., Pandey R., Rieder S. A., Hegde V. L., Nagarkatti M. Cannabinoids as novel anti-inflammatory drugs. Future Medicinal Chemistry. 2009;1(7):1333–1349. doi: 10.4155/fmc.09.93.
    1. Burstein S. Cannabidiol (CBD) and its analogs: A review of their effects on inflammation. Bioorganic & Medicinal Chemistry. 2015;23(7):1377–1385. doi: 10.1016/j.bmc.2015.01.059.
    1. Jamontt J. M., Molleman A., Pertwee R. G., Parsons M. E. The effects of Δ9-tetrahydrocannabinol and cannabidiol alone and in combination on damage, inflammation and in vitro motility disturbances in rat colitis. British Journal of Pharmacology. 2010;160(3):712–723. doi: 10.1111/j.1476-5381.2010.00791.x.
    1. de Filippis D., Esposito G., Cirillo C., et al. Cannabidiol reduces intestinal inflammation through the control of neuroimmune axis. PLoS ONE. 2011;6(12)
    1. Sido J. M., Jackson A. R., Nagarkatti P. S., Nagarkatti M. Marijuana-derived Δ-9-tetrahydrocannabinol suppresses Th1/Th17 cell-mediated delayed-type hypersensitivity through microRNA regulation. Journal of Molecular Medicine. 2016;94(9):1039–1051. doi: 10.1007/s00109-016-1404-5.
    1. Berdyshev E., Boichot E., Corbel M., Germain N., Lagente V. Effects of cannabinoid receptor ligands on LPS-induced pulmonary inflammation in mice. Life Sciences. 1998;63(8):125–129.
    1. Roth M. D., Castaneda J. T., Kiertscher S. M. Exposure to Δ9-tetrahydrocannabinol impairs the differentiation of human monocyte-derived dendritic cells and their capacity for T cell activation. Journal of Neuroimmune Pharmacology. 2015;10(2):333–343. doi: 10.1007/s11481-015-9587-z.
    1. Ngaotepprutaram T., Kaplan B. L., Kaminski N. E. Impaired NFAT and NFκB activation are involved in suppression of CD40 ligand expression by Δ9-tetrahydrocannabinol in human CD4+ T cells. Toxicology and Applied Pharmacology. 2013;273(1):209–218. doi: 10.1016/j.taap.2013.08.023.
    1. Chang Y.-H., Lee S. T., Lin W.-W. Effects of cannabinoids on LPS-stimulated inflammatory mediator release from macrophages: involvement of eicosanoids. Journal of Cellular Biochemistry. 2001;81(4):715–723. doi: 10.1002/jcb.1103.
    1. Ruhaak L. R., Felth J., Karlsson P. C., Rafter J. J., Verpoorte R., Bohlin L. Evaluation of the cyclooxygenase inhibiting effects of six major cannabinoids isolated from Cannabis sativa. Biological & Pharmaceutical Bulletin. 2011;34(5):774–778. doi: 10.1248/bpb.34.774.
    1. Shivers S. C., Newton C., Friedman H., Klein T. W. Δ9-tetrahydrocannabinol (THC) modulates IL-1 bioactivity in human monocyte/macrophage cell lines. Life Sciences. 1994;54(17):1281–1289. doi: 10.1016/0024-3205(94)00856-6.
    1. Lombard C., Nagarkatti M., Nagarkatti P. S. Targeting cannabinoid receptors to treat leukemia: Role of cross-talk between extrinsic and intrinsic pathways in Δ9- tetrahydrocannabinol (THC)-induced apoptosis of Jurkat cells. Leukemia Research. 2005;29(8):915–922. doi: 10.1016/j.leukres.2005.01.014.
    1. Jia W., Hegde V. L., Singh N. P., et al. Δ9-tetrahydrocannabinol-induced apoptosis in Jurkat leukemia T cells is regulated by translocation of bad to mitochondria. Molecular Cancer Research. 2006;4(8):549–562. doi: 10.1158/1541-7786.MCR-05-0193.
    1. Costa B., Colleoni M., Conti S., et al. Oral anti-inflammatory activity of cannabidiol, a non-psychoactive constituent of cannabis, in acute carrageenan-induced inflammation in the rat paw. Naunyn-Schmiedeberg's Archives of Pharmacology. 2004;369(3):294–299. doi: 10.1007/s00210-004-0871-3.
    1. Takeda S., Okazaki H., Ikeda E., et al. Down-regulation of cyclooxygenase-2 (cox-2) by cannabidiolic acid in human breast cancer cells. Journal of Toxicological Sciences. 2014;39(5):711–716. doi: 10.2131/jts.39.711.
    1. Ben-Shabat S., Hanuš L. O., Katzavian G., Gallily R. New cannabidiol derivatives: Synthesis, binding to cannabinoid receptor, and evaluation of their antiinflammatory activity. Journal of Medicinal Chemistry. 2006;49(3):1113–1117. doi: 10.1021/jm050709m.
    1. Watzl B., Scuderi P., Watson R. R. Marijuana components stimulate human peripheral blood mononuclear cell secretion of interferon-gamma and suppress interleukin-1 alpha in vitro. International Journal of Immunopharmacology. 1991;13(8):1091–1097. doi: 10.1016/0192-0561(91)90160-9.
    1. Petrosino S., Verde R., Vaia M., Allarà M., Iuvone T., Di Marzo V. Anti-inflammatory Properties of Cannabidiol, a Nonpsychotropic Cannabinoid, in Experimental Allergic Contact Dermatitis. The Journal of Pharmacology and Experimental Therapeutics. 2018;365(3):652–663. doi: 10.1124/jpet.117.244368.
    1. Borrelli F., Fasolino I., Romano B., et al. Beneficial effect of the non-psychotropic plant cannabinoid cannabigerol on experimental inflammatory bowel disease. Biochemical Pharmacology. 2013;85(9):1306–1316. doi: 10.1016/j.bcp.2013.01.017.
    1. Izzo A. A., Capasso R., Aviello G., et al. Inhibitory effect of cannabichromene, a major non-psychotropic cannabinoid extracted from Cannabis sativa, on inflammation-induced hypermotility in mice. British Journal of Pharmacology. 2012;166(4):1444–1460. doi: 10.1111/j.1476-5381.2012.01879.x.
    1. Barrett M. L., Gordon D., Evans F. J. Isolation from cannabis sativa L. of cannflavin-a novel inhibitor of prostaglandin production. Biochemical Pharmacology. 1985;34(11):2019–2024. doi: 10.1016/0006-2952(85)90325-9.
    1. Yoon W.-J., Lee N. H., Hyun C.-G. Limonene suppresses lipopolysaccharide-induced production of nitric oxide, prostaglandin E2, and pro-inflammatory cytokines in RAW 264.7 macrophages. Journal of Oleo Science. 2010;59(8):415–421. doi: 10.5650/jos.59.415.
    1. Gertsch J., Leonti M., Raduner S., et al. Beta-caryophyllene is a dietary cannabinoid. Proceedings of the National Acadamy of Sciences of the United States of America. 2008;105(26):9099–9104. doi: 10.1073/pnas.0803601105.
    1. DiPatrizio N. V. Endocannabinoids in the Gut. Cannabis and Cannabinoid Research. 2016;1(1):67–77. doi: 10.1089/can.2016.0001.
    1. Alhamoruni A., Lee A. C., Wright K. L., Larvin M., O'Sullivan S. E. Pharmacological effects of cannabinoids on the Caco-2 cell culture model of intestinal permeability. The Journal of Pharmacology and Experimental Therapeutics. 2010;335(1):92–102. doi: 10.1124/jpet.110.168237.
    1. Alhamoruni A., Wright K. L., Larvin M., O'Sullivan S. E. Cannabinoids mediate opposing effects on inflammation-induced intestinal permeability. British Journal of Pharmacology. 2012;165(8):2598–2610. doi: 10.1111/j.1476-5381.2011.01589.x.
    1. Couch D. G., Tasker C., Theophilidou E., Lund J. N., O'Sullivan S. E. Cannabidiol and palmitoylethanolamide are anti-inflammatory in the acutely inflamed human colon. Clinical Science. 2017;131(21):2611–2626. doi: 10.1042/CS20171288.
    1. Gigli S., Seguella L., Pesce M., et al. Cannabidiol restores intestinal barrier dysfunction and inhibits the apoptotic process induced by Clostridium difficile toxin A in Caco-2 cells. United European Gastroenterology Journal. 2017;5(8):1108–1115. doi: 10.1177/2050640617698622.
    1. Kalaydina R.-V., Qorri B., Szewczuk M. R. Preventing negative shifts in gut microbiota with Cannabis therapy: implications for colorectal cancer. Adv. Res. Gastroentero. Hepatol. 2017;7:1–5.
    1. Mackie K., Lai Y., Westenbroek R., Mitchell R. Cannabinoids activate an inwardly rectifying potassium conductance and inhibit Q-type calcium currents in AtT20 cells transfected with rat brain cannabinoid receptor. The Journal of Neuroscience. 1995;15(10):6552–6561. doi: 10.1523/JNEUROSCI.15-10-06552.1995.
    1. Maresz K., Pryce G., Ponomarev E. D., et al. Direct suppression of CNS autoimmune inflammation via the cannabinoid receptor CB1 on neurons and CB2 on autoreactive T cells. Nature Medicine. 2007;13(4):492–497. doi: 10.1038/nm1561.
    1. Klein T. W., Lane B., Newton C. A., Friedman H. The cannabinoid system and cytokine network. Proceedings of the Society for Experimental Biology and Medicine. 2000;225(1):1–8. doi: 10.1046/j.1525-1373.2000.22501.x.
    1. Thors L., Bergh A., Persson E., et al. Fatty acid amide hydrolase in prostate cancer: Association with disease severity and outcome, CB1 receptor expression and regulation by IL-4. PLoS ONE. 2010;5(8)e12275
    1. Maccarrone M., Valensise H., Bari M., Lazzarin N., Romanini C., Finazzi-Agrò A. Progesterone up-regulates anandamide hydrolase in human lymphocytes: Role of cytokines and implications for fertility. The Journal of Immunology. 2001;166(12):7183–7189. doi: 10.4049/jimmunol.166.12.7183.
    1. Rubio-Araiz A., Arévalo-Martín Á., Gómez-Torres O., et al. The endocannabinoid system modulates a transient TNF pathway that induces neural stem cell proliferation. Molecular and Cellular Neuroscience. 2008;38(3):374–380. doi: 10.1016/j.mcn.2008.03.010.
    1. Rajesh M., Mukhopadhyay P., Bátkai S., et al. CB2-receptor stimulation attenuates TNF-α-induced human endothelial cell activation, transendothelial migration of monocytes, and monocyte-endothelial adhesion. American Journal of Physiology-Heart and Circulatory Physiology. 2007;293(4):H2210–H2218. doi: 10.1152/ajpheart.00688.2007.
    1. Vivekanantham S., Shah S., Dewji R., Dewji A., Khatri C., Ologunde R. Neuroinflammation in Parkinson's disease: Role in neurodegeneration and tissue repair. International Journal of Neuroscience. 2015;125(10):717–725. doi: 10.3109/00207454.2014.982795.
    1. Koudriavtseva T., Mainero C. Neuroinflammation, neurodegeneration and regeneration in multiple sclerosis: Intercorrelated manifestations of the immune response. Neural Regeneration Research. 2016;11(11):1727–1730. doi: 10.4103/1673-5374.194804.
    1. Gordon R., Woodruff T. M. Neuroinflammation as a therapeutic target in neurodegenerative diseases. In: Baekelandt V., Lobbestael E., editors. Disease-modifying targets in neurodegenerative disorders. Cambridge: Academic Press; 2017. pp. 49–80.
    1. Heneka M. T., Carson M. J., Khoury J. El., et al. Neuroinflammation in Alzheimer's disease. The Lancet Neurology. 2015;14(4):388–405. doi: 10.1016/s1474-4422(15)70016-5.
    1. Gelders Géraldine, Baekelandt Veerle, Van der Perren Anke. Linking Neuroinflammation and Neurodegeneration in Parkinson’s Disease. Journal of Immunology Research. 2018;2018:12. doi: 10.1155/2018/4784268.4784268
    1. Hirsch E. C., Vyas S., Hunot S. Neuroinflammation in Parkinson's disease. Parkinsonism & Related Disorders. 2012;18(1):S210–S212.
    1. Chitnis T. The Role of CD4 T Cells in the Pathogenesis of Multiple Sclerosis. International Review of Neurobiology. 2007;79:43–72. doi: 10.1016/S0074-7742(07)79003-7.
    1. Kaskow B. J., Baecher-Allan C. Effector T Cells in Multiple Sclerosis. Cold Spring Harbor Perspectives in Medicine. 2018;8(4):p. a029025. doi: 10.1101/cshperspect.a029025.
    1. Borgonetti V., Governa P., Montopoli M., Biagi M. Cannabis sativa L. constituents and their role in neuroinflammation. Curr. Bioact. Compd. 2018 doi: 10.2174/1573407214666180703130525.
    1. Janefjord E., Mååg J. L. V., Harvey B. S., Smid S. D. Cannabinoid effects on β amyloid fibril and aggregate formation, neuronal and microglial-activated neurotoxicity in vitro. Cellular and Molecular Neurobiology. 2014;34(1):31–42. doi: 10.1007/s10571-013-9984-x.
    1. Kozela E., Pietr M., Juknat A., Rimmerman N., Levy R., Vogel Z. Cannabinoids delta(9)-tetrahydrocannabinol and cannabidiol differentially inhibit the lipopolysaccharide-activated NF-kappaB and interferon-beta/STAT proinflammatory pathways in BV-2 microglial cells. The Journal of Biological Chemistry. 2010;285(3):1616–1626. doi: 10.1074/jbc.m109.069294.
    1. Hunter S. A., Burstein S. H. Receptor mediation in cannabinoid stimulated arachidonic acid mobilization and anandamide synthesis. Life Sciences. 1997;60(18):1563–1573. doi: 10.1016/S0024-3205(97)00122-7.
    1. Solinas M., Massi P., Cinquina V., et al. Cannabidiol, a Non-Psychoactive Cannabinoid Compound, Inhibits Proliferation and Invasion in U87-MG and T98G Glioma Cells through a Multitarget Effect. PLoS ONE. 2013;8(10)e76918
    1. Martín-Moreno A. M., Reigada D., Ramírez B. G., et al. Cannabidiol and other cannabinoids reduce microglial activation in vitro and in vivo: Relevance to alzheimer's disease. Molecular Pharmacology. 2011;79(6):964–973. doi: 10.1124/mol.111.071290.
    1. Esposito G., Scuderi C., Valenza M., et al. Cannabidiol reduces Aβ-induced neuroinflammation and promotes hippocampal neurogenesis through PPARγ involvement. PLoS ONE. 2011;6(12) doi: 10.1371/journal.pone.0028668.e28668
    1. Dirikoc S., Priola S. A., Marella M., Zsürger N., Chabry J. Nonpsychoactive cannabidiol prevents prion accumulation and protects neurons against prion toxicity. The Journal of Neuroscience. 2007;27(36):9537–9544. doi: 10.1523/JNEUROSCI.1942-07.2007.
    1. Corsi L., Pellati F., Brighenti V., Plessi N., Benvenuti S. Chemical composition and in vitro neuroprotective activity of fibre-type Cannabis sativa L. (hemp) Current Bioactive Compounds. 2018;14 doi: 10.2174/1573407214666180809124952.
    1. Gugliandolo A., Pollastro F., Grassi G., Bramanti P., Mazzon E. In Vitro Model of Neuroinflammation: Efficacy of Cannabigerol, a Non-Psychoactive Cannabinoid. International Journal of Molecular Sciences. 2018;19(7, article E1992) doi: 10.3390/ijms19071992.
    1. Guo K., Mou X., Huang J., Xiong N., Li H. Trans-caryophyllene suppresses hypoxia-induced neuroinflammatory responses by inhibiting NF-κB activation in microglia. Journal of Molecular Neuroscience. 2014;54(1):41–48. doi: 10.1007/s12031-014-0243-5.
    1. Watt G., Karl T. In vivo evidence for therapeutic properties of cannabidiol (CBD) for Alzheimers Disease. Front. Pharmacol. 2017;8, article 20
    1. Scuderi C., Steardo L., Esposito G. Cannabidiol promotes amyloid precursor protein ubiquitination and reduction of beta amyloid expression in SHSY5YAPP+ cells through PPARγ involvement. Phytotherapy Research. 2014;28(7):1007–1013. doi: 10.1002/ptr.5095.
    1. Hughes B., Herron C. E. Cannabidiol Reverses Deficits in Hippocampal LTP in a Model of Alzheimer’s Disease. Neurochemical Research. 2018 doi: 10.1007/s11064-018-2513-z.
    1. Kundu K., Surh Y. J. Inflammation: gearing the journey to cancer. Mutat. Res. 2008;659:15–30.
    1. Mantovani A., Allavena P., Sica A., Balkwill F. Cancer-related inflammation. Nature. 2008;454(7203):436–444. doi: 10.1038/nature07205.
    1. Dvorak H. F. Tumors: wounds that do not heal: similarities between tumor stroma generation and wound healing. The New England Journal of Medicine. 1986;315(26):1650–1659. doi: 10.1056/nejm198612253152606.
    1. Crusz S. M., Balkwill F. R. Inflammation and cancer: advances and new agents. Nature Reviews Clinical Oncology. 2015;12:584–596. doi: 10.1038/nrclinonc.2015.105.
    1. Grivennikov S. I., Karin M. Inflammation and oncogenesis: a vicious connection. Curr. Opin. Genet. Dev. 2010;20:65–71. doi: 10.1016/j.gde.2009.11.004.
    1. Tanaka K., Babic I., Nathanson D., et al. Oncogenic EGFR signaling activates an mTORC2-NF-κB pathway that promotes chemotherapy resistance. Cancer Discovery. 2011;1(6):524–538. doi: 10.1158/-11-0124.
    1. Berasain C., Perugorria M. J., Latasa M. U., et al. The Epidermal Growth Factor Receptor: A Link Between Inflammation and Liver Cancer. Experimental Biology and Medicine. 2009;234(7):713–725. doi: 10.3181/0901-MR-12.
    1. Elbaz M., Nasser M. W., Ravi J., et al. Modulation of the tumor microenvironment and inhibition of EGF/EGFR pathway: Novel anti-tumor mechanisms of Cannabidiol in breast cancer. Molecular Oncology. 2015;9(4):906–919. doi: 10.1016/j.molonc.2014.12.010.
    1. Chiurchiù V., Lanuti M., De Bardi M., Battistini L., Maccarrone M. The differential characterization of GPR55 receptor in human peripheral blood reveals a distinctive expression in monocytes and NK cells and a proinflammatory role in these innate cells. International Immunology. 2015;27(3):153–160. doi: 10.1093/intimm/dxu097.
    1. Wang D., Wang H., Ning W., Backlund M. G., Dey S. K., DuBois R. N. Loss of cannabinoid receptor 1 accelerates intestinal tumor growth. Cancer Research. 2008;68(15):6468–6476. doi: 10.1158/0008-5472.CAN-08-0896.
    1. Mukhopadhyay B., Schuebel K., Mukhopadhyay P., et al. Cannabinoid receptor 1 promotes hepatocellular carcinoma initiation and progression through multiple mechanisms. Hepatology. 2015;61(5):1615–1626. doi: 10.1002/hep.27686.
    1. Benz A. H., Renné C., Maronde E., et al. Expression and functional relevance of cannabinoid receptor 1 in hodgkin lymphoma. PLoS ONE. 2013;8(12)e81675
    1. Messalli E. M., Grauso F., Luise R., Angelini A., Rossiello R. Cannabinoid receptor type 1 immunoreactivity and disease severity in human epithelial ovarian tumors. American Journal of Obstetrics & Gynecology. 2014;211(3):234–e6. doi: 10.1016/j.ajog.2014.04.004.
    1. Pérez-Gómez E., Andradas C., Blasco-Benito S. Role of Cannabinoid Receptor CB2 in HER2 Pro-oncogenic Signaling in Breast Cancer. JNCI: Journal of the National Cancer Institute. 2015;107(6) doi: 10.1093/jnci/djv077.
    1. Dumitru C. A., Sandalcioglu I. E., Karsak M. Cannabinoids in Glioblastoma Therapy: New Applications for Old Drugs. Frontiers in Molecular Neuroscience. 2018;11, article 159 doi: 10.3389/fnmol.2018.00159.
    1. Jung C. K., Kang W. K., Park J. M., et al. Expression of the cannabinoid type I receptor and prognosis following surgery in colorectal cancer. Oncology Letters. 2013;5(3):870–876. doi: 10.3892/ol.2012.1081.
    1. Engels F. K., de Jong F. A., Mathijssen R. H. J., Erkens J. A., Herings R. M., Verweij J. Medicinal cannabis in oncology. European Journal of Cancer. 2007;43(18):2638–2644. doi: 10.1016/j.ejca.2007.09.010.
    1. Munson A. E., Harris L. S., Friedman M. A., Dewey W. L., Carchman R. A. Antineoplastic Activity of Cannabinoids2. JNCI: Journal of the National Cancer Institute. 1975;55(3):597–602. doi: 10.1093/jnci/55.3.597.
    1. Galve-Roperh I., Sánchez C., Cortés M. L., Del Pulgar T. G., Izquierdo M., Guzmán M. Anti-tumoral action of cannabinoids: Involvement of sustained ceramide accumulation and extracellular signal-regulated kinase activation. Nature Medicine. 2000;6(3):313–319. doi: 10.1038/73171.
    1. Sánchez C., de Ceballos M. L., Gomez del Pulgar T., et al. Inhibition of glioma growth in vivo by selective activation of the CB2 cannabinoid receptor. Cancer Res. 2001;61:5784–5789.
    1. Casanova M. L., Blázquez C., Martínez-Palacio J., et al. Inhibition of skin tumor growth and angiogenesis in vivo by activation of cannabinoid receptors. The Journal of Clinical Investigation. 2003;111(1):43–50. doi: 10.1172/JCI16116.
    1. Blázquez C., Carracedo A., Barrado L., et al. Cannabinoid receptors as novel targets for the treatment of melanoma. The FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2006;20(14):2633–2635. doi: 10.1096/fj.06-6638fje.
    1. Carracedo A., Gironella M., Lorente M., et al. Cannabinoids induce apoptosis of pancreatic tumor cells via endoplasmic reticulum stress-related genes. Cancer Research. 2006;66(13):6748–6755. doi: 10.1158/0008-5472.CAN-06-0169.
    1. Cianchi F., Papucci L., Schiavone N., et al. Cannabinoid receptor activation induces apoptosis through tumor necrosis factor alpha-mediated ceramide de novo synthesis in colon cancer cells. Clinical Cancer Research. 2008;14(23):7691–7700. doi: 10.1158/1078-0432.ccr-08-0799.
    1. Bifulco M., Di Marzo V. Targeting the endocannabinoid system in cancer therapy: A call for further research. Nature Medicine. 2002;8(6):547–550. doi: 10.1038/nm0602-547.
    1. Bifulco M., Laezza C., Pisanti S., Gazzerro P. Cannabinoids and cancer: Pros and cons of an antitumour strategy. British Journal of Pharmacology. 2006;148(2):123–135. doi: 10.1038/sj.bjp.0706632.
    1. Freimuth N., Ramer R., Hinz B. Antitumorigenic effects of cannabinoids beyond apoptosis. The Journal of Pharmacology and Experimental Therapeutics. 2010;332(2):336–344. doi: 10.1124/jpet.109.157735.
    1. Sawzdargo M., Nguyen T., Lee D. K., et al. Identification and cloning of three novel human G protein-coupled receptor genes GPR52, ΨGPR53 and GPR55: GPR55 is extensively expressed in human brain. Brain Research. 1999;64(2):193–198. doi: 10.1016/S0169-328X(98)00277-0.
    1. Fredriksson R., Lagerström M. C., Lundin L.-G., Schiöth H. B. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Molecular Pharmacology. 2003;63(6):1256–1272. doi: 10.1124/mol.63.6.1256.
    1. Leyva-Illades D., DeMorrow S. Orphan G protein receptor GPR55 as an emerging target in cancer therapy and management. Cancer Management and Research. 2013;5(1):147–155.
    1. Henstridge C. M., Balenga N. A., Schröder R., et al. GPR55 ligands promote receptor coupling to multiple signalling pathways. British Journal of Pharmacology. 2010;160(3):604–614. doi: 10.1111/j.1476-5381.2009.00625.x.
    1. Lauckner J. E., Jensen J. B., Chen H.-Y., Lu H.-C., Hille B., Mackie K. GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current. Proceedings of the National Acadamy of Sciences of the United States of America. 2008;105(7):2699–2704. doi: 10.1073/pnas.0711278105.
    1. Oka S., Kimura S., Toshida T., Ota R., Yamashita A., Sugiura T. Lysophosphatidylinositol induces rapid phosphorylation of p38 mitogen-activated protein kinase and activating transcription factor 2 in HEK293 cells expressing GPR55 and IM-9 lymphoblastoid cells. The Journal of Biochemistry. 2010;147(5):671–678. doi: 10.1093/jb/mvp208.
    1. Andradas C., Caffarel M. M., Pérez-Gómez E., et al. The orphan G protein-coupled receptor GPR55 promotes cancer cell proliferation via ERK. Oncogene. 2011;30(2):245–252. doi: 10.1038/onc.2010.402.
    1. Pérez-Gómez E., Andradas C., Flores J. M., et al. The orphan receptor GPR55 drives skin carcinogenesis and is upregulated in human squamous cell carcinomas. Oncogene. 2013;32(20):2534–2542. doi: 10.1038/onc.2012.278.
    1. Ryberg E., Larsson N., Sjögren S., et al. The orphan receptor GPR55 is a novel cannabinoid receptor. British Journal of Pharmacology. 2007;152(7):1092–1101. doi: 10.1038/sj.bjp.0707460.
    1. Kapur A., Zhao P., Sharir H., et al. Atypical responsiveness of the orphan receptor GPR55 to cannabinoid ligands. The Journal of Biological Chemistry. 2009;284(43):29817–29827. doi: 10.1074/jbc.M109.050187.
    1. Shrivastava A., Kuzontkoski P. M., Groopman J. E., Prasad A. Cannabidiol Induces Programmed Cell Death in Breast Cancer Cells by Coordinating the Cross-talk between Apoptosis and Autophagy. Molecular Cancer Therapeutics. 2011;10(7):1161–1172. doi: 10.1158/1535-7163.MCT-10-1100.
    1. Zhang X., Maor Y., Wang J. F., Kunos G., Groopman J. E. Endocannabinoid-like N-arachidonoyl serine is a novel pro-angiogenic mediator. British Journal of Pharmacology. 2010;160(7):1583–1594. doi: 10.1111/j.1476-5381.2010.00841.x.
    1. Santoni G., Farfariello V., Amantini C. Transient Receptor Potential Channels. Vol. 704. Dordrecht: Springer Netherlands; 2011. TRPV Channels in Tumor Growth and Progression; pp. 947–967. (Advances in Experimental Medicine and Biology).
    1. Vennekens R., Owsianik G., Nilius B. Vanilloid transient receptor potential cation channels: An overview. Current Pharmaceutical Design. 2008;14(1):18–31. doi: 10.2174/138161208783330763.
    1. Perálvarez-Marín A., Doñate-Macian P., Gaudet R. What do we know about the transient receptor potential vanilloid 2 (TRPV2) ion channel? FEBS Journal. 2013;280(21):5471–5487. doi: 10.1111/febs.12302.
    1. Bisogno T., Hanuš L., De Petrocellis L., et al. Molecular targets for cannabidiol and its synthetic analogues: Effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. British Journal of Pharmacology. 2001;134(4):845–852. doi: 10.1038/sj.bjp.0704327.
    1. Qin N., Neeper M. P., Liu Y., Hutchinson T. L., Lubin M. L., Flores C. M. TRPV2 is activated by cannabidiol and mediates CGRP release in cultured rat dorsal root Ganglion neurons. The Journal of Neuroscience. 2008;28(24):6231–6238. doi: 10.1523/JNEUROSCI.0504-08.2008.
    1. Ligresti A., Moriello A. S., Starowicz K., et al. Antitumor activity of plant cannabinoids with emphasis on the effect of cannabidiol on human breast carcinoma. The Journal of Pharmacology and Experimental Therapeutics. 2006;318(3):1375–1387. doi: 10.1124/jpet.106.105247.
    1. Flourakis M., Prevarskaya N. Insights into Ca2+ homeostasis of advanced prostate cancer cells. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 2009;1793(6):1105–1109. doi: 10.1016/j.bbamcr.2009.01.009.
    1. Bode A. M., Cho Y.-Y., Zheng D., et al. Transient receptor potential type vanilloid 1 suppresses skin carcinogenesis. Cancer Research. 2009;69(3):905–913. doi: 10.1158/0008-5472.CAN-08-3263.
    1. Rochester M. A., Patel N., Turney B. W., et al. The type 1 insulin-like growth factor receptor is over-expressed in bladder cancer. BJU International. 2007;100(6):1396–1401. doi: 10.1111/j.1464-410X.2007.06931.x.
    1. Amantini C., Ballarini P., Caprodossi S., et al. Triggering of transient receptor potential vanilloid type 1 (TRPV1) by capsaicin induces Fas/CD95-mediated apoptosis of urothelial cancer cells in an ATM-dependent manner. Carcinogenesis. 2009;30(8):1320–1329. doi: 10.1093/carcin/bgp138.
    1. Arnold J. C., Hone P., Holland M. L., Allen J. D. CB2and TRPV1 receptors mediate cannabinoid actions on MDR1 expression in multidrug resistant cells. Pharmacological Reports. 2012;64(3):751–757. doi: 10.1016/S1734-1140(12)70871-X.
    1. Nabissi M., Morelli M. B., Santoni M., Santoni G. Triggering of the TRPV2 channel by cannabidiol sensitizes glioblastoma cells to cytotoxic chemotherapeutic agents. Carcinogenesis. 2013;34(1):48–57. doi: 10.1093/carcin/bgs328.
    1. Morelli M. B., Nabissi M., Amantini C., et al. The transient receptor potential vanilloid-2 cation channel impairs glioblastoma stem-like cell proliferation and promotes differentiation. International Journal of Cancer. 2012;131(7):E1067–E1077. doi: 10.1002/ijc.27588.
    1. McAllister S. D., Murase R., Christian R. T., et al. Pathways mediating the effects of cannabidiol on the reduction of breast cancer cell proliferation, invasion, and metastasis. Breast Cancer Research and Treatment. 2011;129(1):37–47. doi: 10.1007/s10549-010-1177-4.
    1. Perk J., Iavarone A., Benezra R. Id family of helix-loop-helix proteins in cancer. Nature Reviews Cancer. 2005;5(8):603–614. doi: 10.1038/nrc1673.

Source: PubMed

3
Předplatit