Lectins from red algae and their biomedical potential

Ram Sarup Singh, Amandeep Kaur Walia, Ram Sarup Singh, Amandeep Kaur Walia

Abstract

Lectins are unique proteins or glycoproteins of non-immune origin that bind specifically to carbohydrates. They recognise and interact reversibly to either free carbohydrates or glycoconjugates, without modifying their structure. Lectins are highly diverse and widely distributed in nature and have been extensively reported from various red algae species. Numerous red algae species have been reported to possess lectins having carbohydrate specificity towards complex glycoproteins or high-mannose N-glycans. These lectin-glycan interactions further trigger many biochemical responses which lead to their extensive use as valuable tools in biomedical research. Thus, owing to their exceptional glycan recognition property, red algae lectins are potential candidate for inhibition of various viral diseases. Hence, the present report integrates existing information on the red algae lectins, their carbohydrate specificity, and characteristics of purified lectins. Further, the review also reports the current state of research into their anti-viral activity against various enveloped viruses such as HIV, hepatitis, influenza, encephalitis, coronavirus and herpes simplex virus and other biomedical activities such as anti-cancer, anti-microbial, anti-inflammatory, anti-nociceptive and acaricidal activities.

Keywords: Anti-viral; Carbohydrate specificity; Haemagglutination; Lectins; Rhodophyceae.

Conflict of interest statement

Conflict of interestAuthors declare that they have no conflict of interest.

© Springer Science+Business Media B.V., part of Springer Nature 2017.

Figures

Fig. 1
Fig. 1
Percentile data on the biomedical potential of Rhodophyceae lectins against various diseases. Data survey from various internet sources

References

    1. Abreu TM, Ribeiro NA, Chaves HV, Jorge RJ, Bezerra MM, Monteiro HS, Vasconcelos IM, Mota ÉF, Benevides NM. Antinociceptive and anti-inflammatory activities of the lectin from marine red alga Solieria filiformis. Planta Med. 2016;82:596–605. doi: 10.1055/s-0042-101762.
    1. Abreu TM, Silva LMCM, Vanderlei ESO, de Melo CML, Pereira VRA, Benevides NMB. Cytokine production induced by marine algae lectins in BALB/c mice splenocytes. Protein Pept Lett. 2012;19:975–981. doi: 10.2174/092986612802084474.
    1. Ainouz IL, Sampaio AH, Benevides NMB, Feritas ALP, Costa FHF, Carvalho MR, Pinheiro-Joventino F. Agglutination of enzyme treated erythrocytes by Brazalian marine algal extract. Bot Mar. 1992;35:475–479.
    1. Ainouz IL, Sampaio AH, Freitas ALP, Benevides NMBB, Mapurunga S. Comparative study on hemagglutinins from the red algae Bryothamnion seaforthii and Bryothamnion triquetrum. R Bras Fisiol Veg. 1995;7:15–19.
    1. Ainouz L, Sampaio H. Screening of Brazilian marine algae for hemagglutinins. Bot Marina. 1991;34:211–214. doi: 10.1515/botm.1991.34.3.211.
    1. Akkouh O, Ng TB, Singh SS, Yin C, Dan X, Chan YS, Pan W, Cheung RC. Lectins with anti-HIV activity: a review. Molecules. 2015;20:648–668. doi: 10.3390/molecules20010648.
    1. Alexandre KB, Gray ES, Pantophlet R, Moore PL, McMahon JB, Chakauya E, O'Keefe BR, Chikwamba R, Morris L. Binding of the mannose-specific lectin, griffithsin, to HIV-1 gp120 exposes the CD4-binding site. J Virol. 2011;85:9039–9050. doi: 10.1128/JVI.02675-10.
    1. Alhogbani T. Acute myocarditis associated with novel Middle East respiratory syndrome coronavirus. Ann Saudi Med. 2016;36:78–80. doi: 10.5144/0256-4947.2016.78.
    1. Ambrosi M, Cameron NR, Davis BG. Lectins: tools for the molecular understanding of the glycocode. Org Biomol Chem. 2005;3:1593–1608. doi: 10.1039/b414350g.
    1. Anam C, Praseptiangga D, Nugraheni MA, Nurhayati T, Fajarningsih ND, Zilda DS, Chasanah E, Yunus A. Preliminary characterization of crude lectin fraction of the red alga, Acrocystis nana from wediombo beach of the southern coast of Java island, Gunung kidul, Yogyakarta, Indonesia. IOP Conf Ser: Mater Sci Eng. 2017;193:012016. doi: 10.1088/1757-899X/193/1/012016.
    1. Anam C, Chasanah E, Perdhana BP, Fajarningsih ND, Yusro NF, Sari AM, Nursiwi A, Praseptiangga D, Yunus A. Cytotoxicity of crude lectins from red macroalgae from the southern coast of Java island, Gunung Kidul Regency, Yogyakarta, Indonesia. IOP Conf Ser: Mater Sci Eng. 2017;193:012017. doi: 10.1088/1757-899X/193/1/012017.
    1. Barton C, Kouokam JC, Lasnik AB, Foreman O, Cambon A, Brock G, Montefiori DC, Vojdani F, McCormick AA, O’Keefe BR, Palmer KE. Activity of and effect of subcutaneous treatment with the broad-spectrum antiviral lectin griffithsin in two lab rodent models. Antimicrob Agents Chemother. 2014;58:120–127. doi: 10.1128/AAC.01407-13.
    1. Barton C, Kouokam JC, Hurst H, Palmer KE. Pharmacokinetics of the antiviral lectin griffithsin administered by different routes indicates multiple potential uses. Viruses. 2016;8:12. doi: 10.3390/v8120331.
    1. Benevides NMB, Holanda ML, Melo FR, Fieitas ALP, Sampaio AH. Purification and partial characterization of the lectin from marine red alga Enatiocladia duperreyi (C. Agardh) Falkenberg. Bot Mar. 1998;41:521–525. doi: 10.1515/botm.1998.41.1-6.521.
    1. Benevides NMB, Leite AM, Freitas ALP. Atividade hemaglutinante na alga vermelha Solieria filiformis. R Bras Fisiol Veg. 1996;8:117–122.
    1. Bies C, Lehr C, Woodley JF. Lectin-mediated drug targeting: history and applications. Adv Drug Deliv Rev. 2004;56:402–435. doi: 10.1016/j.addr.2003.10.030.
    1. Bird KT, Chiles TC, Longley RE, Kendrick AF, Kinkema MD. Agglutinins from marine macroalgae of the south eastern United States. J Appl Phycol. 1993;5:213–218. doi: 10.1007/BF00004020.
    1. Bitencourt F, da S, Figueiredo JG, Mota MRL, Bezerra CCR, Silvestre PP, Vale MR, Nascimento KS, Sampaio AH, Nagano CS, Saker-Sampaio S, Farias WRL, Cavada BS, Assreuy AMS, de Alencar NMN. Antinociceptive and anti-inflammatory effects of a mucin-binding agglutinin isolated from the red marine alga Hypnea cervicornis. Naunyn Schmiedeberg's Arch Pharmacol. 2008;377:139–148. doi: 10.1007/s00210-008-0262-2.
    1. Blunden G, Rogers DJ, Farnham WF. Survey of British seaweeds for hemagglutinins. Lloydia. 1975;38:162–168.
    1. Boonsri N, Rudtanatip T, Withyachumnarnkul B, Wongprasert K. Protein extract from red seaweed Gracilaria fisheri prevents acute hepatopancreatic necrosis disease (AHPND) infection in shrimp. J Appl Phycol. 2017;29:1597–1608. doi: 10.1007/s10811-016-0969-2.
    1. Boyd WC, Almodovar LR, Boyd LG. Agglutinins in marine algae for human erythrocytes. Transfusion. 1966;6:82–83. doi: 10.1111/j.1537-2995.1966.tb04699.x.
    1. Cabezas JA. The type of naturally occurring sialic acids. Rev Esp Fisiol. 1973;29:307–322.
    1. Cabezas M, Cabezas JA. Comparative study on the composition of platelets from the equine, bovine, ovine and porcine species. Rev Esp Fisiol. 1973;29:323–328.
    1. Calvete JJ, Costa FHF, Saker-Sampio S, Murciano MPM, Nagano CS, Cavada BS, Grangeiro TB, Ramos MV, Jr CB, Silveira SB, Freitas BT, Sampio AH. The amino acid sequence of the agglutinin isolated from the red marine algae Bryothamnion triquetrum defines a novel lectin structure. Cell Mol Life Sci. 2000;57:343–350. doi: 10.1007/PL00000696.
    1. Chahud F, Ramalho LNZ, Ramalho FS, Haddad A, Roque-Barreira MC. The lectin KM+ induces corneal epithelial wound healing in rabbits. Int J Exp Pathol. 2009;90:166–173. doi: 10.1111/j.1365-2613.2008.00626.x.
    1. Chaves RP, da Silva SR, Nascimento Neto LG, Carneiro RF, Coelho da Silva AL, Sampaio AH, lopes de Sousa B, Cabral MG, Videira PA, Teixeira EH, Nagano CS (2017) Structural characterization of two isolectins from the marine red alga Solieria filiformis (Kützing) P.W. Gabrielson and their anticancer effect on MCF-7 breast cancer cells. Int J Biol Macromol. 10.1016/j.ijbiomac.2017.09.116
    1. Chen X, Peng LH, Li N, Li QM, Li P, Fung KP, Leung PC, Gao JQ. The healing and anti-scar effects of astragaloside IV on the wound repair in vitro and in vivo. J Ethnopharmacol. 2012;139:721–727. doi: 10.1016/j.jep.2011.11.035.
    1. Chernikov OV, Chikalovets IV, Molchanova VI, Pavlova MA, Lukyanova PA. Algae of Peter the great bay of the sea of Japan as a source of lectins. Russ J Mar Biol. 2007;33:329–332. doi: 10.1134/S1063074007050100.
    1. Cheung RCF, Wong JH, Pan W, Chan YS, Yin C, Dan X, Ng TB. Marine lectins and their medicinal applications. Appl Microbiol Biotechnol. 2015;99:3755–3773. doi: 10.1007/s00253-015-6518-0.
    1. Chiles TC, Bird KT. A comparative study of animal erythrocyte agglutinins from marine algae. Comp Biochem Physiol. 1989;94:107–111.
    1. Chiles TC, Bird KT. Gracilaria tikvahiae agglutinin. Partial purification and preliminary characterization of its carbohydrate specificity. Carbohydr Res. 1990;207:319–326. doi: 10.1016/0008-6215(90)84059-4.
    1. Chung C-C, Lee S-J, Chen Y-S, Tsai H-C, Wann S-R, Kao C-H, Liu Y-C. Acute flaccid paralysis as an unusual presenting symptom of Japanese encephalitis: a case report and review of the literature. Infection. 2007;35:30–32. doi: 10.1007/s15010-007-6038-7.
    1. Conrado FM, Furtado LETA, Teixeira AH, Coutinho NLP, Sampaio AH, Cavada BS, Bezerra MM, Silva AAR, Barbosa FCBB, Chaves HV, Filho GC, Pinto VPT. Erythrina velutina and Bryothamnion seaforthii lectins binding to proteins of primary central nervous system tumors. J Cancer Res Exp Oncol. 2012;41:21–26. doi: 10.5897/JCREO12.004.
    1. Cunliffe DA, Cox KO. Effects of bromelain and pronase on erythrocyte membranes. Mol Immunol. 1979;16:427–433. doi: 10.1016/0161-5890(79)90111-1.
    1. De Souza BWS, Teixeria DIA, Andrade FK, Melo MRS, Munzo AM, Freitas ALP. A survey of antartic algae for agglutinins. Oceol Bras. 2007;11:122–130. doi: 10.4257/oeco.2007.1101.12.
    1. Diegelmann RF, Evans MC. Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci. 2004;9:283–289. doi: 10.2741/1184.
    1. Dienstag JL, McHutchison JG. American gastroenterological association technical review on the management of hepatitis C. Gastroenterol. 2006;130:231–264. doi: 10.1053/j.gastro.2005.11.010.
    1. Dinh HL, Hori K, Quang NH. Screening and preliminary characterization of hemagglutinins in Vietnamese marine algae. J Appl Phycol. 2009;21:89–97. doi: 10.1007/s10811-008-9330-8.
    1. Dixion HBF. Defining a lectin. Nature. 1981;292:192. doi: 10.1038/292192e0.
    1. Drickamer K. Two distinct classes of carbohydrate-recognition domains in animal lectins. J Biol Chem. 1988;263:9557–9560.
    1. Dubuisson J, Cosset FL. Virology and cell biology of the hepatitis C virus life cycle—an update. J Hepatol. 2014;61:S3–S13. doi: 10.1016/j.jhep.2014.06.031.
    1. Dutta K, Rangarajan PN, Vrati S, Basu A. Japanese encephalitis: pathogenesis, prophylactics and therapeutics. Curr Sci. 2010;98:326–334.
    1. Emau P, Tina B, O’feeke BK, Mori T, McMohan JB, Palmer KC, Jiang Y, Bekele G, Tsai CC. Griffithsin, a potent HIV entry inhibitor, is an excellent candidate for anti-HIV microbicide. J Med Primatol. 2007;36:244–253. doi: 10.1111/j.1600-0684.2007.00242.x.
    1. Eylar EH, Madoff MA, Brody OV, Oncley JL. The contribution of sialic acid to the surface charge of the erythrocyte. J Biol Chem. 1962;237:1992–2000.
    1. Fabregas J, Lopez A, Llovo J, Munoz A. A comparative study of seafish erythrocytes and agglutinins from seaweeds. Comp Biochem Physiol A. 1992;103:307–313. doi: 10.1016/0300-9629(92)90585-E.
    1. Ferir G, Palmer KE, Schols D (2011) Synergistic activity profile of griffithsin in combination with tenofovir, maravirus & enfuvirtide against HIV-1 clade C. Virology 47:253–258
    1. Figueiredo JG, Bitencourt FS, Cunha TH, Luz PB, Nascimento KS, Mota MRL, Sampaio AH, Cavada BS, Cunha FQ, Alencar NMN. Agglutinin isolated from the red marine alga Hypnea cervicornis J Agardh reduces inflammatory hypernociception: involvement of nitric oxide. Pharmacol Biochem Behav. 2010;96:371–377. doi: 10.1016/j.pbb.2010.06.008.
    1. Fukuda Y, Sugahara T, Ueno M, Fukuta Y, Ochi Y, Akiyama K, Miyazaki T, Masuda S, Kawakubo A, Kato K. The anti-tumor effect of Euchema serra agglutinin on colon cancer cells in vitro and in vivo. Anticancer Drugs. 2006;17:943–947. doi: 10.1097/01.cad.0000224458.13651.b4.
    1. Fuqua JL, Hamorsky K, Khalsa G, Matoba N, Palmer KE. Bulk production of the antiviral lectin griffithsin. Plant Biotech J. 2015;13:1160–1168. doi: 10.1111/pbi.12433.
    1. Furthmayr H. Structural analysis of a membrane glycoprotein: glycophorin A. J Supramol Struc. 1977;7:121–134. doi: 10.1002/jss.400070111.
    1. Goldberg SR, Diegelmann RF. Wound healing primer. Surg Clin N Am. 2010;90:1133–1146. doi: 10.1016/j.suc.2010.08.003.
    1. Hara T, Aramaki Y, Takada S, Koike S, Tsuchiya S. Receptor-mediated transfer of pSV2CAT DNA to mouse liver cells using asialofetuin-labeled liposomes. Gene Ther. 1995;2:784–788.
    1. Hayashi K, Walde P, Miyazaki T, Sakayama K, Nakamura A, Kameda K, Masuda S, Umakoshi H, Kato K. Active targeting to osteosarcoma cells and apoptotic cell death induction by the novel lectin Eucheuma serra agglutinin isolated from a marine red alga. J Drug Del. 2012;2012:842785.
    1. Hirayama M, Shibata H, Imamura K, Takemasa Sakaguchi T, Hori K. High-mannose specific lectin and its recombinants from a carrageenophyta Kappaphycus alvarezii represent a potent anti-HIV activity through high-affinity binding to the viral envelope glycoprotein gp120. Mar Biotechnol. 2016;18:144–160. doi: 10.1007/s10126-015-9677-1.
    1. Holanda ML, Melo VMM, Silva LMCM, Amorim RCN, Pereira MG, Benevides NMB. Differential activity of a lectin from Solieria filiformis against human pathogenic bacteria. Braz J Med Biol Res. 2005;38:1769–1773. doi: 10.1590/S0100-879X2005001200005.
    1. Hoorelbeke B, Xue J, LiWang PJ, Balzarini J. Role of the carbohydrate-binding sites of griffithsin in the prevention of DC-SIGN-mediated capture and transmission of HIV-1. PLoS One. 2013;8:e64132. doi: 10.1371/journal.pone.0064132.
    1. Hori K, Ikegam S, Miyazawa K, Ito k (1988a) Mitogenic and antineoplastic isoagglutinins from the red alga Soleria robusta. Phytochemistry 27:2063–2067
    1. Hori K, Matsubara K, Miyazawa K. Primary structures of two hemagglutinins from the marine red alga, Hypnea japonica. Biochim Biophys Acta. 2000;1474:226–236. doi: 10.1016/S0304-4165(00)00008-8.
    1. Hori K, Miyazawa K, Fusetani N, Hashimoto K, Ito K. Hypnins, low molecular weight peptidic agglutinins from a marine red alga, Hypnea japonica. Biochim Biophys Acta. 1986;873:228–236. doi: 10.1016/0167-4838(86)90049-X.
    1. Hori K, Miyazawa K, Ito K. Preliminary characrerization of agglutinins from seven marine algal species. Bull J Soc Sci Fish. 1986;52:323–331. doi: 10.2331/suisan.52.323.
    1. Hori K, Miyazawa K, Ito K. A mitogenic agglutinin from the red alga Carpopeltis flabellata. Phytochemistry. 1987;26:1335–1338. doi: 10.1016/S0031-9422(00)81807-5.
    1. Hori K, Miyazawa K, Ito K. Some common properties of lectins from marine algae. Hydrobiologia. 1990;204-205:561–566. doi: 10.1007/BF00040287.
    1. Hori K, Ogata T, Kamiya H, Mimuro M. Lectin like compounds and lectin receptors in marine microalgae hemagglutination and reactivity with purified lectins. J Phycol. 1996;32:783–790. doi: 10.1111/j.0022-3646.1996.00783.x.
    1. Hori K, Oiwa C, Miyazawa K, Ito K. Evidence for wide distribution of agglutinins in marine algae. Bot Mar. 1988;31:133–138. doi: 10.1515/botm.1988.31.2.133.
    1. Hori K, Sato Y, Ito K, Fujiwara Y, Iwamoto Y, Makino H, Kawakubo A. Strict specificity for high-mannose type N-glycans and primary structure of a red alga Eucheuma serra lectin. Glycobiol. 2007;17:479–491. doi: 10.1093/glycob/cwm007.
    1. Hung LD, Hirayama M, Ly BM, Hori K. Purification, primary structure, and biological activity of the high-mannose N-glycan-specific lectin from cultivated Eucheuma denticulatum. J Appl Phycol. 2015;27:1657–1669. doi: 10.1007/s10811-014-0441-0.
    1. Hung LD, Hori K, Nang HQ, Kha T, Hoa LT. Seasonal changes in growth rate, carrageenan yield and lectin content in red alga Kappaphycus alvarezii cultivated in Camrah Bay, Vietnam. J Appl Phycol. 2009;21:265–272. doi: 10.1007/s10811-008-9360-2.
    1. Hung LD, Sato Y, Hori K. High-mannose N-glycan-specific lectin from the red alga Kappaphycus striatum (Carrageenophyte) Phytochemistry. 2011;72:855–861. doi: 10.1016/j.phytochem.2011.03.009.
    1. Ishag HZ, Li C, Wang F, Mao X. Griffithsin binds to the glycosylated proteins (E and prM) of Japanese encephalitis virus and inhibit its infection. Virus Res. 2016;215:50–54. doi: 10.1016/j.virusres.2016.01.016.
    1. Ishag HZF, Li C, Li H, Ming-Xia S, Wang F, Bo N, Matik T, Pu-Yan C, Mao X. Griffithsin inhibits Japanese encephalitis virus infection in vitro and in vivo. Arch Virol. 2013;158:349–358. doi: 10.1007/s00705-012-1489-2.
    1. Kakita H, Fukuoka S, Obika H, Kamishima H. Isolation and characterisation of a fourth hemagglutinin from the red alga, Gracilaria verrucosa, from Japan. J Appl Phycol. 1999;11:49–56. doi: 10.1023/A:1008011616001.
    1. Kakita H, Fukuoka S, Obika H, Li ZR, Kamishima H. Purification and properties of a high molecular weight hemagglutinin from the red alga, Gracilaria verrucosa. Bot Mar. 1997;40:241–247. doi: 10.1515/botm.1997.40.1-6.241.
    1. Kamiya H, Ogata K, Hori K. Isolation and characterization of a new agglutinin in the red alga Palmaria palmata (L) O Kuntze. Bot Mar. 1982;25:537–540. doi: 10.1515/botm.1982.25.11.537.
    1. Kamiya H, Shiomi K, Shimizu Y. Marine biopolymers with cell specificity-III in the red algae Cystoclonium purpureum: isolation and characterization. J Nat Prod. 1980;43:136–139. doi: 10.1021/np50007a012.
    1. Kawakubo A, Makino H, Ohnishi J, Hirohara H, Kanji H. The marine alga Eucheuma serra J Agardh, a high yielding source of two isolectins. J Appl Phycol. 1997;9:331–338. doi: 10.1023/A:1007915006334.
    1. Kawakubo A, Makino H, Ohnishi J, Hirohara H, Kanji H. Occurrence of highly yielded lectins homologous within genus Eucheuma. J Appl Phycol. 1999;11:149–156. doi: 10.1023/A:1008062127564.
    1. Khan F, Khan RH, Sherwani A, Mohmood S, Azfer MA. Lectins as markers for blood grouping. Med Sci Monit. 2002;8:RA293–RA300.
    1. Kim JM, Yun SI, Song BH, Hahn YS, Lee CH, Oh HW, Lee YM. A single N-linked glycosylation site in the Japanese encephalitis virus prM protein is critical for cell type-specific prM protein biogenesis, virus particle release, and pathogenicity in mice. J Virol. 2008;82:7846–7862. doi: 10.1128/JVI.00789-08.
    1. Kouokam JC, Huskens D, Schols D, Johannemann A, Riedell SK, Walter W, Walker JM, Matoba1 N, O’Keefe BR, Palmer KE (2011) Investigation of Griffithsin’s interactions with human cells confirms its outstanding safety and efficacy profile as a microbicide candidate. PLoS One 6:e22635
    1. Kouokam JC, Lasnik AB, Palmer KE. Studies in a murine model confirm the safety of Griffithsin and advocate its further development as a microbicide targeting HIV-1 and other enveloped viruses. Viruses. 2016;8:311. doi: 10.3390/v8110311.
    1. Lambert R, Edwards J, Anstee DJ (1977) A simple method for the standardisation of proteolytic enzymes used in blood group serology. Med Lab Sci 35:233–238
    1. Le HD, Sato T, Shibata H, Hori K. Biochemical comparison of lectins among three different color strains of the red alga Kappaphycus alvarezii. Fisheries Sci. 2009;75:723–730. doi: 10.1007/s12562-009-0088-y.
    1. Leite YFMM, Silva LMCM, Amorim RCNA, Freire EA, Jorge DMM, Grangeiro TB, Benevides NMB. Purification of a lectin from the marine red alga Gracilaria ornata and its effect on the development of the cowpea weevil Callosobruchus maculates (Coleoptera: Bruchidae) Biochim Biophys Acta. 2005;1724:137–145. doi: 10.1016/j.bbagen.2005.03.017.
    1. Levendosky K, Mizenina O, Martinelli E, Jean-Pierre N, Kizima L, Rodriguez A, Kleinbeck K, Bonnaire T, Robbiani M, Zydowsky TM, O’Keefe BR, Fernández-Romero JA. Griffithsin and carrageenan combination to target HSV-2 and HPV. Antimicrob Agents Chemother. 2015;59:7290–7298. doi: 10.1128/AAC.01816-15.
    1. Liao WR, Lin JY, Shieh WY, Jeng WL, Huang R. Antibiotic activity of lectins from marine algae against marine vibrios. J Ind Microbiol Biotech. 2003;30:433–439. doi: 10.1007/s10295-003-0068-7.
    1. Liener IE, Sharon N, Goldstein IJ. The lectins: properties, functions, and applications in biology and medicine. London: Academic Press; 1986.
    1. Lima MEP, Carneiro ME, Nascimento AE, Grangeiro TB, Holanda ML, Amorim RCN, Benevides NMB. Purification of a lectin from the marine red alga Gracilaria cornea and its effects on the cattle tick Boophilus microplus (Acari: Ixodidae) J Agric Food Chem. 2005;53:6414–6419. doi: 10.1021/jf0509660.
    1. Lindenbach BD, Thiel H-JU, Rice CM. Flaviviridae: the viruses and their replication. In: Knipe DM, Howley PM, editors. Fields virology. Philadelphia: Lippincott-Raven; 2007. pp. 1108–1109.
    1. Link MP, Goorin AM, Horowitz M, Meyer WH, Belasco J, Baker A, Ayala A, Shuster J. Adjuvant chemotherapy of high-grade osteosarcoma of the extremity: updated results of the multi-institutional osteosarcoma study. Clin Orthop Relat Res. 1991;270:8–14.
    1. Lusvarghi S, Bewley CA. Griffithsin: an antiviral lectin with outstanding therapeutic potential. Viruses. 2016;8:E296. doi: 10.3390/v8100296.
    1. Marchesi VT, Furthmayr H, Tomita M. The red cell membrane. Annu Rev Biochem. 1976;45:667–698. doi: 10.1146/annurev.bi.45.070176.003315.
    1. Matsubara K, Sumi H, Hori K. Platelet aggregation is inhibited by phycolectins. Experientia. 1996;52:540–543. doi: 10.1007/BF01969724.
    1. Melo FR, Norma MB, Benevides NMB, Pereira MG, Holanda ML, Mendes FNP, Oliveira SRM, Freitas LP, Silva LMCM. Purification and partial characterisation of a lectin from the red marine alga Vidalia obtusiloba C Agardh. Rev Bras Bot. 2004;27:263–269. doi: 10.1590/S0100-84042004000200006.
    1. Melo VMM, Medeiros DA, Rios EJB, Castelar LLM, Carvalho A de FFU (1997) Antifungal properties of proteins (agglutinins) from the red alga Hypnea musciformis (Wulfen) Lamouroux. Bot Mar 40:281–284
    1. Meuleman P, Albecka A, Belouzard S, Vercauteren K, Verhoye L, Wychowski C, Roels GL, Palmer KE, Dubuisson J. Griffithsin has antiviral activity against hepatitis C virus. Antimicrob Agents Chemother. 2011;55:5159–5162. doi: 10.1128/AAC.00633-11.
    1. Micevicz ED, Cole AL, Jung CL, Luong H, Phillips ML, Pratikhya P, Sharma S, Waring AJ, Cole AM, Ruchala P. Grifonin-1: a small HIV-1 entry inhibitor derived from the algal lectin, Griffithsin. PLoS One. 2010;5:e14360. doi: 10.1371/journal.pone.0014360.
    1. Millet JK, Whittaker GR. Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. PNAS. 2014;111:15214–15219. doi: 10.1073/pnas.1407087111.
    1. Millet JK, Seron K, Labitt RN, Danneels A, Palmer KE, Whittaker GR, Dubuisson J, Belouzard S (2016) Middle East respiratory syndrome coronavirus infection is inhibited by griffithsin. Antivir Res 133:1–8
    1. Mirelman D. Microbial lectins and agglutinins: properties and biological activity. New York: John Wiley & Sons; 1986.
    1. Mo H, Goldstein IJ. Isolation and characterization of a Forssman antigen-binding lectin from velvet bean (Mucuna derrigiana) seeds. Glycoconj J. 1994;11:424–431. doi: 10.1007/BF00731278.
    1. Molchanova V, Chernikov O, Chikalovets I, Lukyanov P. Purification and partial characterization of the lectin from the marine alga Tichocarpus crinitus (Gmelin) Rupr (Rhodophyta) Bot Mar. 2010;53:69–78. doi: 10.1515/BOT.2010.001.
    1. Mori T, O’Keefe BR, Sowder RC, Bringans S, Gardella R, Berg S, Cochran P, Turpin JA, Buckheit RW, McMahon JB, Boyd MR. Isolation and characterization of griffithsin, a novel HIV-inactivating protein, from the red alga Griffithsia spp. J Biol Chem. 2005;280:9345–9353. doi: 10.1074/jbc.M411122200.
    1. Moulaei T, Alexandre KB, Shenoy SR, Meyerson JR, Krumpe LR, Constantine B, Wilson J, Buckheit RW, Jr, McMahon JB, Subramaniam S, Wlodawer A, O'Keefe BR. Griffithsin tandemers: flexible and potent lectin inhibitors of the human immunodeficiency virus. Retrovirology. 2015;12:6. doi: 10.1186/s12977-014-0127-3.
    1. Moulaei T, Shenoy SR, Giomarelli B, Thomas C, McMahon JB, Dauter Z, O’Keefe BR, Wlodawer A. Monomerization of viral entry inhibitor griffithsin elucidates the relationship between multivalent binding to carbohydrates and anti-HIV activity. Structure. 2010;18:1104–1115. doi: 10.1016/j.str.2010.05.016.
    1. Nagano CS, del Sol FG, Cavada BS, Nascimento KSD, Nunes EV, Sampaio AH, Calvetea JJ. Crystallization and preliminary X-ray diffraction analysis of HML, a lectin from the red marine alga Hypnea musciformis. Acta Cryst F. 2005;61:997–999. doi: 10.1107/S1744309105033671.
    1. Nagano CS, Moreno FBMB, Bloch C, Prates MV, Calvete JJ, Sampaio SS, Farias WRL, Tavares TD, Nascimento KS, Grangeiro TB, Cavada BS, Sampaio AH. Purification and characterization of a new lectin from red marine alga Hypnea musciformis. Protein Pept Lett. 2002;9:159–165. doi: 10.2174/0929866023408931.
    1. Nascimento KS, Nagano CS, Nunes EV, Rodrigues GV, Calvete JJ, Saker S, Sampaio WRL, Farias SAH. Isolation and characterization of a new agglutinin from red marine alga Hypnea cervicornis J Agardh. Biochem Cell Biol. 2006;84:49–54. doi: 10.1139/o05-152.
    1. Nascimento ASF, Serena S, Beloqui A, Arda A, Sampaio AH, Walcher J, Ott D, Unverzagt G, Reichardt N-C, Jimenez-Barbero J, Nascimento KS, Imberty A, Cavada BS, Varrot A. Algal lectin binding to core (α1-6) fucosylated N-glycans: structural basis for specificity and production of recombinant protein. Glycobiol. 2015;6:607–616. doi: 10.1093/glycob/cwv002.
    1. Nascimento-Neto LG, Carneiro RF, da Silva SR, da Silva BR, Arruda FVS, Carneiro VA, do Nascimento KS, Saker-Sampaio S, da Silva VA, Jr, Porto ALF, Cavada BS, Sampaio AH, Teixeira EH, Nagano CS. Characterization of isoforms of the lectin isolated from the red algae Bryothamnion seaforthii and its pro-healing effect. Mar Drugs. 2012;10:1936–1954. doi: 10.3390/md10091936.
    1. Nascimento-Neto LG, Pinto LS, Bastos RM, Evaristo FFV, Vasconcelos MA, Carneiro VA, Arruda FVS, Porto ALF, Leal RB, Júnior VA, Cavada BS, Teixeira EH. Effect of lectin from Bauhinia variegata and its recombinant isoform on surgically induced skin wounds in a murine model. Molecules. 2011;16:9298–9315. doi: 10.3390/molecules16119298.
    1. Neumann G, Kawaoka Y. The first influenza pandemic of the new millennium. Influenza Other Respir Viruses. 2011;5:157–166. doi: 10.1111/j.1750-2659.2011.00231.x.
    1. Neves SA, Freitas ALP, Souza BWS, Rocha MLA, Correia1 MVO, Sampaio DA, Viana GSB (2007) Antinociceptive properties in mice of a lectin isolated from the marine alga Amansia multifida Lamouroux. Braz J Med Biol Res 40:127–134
    1. Nixon B, Stenfanidor M, Mesquitai MM, Fakioglu E, Segarra T, Rohan L, Halford W, Palmer KE, Herold BC. Griffithsin protects mice from genital herpes by preventing cell-to-cell spread. J Virol. 2013;87:6257–6269. doi: 10.1128/JVI.00012-13.
    1. O’Keefe BR, Giomarelli B, Barnard DL, Shenoy SR, Chan PKS, McMahon JB, Palmer KE, Barnett BW, Meyerholz DK, Wohlford-Lenane CL, McCray PB. Broad-spectrum in vitro activity and in vivo efficacy of the antiviral protein Griffithsin against emerging viruses of the family Coronaviridae. J Virol. 2010;84:2511–2521. doi: 10.1128/JVI.02322-09.
    1. O’Keefe BR, Vojdani F, Buffa V, Shattock RJ, Montefiori DC, Bakke J, Mirsalis J, d’Andrea Anna-Lisa, Hume SD, Bratcher B, Saucedo CJ, McMohan, JB, Pogue GP, Palmer KE (2009) Scaleable manufacture of HIV-1 entry inhibitor griffithsin and validation of its safety and efficacy as a topical microbicide component. PNAS 106:6099–6104
    1. Okamoto R, Hori K, Miyazawa K, Ito K. Isolation and characterization of a new hemagglutinin from the red alga Gracilaria bursa-pastoris. Experientia. 1990;46:975–977. doi: 10.1007/BF01939393.
    1. Okamura M, Yokoyama N, Takabatake N, Okubo K, Ikehara Y, Igarashi I. Modification of host erythrocyte membranes by trypsin and chymotrypsin treatments and effects on the in vitro growth of bovine and equine Babesia parasites. J Parasitol. 2007;93:208–211. doi: 10.1645/GE-914R.1.
    1. Okuyama S, Nakamura-Tsuruta S, Tateno H, Hirabayashi J, Matsubara K, Hori K. Strict binding specificity of small-sized lectins from the red marine alga Hypnea japonica for core (α-1, 6) fucosylated N-glycans. Biosci Biotechnol Biochem. 2009;73:912–920. doi: 10.1271/bbb.80881.
    1. Oliveira SRM, Nascimento AE, Lima MEP, Leite YFMM, Benevides NMB. Purification and characterisation of a lectin from the red marine alga Pterocladiella capillacea (SG Gmel) Santel & Hommers. Rev Brasil Bot. 2002;25:397–403. doi: 10.1590/S0100-84042002012000003.
    1. Perdhana BP. Cytotoxicity and antibacterial effects of crude lectin fraction bioactive compound of red macroalgae from the Southern Coast of Java island, Gunungkidul regency. Yogyakarta: Dissertation, Sebelas Maret University, Surakarta; 2017.
    1. Pfeil R, Kamerling JP, Kuster JM, Schauer R. O-acetylated sialic acids in erythrocyte membranes of different species. Hoppe-Seylers Z Physiol Chem. 1980;361:314–315.
    1. Pinto VPT, Debray H, Dus D, Teixeira EH, de Oliveira TM, Carneiro VA, Teixeira AH, Filho GC, Nagano CS, Nascimento KN, Alexandre H, Sampaio AH, Cavada BS. Lectins from the red marine algal species Bryothamnion seaforthii and Bryothamnion triquetrum as tools to differentiate human colon carcinoma cells. Adv Pharmacol Sci. 2009;2009:862162.
    1. Praseptiangga D. Algal lectins and their potential uses. Squalen Bull Mar Fish Postharvest Biotech. 2015;10:89–98. doi: 10.15578/squalen.v10i2.125.
    1. Praseptiangga D. Development of seaweed-based biopolymers for edible films and lectins. IOP Conf Ser: Mater Sci Eng. 2017;193:012003. doi: 10.1088/1757-899X/193/1/012003.
    1. Rabelo L, Monteiro N, Serquiz R, Santos P, Oliveira R, Oliveira A, Rocha H, Morais AH, Uchoa A, Santos E. A lactose-binding lectin from the marine sponge Cinachyrella apion (Cal) induces cell death in human cervical adenocarcinoma cells. Mar Drugs. 2012;10:727–743. doi: 10.3390/md10040727.
    1. Reuter G, Vliegenthart JFG, Wember M, Schauer R, Howard RJ. Identification of 9-O-acetyl-N-acetylneuraminic acid on the surface of BALB/c mouse erythrocytes. Biochem Biophys Res Commun. 1980;94:567–572. doi: 10.1016/0006-291X(80)91269-3.
    1. Rogers DJ, Fish B, Barwell CJ. Isolation and properties of lectins from two red marine algae: Plumaria elegans and Ptilota serrata. In: BogHansen TC, Freed DLJ, editors. Lectins: biology, biochemistry, clinical biochemistry. Sigma Chemical Company: St. Louis; 1990. pp. 49–52.
    1. Rogers DJ, Hori K. Marine algal lectins: new developments. Hydrobiologia. 1993;260/261:589–593. doi: 10.1007/BF00049075.
    1. Rogers DJ, Topliss JA. Purification and characterisation of an anti-sialic acid agglutinin from the red alga Solieria chordalis (C. Ag.) J. Ag. Bot Mar. 1983;16:301–305. doi: 10.1515/botm.1983.26.6.301.
    1. Rüdiger H, Gabius HJ. Plant lectins: occurrence, biochemistry, functions and applications. Glycoconj J. 2001;18:589–613. doi: 10.1023/A:1020687518999.
    1. Sampaio AH, Rogers DJ, Barwell CJ. A galactose-specific lectin from the red alga Ptilota filicina. Phytochemistry. 1998;48:765–769. doi: 10.1016/S0031-9422(97)00966-7.
    1. Sampaio AH, Rogers DJ, Barwell CJ, Saker-Sampaio S, Costa FHF, Ramos MV. A new isolation procedure and further characterisation of the lectin from the red marine alga Ptilota serrata. J Appl Phycol. 1999;10:539–546. doi: 10.1023/A:1008061327247.
    1. Sampaio AH, Rogers DJ, Barwell CJ, Saker-Sampaio S, Nascimento KS, Nagano CS, Farias WRL. New affinity procedure for the isolation and further characterization of the blood group B specific lectin from the red marine alga Ptilota plumosa. J Appl Phycol. 2002;14:489–495. doi: 10.1023/A:1022327010736.
    1. Sato Y, Morimoto K, Hirayama M, Hori K. High mannose-specific lectin (KAA-2) from the red alga Kappaphycus alvarezii potently inhibits influenza virus infection in a strain-independent manner. Biochem Biophys Res Commun. 2011;405:291–296. doi: 10.1016/j.bbrc.2011.01.031.
    1. Sato Y, Morimoto K, Kubo T, Sakaguchi T, Nishizono A, Hirayama M, Hori K. Entry inhibition of influenza viruses with high mannose binding lectin ESA-2 from red alga Eucheuma serra through the recognition of viral hemagglutnin. Mar Drugs. 2015;13:3454–3465. doi: 10.3390/md13063454.
    1. Scheie AA. Mechanisms of dental plaque formation. Adv Dent Res. 1994;8:246–253. doi: 10.1177/08959374940080021801.
    1. Schreml S, Szeimies R-M, Prantl L, Landthaler M, Babilas P. Wound healing in the 21st century. J Am Acad Dermatol. 2010;63:866–881. doi: 10.1016/j.jaad.2009.10.048.
    1. Sharon N, Lis H. Lectins: cell agglutinating and sugar specific proteins. Science. 1972;177:949–959. doi: 10.1126/science.177.4053.949.
    1. Sharon N, Lis H. History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology. 2004;14:53R–62R. doi: 10.1093/glycob/cwh122.
    1. Shim E, Shim J, Klochkova TA, Han JW, Hoon G. Purification of a sex-specific lectin involved in gamete binding of Algaothamnion callophyllidiola (Rhodophyta) J Phycol. 2012;48:916–924. doi: 10.1111/j.1529-8817.2012.01155.x.
    1. Shiomi K, Kamiya H, Shimizu Y. Purification and characterization of an agglutinin in the red alga Agardhiella tenera. Biochim Biophys Acta. 1979;576:118–127. doi: 10.1016/0005-2795(79)90490-2.
    1. Shiomi K, Yamanaka H, Kikuchi T. Purification and physiochemical properties of a hemagglutinin (GVA-1) in the red alga Gracilaria verrucosa. Nippon Suisan Gakkaishi. 1981;47:1079–1084. doi: 10.2331/suisan.47.1079.
    1. Shiomi K, Yamanaka H, Takeaki K. Biochemical properties of hemagglutinins in the red alga Serraticardia maxima. Bull J Soc Sci Fish. 1980;46:1369–1373. doi: 10.2331/suisan.46.1369.
    1. Silva LMCM, Lima V, Holanda ML, Pinheiro PG, Rodrigues JAG, Lima MEP, Benevides NMB. Antinociceptive and anti-inflammatory activities of lectin from marine red alga Pterocladiella capillacea. Biol Pharm Bull. 2010;33:830–835. doi: 10.1248/bpb.33.830.
    1. Simmonds P. The origin of hepatitis C virus. Curr Top Microbiol Immunol. 2013;369:1–15.
    1. Singh RS, Bhari R, Kaur HP. Mushroom lectins: current status and future perspectives. Crit Rev Biotechnol. 2010;30:99–126. doi: 10.3109/07388550903365048.
    1. Singh RS, Bhari R, Kaur HP. Current trends of lectins from microfungi. Crit Rev Biotechnol. 2011;31:193–210. doi: 10.3109/07388551.2010.505911.
    1. Singh RS, Kaur HP, Kanwar J. Mushroom lectins as promising anticancer substances. Curr Protein Pept Sci. 2016;17:797–807. doi: 10.2174/1389203717666160226144741.
    1. Singh RS, Thakur SR, Bansal P. Algal lectins as promising biomolecules for biomedical research. Crit Rev Microbiol. 2015;41:77–88. doi: 10.3109/1040841X.2013.798780.
    1. Singh RS, Tiwary AK, Kennedy JF. Lectins: sources, activities and applications. Crit Rev Biotechnol. 1999;19:145–178. doi: 10.1080/0738-859991229224.
    1. Singh RS, Walia AK, Khattar JS, Singh DP, Kennedy JF. Cyanobacterial lectins characteristics and their role as antiviral agents. Int J Biol Macromol. 2017;102:475–496. doi: 10.1016/j.ijbiomac.2017.04.041.
    1. Souza BWS, Andrade FK, Texeira DIA, Mansilla A, Freitas ALP. Haemagglutinin of the Antartic seaweed Georgiella confluens (Reinsch) Kylin: isolation and partial characterization. Polar Biol. 2010;33:1311–1318. doi: 10.1007/s00300-010-0818-8.
    1. Stastny JJ, Gupta TK. Isolation and analysis of lectin-reactive sarcoma-associated membrane glycoproteins. Anticancer Res. 1994;14:587–591.
    1. Sugahara T, Ohama Y, Fukuda A, Hayashi M, Kawakubo A, Kato K. The cytotoxic effect of Eucheuma serra agglutinin (ESA) on cancer cells and its applications to molecular probe for drug delivery system using lipid vescicles. Cytotechnology. 2001;36:93–99. doi: 10.1023/A:1014057407251.
    1. Sumiyoshi H, Mori C, Fuke I, Morita K, Kuhara S, Kondou J, Kikuchi Y, Nagamatu H, Igarashi A. Complete nucleotide sequence of the Japanese encephalitis virus genome. RNA Virol. 1987;161:497–510. doi: 10.1016/0042-6822(87)90144-9.
    1. Takebe Y, Saucedo CJ, Lund G, Uenishi R, Hase S, Tsuchiura T, Kneteman N, Ramessar K, Tyrrell DL, Shirakura M, Wakita T, McMahon JB, O'Keefe BR. Antiviral lectins from red and blue-green algae show potent in vitro and in vivo activity against hepatitis C virus. PLoS One. 2013;8:e64449. doi: 10.1371/journal.pone.0064449.
    1. Teixeira EH, Arruda FVS, da Silva BR, do Nascimento KS, Carneiro VA, Cavada BS, Nagano CS, Sampaio AH. Biological applications of plants and algae lectins: An overview. In: Chang CF, editor. Carbohydrates—comprehensive studies on glycobiology and glycotechnology. Croatia: In Tech; 2012. pp. 533–558.
    1. Teixeira EH, Napimoga MH, Carneiro VA, de Oliveira TM, Nascimento KS, Nagano CS, Souza JB, Havt A, Pinto VPT, Goncalves RB, Farias WRL, Saker-Sampaio S, Sampaio AH, Cavada BS. In vitro inhibition of oral streptococci binding to the acquired pellicle by algal lectins. J Appl Microbiol. 2007;103:1001–1006. doi: 10.1111/j.1365-2672.2007.03326.x.
    1. Teixeira EH, Napimoga MH, Carneiro VA, Oliveira TM, Havt A, Martins JL, Pinto VPT, Goncalves RB, Cavada BS. In vitro inhibition of streptococci binding to enamel acquired pellicle by plant lectins. J Appl Microbiol. 2006;101:111–116. doi: 10.1111/j.1365-2672.2006.02910.x.
    1. Vasconcelos MA, Arruda FVS, Carneiro VA, Silva HC, Nascimento KS, Sampaio AH, Cavada B, Teixeira EH, Henriques M, Pereiro MO. Effect of algae and plant lectins on planktonic growth & biofilm formation in clinically relevant bacteria and yeasts. Biomed Res Int. 2014;2014:365272.
    1. Vieyres G, Thomas X, Descamps V, Duverlie G, Patel AH, Dubuisson J. Characterization of the envelope glycoproteins associated with infectious hepatitis C virus. J Virol. 2010;84:10159–10168. doi: 10.1128/JVI.01180-10.
    1. Xue J, Gao Y, Horrelbeke B, Kagiampakis I, Zhao B, Demeler B, Balzarini J, Liwang PJ. The role of individual charbohydrate binding sites in the function of the potent anti-HIV lectin griffithsin. Mol Pharm. 2012;9:2613–2625. doi: 10.1021/mp300194b.
    1. Xue J, Hoorelbeke B, Kagiampakis I, Demeler B, Balzarini J, Liwang PJ. The griffithsin dimer is required for high-potency inhibition of HIV-1: evidence for the manipulation of the structure of gp120 as part of the griffithsin dimer mechanism. Antimicrob Agents Chemother. 2013;57:3976–3989. doi: 10.1128/AAC.00332-13.
    1. Yin A, Margolis HC, Yao Y, Grogan J, Oppenheim FG. Multi-component adsorption model for pellicle formation: the influence of salivary proteins and nonsalivary phosphoproteins on the binding of histatin 5 onto hydroxyapatite. Arch Oral Biol. 2005;51:102–110. doi: 10.1016/j.archoralbio.2005.06.003.
    1. Yoshima H, Furthmayr H, Kobata A. Structures of the asparagine-linked sugar chains of glycophorin A. J Biol Chem. 1980;255:9713–9718.
    1. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus ADME, Fouchier RAM. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. New Engl J Med. 2012;367:1814–1820. doi: 10.1056/NEJMoa1211721.
    1. Zheng Y, Lai-Sheng L. Screening of agglutinins in marine algae from Fujian coast of China. Chin J Oceanol Limnol. 2002;20:256–260. doi: 10.1007/BF02848855.
    1. Ziolkowska NE, Keefe BR, Mori T, Zhu C, Giomarelli B, Vojdani F, Palmer KE, McMhon J, Wlodawer A. Domain-swapped structure of the potent antiviral protein griffithsin and its mode of carbohydrate binding. Structure. 2006;14:1127–1135. doi: 10.1016/j.str.2006.05.017.
    1. Ziolkowska NE, Shenoy SR, O’Keefe BR, McMohan JB, Palmer KE, Dwek RA, Wormald MR, Wlodawer A. Crystallographic, thermodyanamic, and molecular modelling studies of the mode of binding of oligosaccharides to the potent antiviral protein griffithsin. Proteins: Struct Funct Bioinf. 2007;67:661–670. doi: 10.1002/prot.21336.
    1. Ziolkowska NE, Shenoy SR, O’keefe BR, Wlodawer A. Crystallographic studies of the complexes of antiviral protein griffithsin with glucose and N-acetylglucosamine. Prot Sci. 2007;16:1485–1489. doi: 10.1110/ps.072889407.

Source: PubMed

3
Předplatit