Antiviral activities of sulfated polysaccharides isolated from Sphaerococcus coronopifolius (Rhodophytha, Gigartinales) and Boergeseniella thuyoides (Rhodophyta, Ceramiales)

Rhimou Bouhlal, Camille Haslin, Jean-Claude Chermann, Sylvia Colliec-Jouault, Corinne Sinquin, Gaelle Simon, Stephane Cerantola, Hassane Riadi, Nathalie Bourgougnon, Rhimou Bouhlal, Camille Haslin, Jean-Claude Chermann, Sylvia Colliec-Jouault, Corinne Sinquin, Gaelle Simon, Stephane Cerantola, Hassane Riadi, Nathalie Bourgougnon

Abstract

Water-soluble sulfated polysaccharides isolated from two red algae Sphaerococcus coronopifolius (Gigartinales, Sphaerococcaceae) and Boergeseniella thuyoides (Ceramiales, Rhodomelaceae) collected on the coast of Morocco inhibited in vitro replication of the Human Immunodeficiency Virus (HIV) at 12.5 μg/mL. In addition, polysaccharides were capable of inhibiting the in vitro replication of Herpes simplex virus type 1 (HSV-1) on Vero cells values of EC₅₀ of 4.1 and 17.2 μg/mL, respectively. The adsorption step of HSV-1 to the host cell seems to be the specific target for polysaccharide action. While for HIV-1, these results suggest a direct inhibitory effect on HIV-1 replication by controlling the appearance of the new generations of virus and potential virucidal effect. The polysaccharides from S. coronopifolius (PSC) and B. thuyoides (PBT) were composed of galactose, 3,6-anhydrogalactose, uronics acids, sulfate in ratios of 33.1, 11.0, 7.7 and 24.0% (w/w) and 25.4, 16.0, 3.2, 7.6% (w/w), respectively.

Keywords: B. thuyoides; Herpes simplex virus; S. coronopifolius; antiviral activity; chemical composition; human immunodeficiency virus; sulfated polysaccharide.

Figures

Figure 1
Figure 1
FTIR spectrum of polysaccharide of S. coronopifolius.
Figure 2
Figure 2
FTIR spectrum of polysaccharide of B. thuyoides.
Figure 3
Figure 3
Anti-HSV-1 activities of polysaccharides at 72 h. Antiviral activity is expressed as the percentage of viable virus-infected cells (% of protection). Cytotoxic activity is observed as the percentage of viable mock-infected cells (% of destruction).

References

    1. Ioannou E, Roussis V. Plant-Derived Natural Products: Synthesis, Function, and Application. Springer; Berlin, Germany: 2009. Natural products from seaweeds; pp. 51–81.
    1. De Sousa APA, Torres MR, Pessoa C, De Moraes MO, Filho FDR, Alves APNN, Costa-Lotufo LV. In vivo growth-inhibition of Sarcoma 180 tumor by alginates from brown seaweed Sargassum vulgare. Carbohydr. Polym. 2007;69:7–13.
    1. Cardozo KHM, Guaratini T, Barros MP, Falcão VR, Tonon AP, Lopes NP, Campos S, Torres MA, Souza AO, Colepicolo P, et al. Metabolites from algae with economical impact. Comp. Biochem. Physiol. Part C. 2007;146:60–78.
    1. Mayer AMS, Rodriguez AD, Berlinck RGS, Hamann MT. Marine pharmacology in 2005–6: Marine compounds with anthelmintic, antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems, and other miscellaneous mechanisms of action. Biochim. Biophys. Acta. 2009;1790:283–308.
    1. Wang H, Ooi EV, Ang PO. Antiviral activities of extracts from Hong Kong seaweeds. J. Zhejiang. Univ. Sci. B. 2008;9:969–976.
    1. Witvrouw M, De Clercq E. Sulfated polysaccharides extracted from sea algae as potential antiviral drugs. Gen. Pharmacol. 1997;29:497–511.
    1. Haslin C, Lahaye M, Pellegrini M, Chermann JC. In vitro anti-HIV activity of sulfated cell-wall polysaccharides from gametic, carposporic and tetrasporic stages of the Mediterranean red alga Asparagopsis armata. Planta Med. 2001;67:301.
    1. Bourgougnon N. Anti-HIV compounds from red seaweeds. In: Fingerman M, Nagabhushanam R, editors. Recent Advances in Marine Biotechnology, Volume 9: Biomaterials and Bioprocessing. Science Publishers; Enfield, NH, USA: 2003. pp. 16–206.
    1. Matsuhiro B, Conte AF, Damonte EB, Kolender AA, Matulewicz MC, Mejías EG, Pujol CA, Zúñiga EA. Structural analysis and antiviral activity of a sulfated galactan from the red seaweed Schizymenia binderi (Gigartinales, Rhodophyta) Carbohydr. Res. 2005;340:2392–2402.
    1. Rodriguez MC, Merino ER, Pujol CA, Damonte EB, Cerezo AS, Matulewicz MC. Galactans from cystocarpic plants of the red seaweed Callophylis variegate (Kallymeniaceae, Gigartinales) Carbohydr. Res. 2005;340:2742–2751.
    1. De SF-Tischer PC, Talarico LB, Noseda MD, Guimaraes SMPB, Damonte EB, Duarte MER. Chemical structure and antiviral activity of carrageenans from Meristiella gelidium against Herpes simplex and dengue virus. Carbohydr. Polym. 2006;63:459–465.
    1. Chattopadhyay K, Mateu CG, Mandal P, Pujol CA, Damonte EB, Ray B. Galactan sulphate of Grateloupia indica: Isolation, structural features an antiviral activity. Phytochemistry. 2007;68:1428–1435.
    1. Mandal P, Pujol CA, Carlucci MJ, Chattopadhyay K, Damonte EB, Ray B. Anti-herpetic activity of a sulfated xylomannan from Scinaia hatei. Phytochemistry. 2008;69:2193–2199.
    1. Harden EA, Falshaw R, Carnachan SM, Kern ER, Prichard MN. Virucidal activity of polysaccharide extracts from four algal species against Herpes simplex virus. Antiviral Res. 2009;83:282–289.
    1. Falshaw R, Furneaux RH, Stevenson DE. Structural analysis of carrageenans from the red alga, Callophyllis hombroniana Mont. Kütz (Kallymeniaceae, Rhodophyta) Carbohydr. Res. 2005;340:1149–1158.
    1. Kolender AA, Matulewicz MC. Sulfated polysaccharides from the red seaweed Georgiella confluens. Carbohydr. Res. 2002;337:57–68.
    1. Baba M, Snoeck R, Pauwels R, De Clercq E. Sulfated polysaccharides are potent and selective inhibitors of various enveloped virus, including Herpes simplex virus, cytomegalovirus, vesicular stomatitis virus, and human immunodeficiency virus. Antimicrob. Agents Chemother. 1988;32:1742–1745.
    1. Bourgougnon N, Chermann JC, Lahaye M, Kornprobst JM. Anti-HIV activity and mode of action, in vitro, of the sulfated polysaccharide from Schizeymenia dubyi (Rhodophyta) Cell. Pharmacol. 1996;3:104–108.
    1. Abourriche A, Charrouf M, Berrada M, Bennamara A, Chaib N, Francisco C. Antimicrobial activities and cytotoxicity of the brown alga Cystoseira tamariscifolia. Fitoterapia. 1999;70:611–614.
    1. Etahiri S, Bultel-Poncé V, Elkouri AE, Assobhei O, Zaoui D, Guyot M. Antibacterial activity of marine algal extracts from the Atlantic coast of Morocco. Mar. Life. 2003;13:3–9.
    1. Moujahidi A, Bencharki B, Hilali L, Bagri A, Najim L. Activités antibactériennes et antifongique des extraits d’algues marines d’origine marocaine. Biol. Santé. 2004;4:298–305.
    1. Souhaili N, Lagzouli M, Faid M, Fellat-Zerrouck K. Inhibition of growth and Mycotoxins formation in moulds by marine algae Cystoseira tamariscifolia. Afr. J. Biol. 2004;3:71–75.
    1. Bourgougnon N, Quemener B, Lahaye M, Chermann JC, Rimbert M, Cormaci M, Furnari G, Kornprobst JM. Annual variation in composition and in vitro anti-HIV-1 activity of the sulfated glucuronogalactan from Schizymenia dubyi (Rhodophyta, Gigartina-les) J. Appl. Phys. 1996;8:155–161.
    1. Bourgougnon N, Quemener B, Lahaye M, Cormaci M, Furnari G, Kornprobst JM. Chemical structural approach of water-soluble sulfated glucuronogalactan from Schizymenia dubyi (Rhodophyta, Gigartinales) J. Appl. Phys. 1996;8:147–159.
    1. Bourgougnon N, Lahaye M, Chermann JC, Kornprobst JM. Composition and antiviral activities of a sulphated polysaccharide from Schizymenia dubyi (Rhodophyta, Gigartinales) Bioorg. Med. Chem. Lett. 1993;3:1141–1146.
    1. Haslin C, Lahaye M, Pellegrini M. Chemical composition structure of sulphated water-soluble cell-wall polysaccharides from the gametic, carposporic and tetrasporic stages of Asparagopsis armata Harvey (Rhodophyta, Bonnemaisoniaceae) Bot. Mar. 2000;43:475–482.
    1. Whyte JNC, Englar JR. The agar component of the red seaweed Gelidium purpurascens. Phytochemistry. 1981;20:237–240.
    1. Izumi K. Chemical heterogeneity of the agar from Gracilaria verrucosa. J. Biochem. 1972;72:135–140.
    1. Freile-Pelegrín Y, Murano E. Agars from three species of Gracilaria (Rhodophyta) from Yucatán Peninsula. Bioresour. Technol. 2005;96:295–302.
    1. Rochas C, Lahaye M, Yaphe W. Sulfate content of carrageenan and agar determined by Infrared spectroscopy. Bot. Mar. 1986;29:335–340.
    1. Fenoradosoa TA, Delattre C, Laroche C, Wadouachi A, Dulong V, Picton L, Andriamadio P, Michaud P. Highly sulphated galactan from Halymenia durvillei (Halymeniales, Rhodophyta), a red seaweed of Madagascar marine coasts. Int. J. Biol. Macromol. 2009;45:140–145.
    1. Duarte MER, Noseda MD, Cardoso MA, Tulio S, Cerezo AS. The structure of a galactan sulfate from the red seaweed Bostrychia montagnei. Carbohydr. Res. 2002;337:1137–1144.
    1. Sekkal M, Legrand P, Huvenne JP, Verdus MC. The use of FTIR microspectormetry as a tool for the identification in situ of polygalactanes in red seaweeds. J. Mol. Struct. 1993;294:227–230.
    1. Ananthi S, Raghavendran HRB, Sunil AG, Gayathri V, Ramakrishnan GV, asanthi HR. In vitro antioxidant and in vivo anti-inflammatory potential of crude polysaccharide from Turbinaria ornata (brown alga) Food Chem. Toxicol. 2010;48:187–192.
    1. Lloyd AG, Dodgson KS. Infrared studies on sulphate esters. II. Monosaccharide sulfates. Biochim. Biophys. Acta. 1961;46:116–120.
    1. Lloyd AG, Dodgson KS, Price RG, Rose FA. Infrared studies on sulphate esters. I. Polysaccharide sulfates. Biochim. Biophys. Acta. 1961;46:108–115.
    1. Pereira L, Amado AM, Critchley AT, van De Velde F, Ribeiro-Claro PJA. Identification of selected seaweed polysaccharides (phycocolloids) by vibrational spectroscopy (FTIR-ATR and FT-Raman) Food Hydrocolloids. 2009;23:1903–1909.
    1. McCandless EL, West JA, Guiry MD. Carrageenan patterns in the phyllophoraceae. Biochem. Syst. Biol. 1982;10:275–284.
    1. Sekkal M, Legrand P. A spectroscopic investigation of the carrageenans and agar in the 1500–100 cm−1 spectral range. Spectrochim. Acta. 1993;49:209–221.
    1. Liao ML, Chiovitti A, Munro SLA, Craik DJ, Kraft AB. Sulfated galactans from Australian specimens of the red alga Phacelocarpus peperocarpos (Gigartinales, Rhodophyta) Carbohydr. Res. 1996;296:237–247.
    1. Bi F, Arman M, Mahmood-ul-Hassan, Iqbal S. Chemical and thermodynamic studies of k-carrageenan isolated from Hypnea musciformis (Red algae) of Krachi coast. Trends Appl. Sci. Res. 2007;2:395–403.
    1. Melo MRS, Feitosa JPA, Freitas ALP, de Paula RCM. Isolation and characterization of soluble sulfated polysaccharide from the red seaweed Gracilaria cornea. Carbohydr. Polym. 2002;49:491–498.
    1. Bodard M, Christiaen D. Spectroscopic infrarouge de films d’agar de Gracilaria verrucosa (Huds) Papenfuss. Bot. Mar. 1983;26:425–427.
    1. Usov AI, Bilan MI, Shashkov AS. Polysaccharide of algae. Characterizaton of hybrid structure of substituted agarose from Polysiphonia morrowii (Rhodophyta, Rhodomelaceae) using β-agarase and 13C-NMR Spectroscopy. Carbohydr. Res. 1997;303:93–102.
    1. Usov AI, Ivanova EG, Shashkov AS. Polysaccharides of algae. XXXIII. Isolation and 13C-NMR spectral study of some new gel-forming polysaccharides from Japan sea red seaweeds. Bot. Mar. 1983;26:285–294.
    1. Miller IJ, Furneaux RH. The structural determination of the agaroid polysaccharides from four New Zealand algae in the order ceramiales by means of 13C NMR spectroscopy. Bot. Mar. 1997;40:333–339.
    1. Miller IJ. Evaluation of the structures of polysaccharides from two New Zealand members of the Rhodomelaceae by 13C NMR spectroscopy. Bot. Mar. 2003;46:386–391.
    1. Prado HJ, Ciancia M, Matulewicz MC. Agarans from the red seaweed Polysiphonia nigrescens (Rhodomelaceae, Ceramiales) Carbohydr. Res. 2008;343:711–718.
    1. Batey JF, Turvey JR. The galactan sulphate of the red alga Polysiphonia lanosa. Carbohydr. Res. 1975;43:133–143.
    1. Van de Velde F. Structure and function of hybrid carrageenans. Food Hydrocolloids. 2008;22:727–734.
    1. Gonzalez ME, Alarcon B, Carrasco L. Polysaccharides as antiviral agents: Antiviral activity of carrageenan. Antimicrob. Agents Chemother. 1987;31:1388–1393.
    1. Talarico LB, Zibetti RGM, Faria PCS, Scolaro LA, Duarte MER, Noseda MD, Pujol CA, Damonte EB. Anti-herpes simplex virus activity of sulfated galactans from the red seaweeds Gymnogongrus griffithsiae and Cryptonemia crenulata. Int. J. Biol. Macromol. 2004;34:63–71.
    1. Kornprobst JM. Substances Naturelles D’origine Marine: Généralités, Micro-Organismes, Algues. Vol. 1 Editions Tec & Doc; Paris, France: 2005.
    1. Damonte EB, Matulewicz MC, Cerezo AS. Sulfated seaweed polysaccharides as antiviral agents. Curr. Med. Chem. 2004;11:2399–2419.
    1. Damonte EB, Matulewicz MC, Cerezo AS, Coto CE. Herpes simplex virus inhibitory sulfated xylogalactans from the red seaweed Nothogenia fastigiata. Chemotherapy. 1996;42:57–64.
    1. Adhikari U, Mateu CG, Chattopadhyay K, Pujol CA, Damonte EB, Ray B. Structure and antiviral of sulfated fucans from Stoechospermum marginatum. Phytochemistry. 2006;67:2474–2482.
    1. Bourgougnon N. PhD Thesis. Université de Nantes; Nantes, France: 1994. Activité antivirale et antiprolifératrice in vitro du polysaccharide sulphate de Schizymenia dubyi (Rhodophytes, Gigartinales)
    1. Bergé J-P, Bourgougnon N, Alban S, Pojer F, Chermann J-C, Billaudel S, Robert J-M, Durand P, Franz G. Antiviral and anticoagulant activities of a water soluble compound extracted from the marine diatom Haslea ostrearia. Planta Med. 1999;65:604–609.
    1. Ghosh T, Chattopadhyay K, Marschall M, Karmakar P, Mandal P, Ray B. Focus on antivirally active sulfated polysaccharides: From structure-activity analysis to clinical evaluation. Glycobiology. 2009;19:2–15.
    1. Carlucci MJ, Ciancia M, Matulewicz MC, Cerezo AS, Damonte EB. Antiherpetic activity and mode of action of natural carrageenans of diverse structural types. Antiviral Res. 1999;43:93–102.
    1. Witvrouw M, Este JA, Mateu MEQ, Reymen D, Andrei G, Snoeck R, Ikeda S, Pauwels R, Bianchini NV, Desmyter J, De Clercq E. Activity of a sulfated polysaccharide extracted from the red seaweed Aghardhiella tenera against human immunodeficiency virus and other enveloped viruses. Antiviral Chem. Chemother. 1994;5:297–303.
    1. McClure MO, Moore JP, Blanc DF, Scotting P, Cook GMW, Keynes RJ, Weber JN, Davies D, Weiss RA. Investigations into the mechanism by which sulfated polysaccharides inhibit HIV-infection in vitro. AIDS Res. Hum. Retroviruses. 1992;8:19–26.
    1. Vlieghe P, Clerc T, Pannecouque C, Witvrouw M, De Clercq E, Salles JP, Kraus JL. Synthesis of new covalently bound kappa-carrageenan-AZT conjugates with improved anti-HIV activities. J. Med. Chem. 2002;45:1275–1283.
    1. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956;28:350–356.
    1. Blumenkrantz N, Asboe-Hansen G. New method for quantitative determination of uronic acids. Anal. Biochem. 1973;54:484–489.
    1. Filisetti-Cozzi TMCC, Carpita NC. Measurement of uronic acids without interference from neutral sugars. Anal. Biochem. 1991;197:157–162.
    1. Kamerling JP, Gerwig GJ, Vliegenthart JFG, Clamp JR. Characterisation by gas-liquid chromatography mass spectrometry of permethylsilylglycosides obtained in the methanolysis of glycoproteins and glycolipids. Biochem. J. 1975;151:491–495.
    1. Montreuil J, Bouquelet S, Debray H, Fournet B, Spick G, Strecker G. Glycoproteins. In: Chaplin MF, Kennedy JF, editors. Carbohydrate Analysis: A Practical Approach. IRL Press; Oxford, UK: 1986. pp. 143–204.
    1. Yaphe W, Arsenault GP. Improved resorcinol reagent for determination of fructose, and 3,6-anhydrogalactose in polysaccharides. Anal. Biochem. 1965;13:143–148.
    1. Craigie JS, Wen ZC, van der Meer JP. Interspecific, intraspecific and nutritionally-determined variations in the composition of agars from Gracilaria spp. Bot. Mar. 1984;27:55–61.
    1. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC. Measurement of protein using bicinchoninic acid. Anal. Biochem. 1985;150:76–85.
    1. Sloneker JH, Orentas DG. Pyruvic acid, a unique component of an exocellular bacterial polysaccharide. Nature. 1962;194:478–479.
    1. Rigouin C, Ladrat CD, Sinquin C, Colliec-Jouault S, Dion M. Assessment of bio-chemical methods to detect enzymatic depolymerization of polysaccharides. Carbohydr. Polym. 2009;76:279–284.
    1. Le Contel C, Galéa P, Silvy F, Hirsch I, Chermann JC. Identification of the β2m-derived epitope responsible for neutralization of HIV isolates. Cell. Pharmacol. AIDS Sci. 1996;3:68–73.
    1. Langlois M, Allard JP, Nugier F, Aymard M. A rapid and automated colorimetric assay for evaluating in the sensitivity of herpes simplex strains to antiviral drugs. J. Biol. Stand. 1986;14:201–211.
    1. Olicard C, Renault T, Torhy C, Benmansour A, Bourgougnon N. Putative antiviral activity in hemolymph from adult Pacific oysters, Crassostrea gigas. Antiviral Res. 2005;66:147–152.

Source: PubMed

3
Předplatit