Associations Between Serum Fatty Acids and Immunological Markers in Children Developing Islet Autoimmunity-The TRIGR Nested Case-Control Study

Sari Niinistö, Maija E Miettinen, David Cuthbertson, Jarno Honkanen, Leena Hakola, Reija Autio, Iris Erlund, Petra Arohonka, Arja Vuorela, Taina Härkönen, Heikki Hyöty, Jeffrey P Krischer, Outi Vaarala, Mikael Knip, Suvi M Virtanen, TRIGR Investigators, Sari Niinistö, Maija E Miettinen, David Cuthbertson, Jarno Honkanen, Leena Hakola, Reija Autio, Iris Erlund, Petra Arohonka, Arja Vuorela, Taina Härkönen, Heikki Hyöty, Jeffrey P Krischer, Outi Vaarala, Mikael Knip, Suvi M Virtanen, TRIGR Investigators

Abstract

Aims: Altered immune functions as well as fatty acid intake and status have been associated with the development of type 1 diabetes. We aimed to study the relationship between fatty acids and immunological markers in young children with increased genetic risk for type 1 diabetes in order to define putative mechanisms related to development of islet autoimmunity.

Methods: Serum samples for fatty acid and immunological marker measurements were obtained in the Trial to Reduce IDDM in the Genetically at Risk (TRIGR) ancillary study (Divia) from children born between 2002 and 2007 in 15 countries. Case children (n = 95) were defined as having repeated positivity for at least two out of four diabetes-associated autoantibodies. For each case child, control children were selected matched for country and date of birth (n = 173). Serum fatty acids and immunological markers were measured from cord serum and at the age of 6 and 12 months. Spearman correlation coefficients were calculated between fatty acids and immunological markers.

Results: Correlations between circulating fatty acids and immunological markers were different in case children who developed islet autoimmunity than in control children already at birth continuing across the first year of life. In case children, saturated fatty acids (SFAs) showed stronger correlations with immunological markers, while in controls, polyunsaturated fatty acids (PUFAs) showed stronger correlations.

Conclusions: In cases, SFAs were associated with several immunological markers (CXCL10, IL-6, IL-9, IL-17, and CM-CSF) previously linked to the type 1 diabetes disease process. Findings indicate that fatty acids could have immunomodulatory potential in the early phase of the disease development, although causality between fatty acids and the immunological pathways remains to be explored.

Trial registry number: NCT00179777.

Keywords: chemokines; children; cytokines; fatty acids; growth factors; immunological markers; islet autoimmunity; type 1 diabetes.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Niinistö, Miettinen, Cuthbertson, Honkanen, Hakola, Autio, Erlund, Arohonka, Vuorela, Härkönen, Hyöty, Krischer, Vaarala, Knip, Virtanen and TRIGR Investigators.

Figures

Figure 1
Figure 1
Spearman correlation coefficients between serum fatty acids and immunological markers separately in case and in control children in cord serum, and at the ages of 6 and 12 months. All the direct correlations are marked with red edges, while the inverse correlations are marked with blue edges with a cutoff of p < 0.01.

References

    1. Ilonen J, Lempainen J, Veijola R. The Heterogeneous Pathogenesis of Type 1 Diabetes Mellitus. Nat Rev Endocrinol (2019) 15:635–50. doi: 10.1038/s41574-019-0254-y
    1. Lu J, Liu J, Li L, Lan Y, Liang Y. Cytokines in Type 1 Diabetes: Mechanisms of Action and Immunotherapeutic Targets. Clin Transl Immunol (2020) 9:e1122. doi: 10.1002/cti2.1122
    1. Waugh K, Snell-Bergeon J, Michels A, Dong F, Steck AK, Frohnert BI, et al. . Increased Inflammation Is Associated With Islet Autoimmunity and Type 1 Diabetes in the Diabetes Autoimmunity Study in the Young (DAISY). PloS One (2017) 12:e0174840. doi: 10.1371/journal.pone.0174840
    1. Vistnes M, Tapia G, Marild K, Midttun O, Ueland PM, Viken MK, et al. . Plasma Immunological Markers in Pregnancy and Cord Blood: A Possible Link Between Macrophage Chemo-Attractants and Risk of Childhood Type 1 Diabetes. Am J Reprod Immunol (2018) 79:1–11. doi: 10.1111/aji.12802
    1. Nicoletti F, Conget I, Di Mauro M, Di Marco R, Mazzarino MC, Bendtzen K, et al. . Serum Concentrations of the Interferon-Gamma-Inducible Chemokine IP-10/CXCL10 Are Augmented in Both Newly Diagnosed Type I Diabetes Mellitus Patients and Subjects at Risk of Developing the Disease. Diabetologia (2002) 45:1107–10. doi: 10.1007/s00125-002-0879-5
    1. Antonelli A, Ferrari SM, Corrado A, Ferrannini E, Fallahi P. CXCR3, CXCL10 and Type 1 Diabetes. Cytokine Growth Factor Rev (2014) 25:57–65. doi: 10.1016/j.cytogfr.2014.01.006
    1. Kawasaki E, Abiru N, Eguchi K. Prevention of Type 1 Diabetes: From the View Point of Beta Cell Damage. Diabetes Res Clin Pract (2004) 66 Suppl 1:27. doi: 10.1016/j.diabres.2003.09.015
    1. Alnek K, Kisand K, Heilman K, Peet A, Varik K, Uibo R. Increased Blood Levels of Growth Factors, Proinflammatory Cytokines, and Th17 Cytokines in Patients With Newly Diagnosed Type 1 Diabetes. PloS One (2015) 10:e0142976. doi: 10.1371/journal.pone.0142976
    1. Norris JM, Kroehl M, Fingerlin TE, Frederiksen BN, Seifert J, Wong R, et al. . Erythrocyte Membrane Docosapentaenoic Acid Levels are Associated With Islet Autoimmunity: The Diabetes Autoimmunity Study in the Young. Diabetologia (2014) 57:295–304. doi: 10.1007/s00125-013-3106-7
    1. Niinisto S, Takkinen HM, Erlund I, Ahonen S, Toppari J, Ilonen J, et al. . 7Fatty Acid Status in Infancy Is Associated With the Risk of Type 1 Diabetes-Associated Autoimmunity. Diabetologia (2017) 60:1223–33. doi: 10.1007/s00125-017-4280-9
    1. Balzano-Nogueira L, Ramirez R, Zamkovaya T, Dailey J, Ardissone AN, Chamala S, et al. . Integrative Analyses of TEDDY Omics Data Reveal Lipid Metabolism Abnormalities, Increased Intracellular ROS and Heightened Inflammation Prior to Autoimmunity for Type 1 Diabetes. Genome Biol (2021) 22:39. doi: 10.1186/s13059-021-02262-w
    1. Yu JC, Khodadadi H, Malik A, Davidson B, Salles EDSL, Bhatia J, et al. . Innate Immunity of Neonates and Infants. Front Immunol (2018) 9:1759. doi: 10.3389/fimmu.2018.01759
    1. Sokol CL, Luster AD. The Chemokine System in Innate Immunity. Cold Spring Harb Perspect Biol (2015) 7:1–19. doi: 10.1101/cshperspect.a016303
    1. Lankinen M, Uusitupa M, Schwab U. Genes and Dietary Fatty Acids in Regulation of Fatty Acid Composition of Plasma and Erythrocyte Membranes. Nutrients (2018) 10:1–18. doi: 10.3390/nu10111785
    1. Honkanen J, Nieminen JK, Gao R, Luopajarvi K, Salo HM, Ilonen J, et al. . IL-17 Immunity in Human Type 1 Diabetes. J Immunol (2010) 185:1959–67. doi: 10.4049/jimmunol.1000788
    1. Abdel-Moneim A, Bakery HH, Allam G. The Potential Pathogenic Role of IL-17/Th17 Cells in Both Type 1 and Type 2 Diabetes Mellitus. BioMed Pharmacother (2018) 101:287–92. doi: 10.1016/j.biopha.2018.02.103
    1. Lindehammer SR, Fex M, Maziarz M, Hanson I, Marsal K, Lernmark A. Diabetes Prediction in Skane (DiPiS) Study Group (2011) Early-Pregnancy Cytokines in Mothers to Children Developing Multiple, Persistent Islet Autoantibodies, Type 1 Diabetes, or Both Before 7 Years of Age. Am J Reprod Immunol (2011) 66:495–503. doi: 10.1111/j.1600-0897.2011.01057.x
    1. Reinert-Hartwall L, Honkanen J, Harkonen T, Ilonen J, Simell O, Peet A, et al. . No Association Between Vitamin D and Beta-Cell Autoimmunity in Finnish and Estonian Children. Diabetes Metab Res Rev (2014) 30:749–60. doi: 10.1002/dmrr.2550
    1. Arif S, Moore F, Marks K, Bouckenooghe T, Dayan CM, Planas R, et al. . Peripheral and Islet Interleukin-17 Pathway Activation Characterizes Human Autoimmune Diabetes and Promotes Cytokine-Mediated β-Cell Death. Diabetes (2011) 60:2112–9. doi: 10.2337/db10-1643
    1. Roep BO, Kleijwegt FS, van Halteren AG, Bonato V, Boggi U, Vendrame F, et al. . Islet Inflammation and CXCL10 in Recent-Onset Type 1 Diabetes. Clin Exp Immunol (2010) 159:338–43. doi: 10.1111/j.1365-2249.2009.04087.x
    1. Beriou G, Bradshaw EM, Lozano E, Costantino CM, Hastings WD, Orban T, et al. . TGF-Beta Induces IL-9 Production From Human Th17 Cells. J Immunol (2010) 185:46–54. doi: 10.4049/jimmunol.1000356
    1. Grieco FA, Moore F, Vigneron F, Santin I, Villate O, Marselli L, et al. . IL-17a Increases the Expression of Proinflammatory Chemokines in Human Pancreatic Islets. Diabetologia (2014) 57:502–11. doi: 10.1007/s00125-013-3135-2
    1. Kallionpaa H, Elo LL, Laajala E, Mykkanen J, Ricano-Ponce I, Vaarma M, et al. . Innate Immune Activity is Detected Prior to Seroconversion in Children With HLA-Conferred Type 1 Diabetes Susceptibility. Diabetes (2014) 63:2402–14. doi: 10.2337/db13-1775
    1. Kallionpaa H, Somani J, Tuomela S, Ullah U, de Albuquerque R, Lonnberg T, et al. . Early Detection of Peripheral Blood Cell Signature in Children Developing Beta-Cell Autoimmunity at a Young Age. Diabetes (2019) 68:2024–34. doi: 10.2337/db19-0287
    1. Oresic M, Simell S, Sysi-Aho M, Nanto-Salonen K, Seppanen-Laakso T, Parikka V, et al. . Dysregulation of Lipid and Amino Acid Metabolism Precedes Islet Autoimmunity in Children Who Later Progress to Type 1 Diabetes. J Exp Med (2008) 205:2975–84. doi: 10.1084/jem.20081800
    1. Lamichhane S, Kemppainen E, Trost K, Siljander H, Hyoty H, Ilonen J, et al. . Circulating Metabolites in Progression to Islet Autoimmunity and Type 1 Diabetes. Diabetologia (2019) 62:2287–97. doi: 10.1007/s00125-019-04980-0
    1. Johnson RK, Vanderlinden L, DeFelice BC, Kechris K, Uusitalo U, Fiehn O, et al. . Metabolite-Related Dietary Patterns and the Development of Islet Autoimmunity. Sci Rep (2019) 9:14819–4. doi: 10.1038/s41598-019-51251-4
    1. Miller MR, Yin X, Seifert J, Clare-Salzler M, Eisenbarth GS, Rewers M, et al. . Erythrocyte Membrane Omega-3 Fatty Acid Levels and Omega-3 Fatty Acid Intake are Not Associated With Conversion to Type 1 Diabetes in Children With Islet Autoimmunity: The Diabetes Autoimmunity Study in the Young (DAISY). Pediatr Diabetes (2011) 12:669–75. doi: 10.1111/j.1399-5448.2011.00760.x
    1. Virtanen SM, Niinisto S, Nevalainen J, Salminen I, Takkinen HM, Kaaria S, et al. . Serum Fatty Acids and Risk of Advanced Beta-Cell Autoimmunity: A Nested Case-Control Study Among Children With HLA-Conferred Susceptibility to Type I Diabetes. Eur J Clin Nutr (2010) 64:792–9. doi: 10.1038/ejcn.2010.75
    1. Hakola L, Erlund I, Cuthbertson D, Miettinen ME, Autio R, Nucci A, et al. . Serum Fatty Acids and Risk of Developing Islet Autoimmunity: A Nested Case-Control Study Within the TRIGR Birth Cohort. Pediatr Diabetes (2021) 22:577–85. doi: 10.1111/pedi.13189
    1. Niinistö S, Erlund I, Lee H-S, Uusitalo U, Salminen I, Andrén Aronsson C, et al. . Children’s Fatty Acid Profile in Erythrocytes Is Associated With the Risk of Islet Autoimmunity: The Environmental Determinants of Diabetes in the Young Study. Sci Rep (2021) 11:3627. doi: 10.1038/s41598-021-82200-9
    1. Radzikowska U, Rinaldi AO, Celebi Sozener Z, Karaguzel D, Wojcik M, Cypryk K, et al. . The Influence of Dietary Fatty Acids on Immune Responses. Nutrients (2019) 11:1–52. doi: 10.3390/nu11122990
    1. Li K, Huang T, Zheng J, Wu K, Li D. Effect of Marine-Derived N-3 Polyunsaturated Fatty Acids on C-Reactive Protein, Interleukin 6 and Tumor Necrosis Factor Alpha: A Meta-Analysis. PloS One (2014) 9:e88103. doi: 10.1371/journal.pone.0088103
    1. Chase HP, Boulware D, Rodriguez H, Donaldson D, Chritton S, Rafkin-Mervis L, et al. . Effect of Docosahexaenoic Acid Supplementation on Inflammatory Cytokine Levels in Infants at High Genetic Risk for Type 1 Diabetes. Pediatr Diabetes (2015) 16:271–9. doi: 10.1111/pedi.12170
    1. Writing Group for the TRIGR Study Group. Knip M, Akerblom HK, Al Taji E, Becker D, Bruining J, et al. . Effect of Hydrolyzed Infant Formula vs Conventional Formula on Risk of Type 1 Diabetes: The TRIGR Randomized Clinical Trial. JAMA (2018) 319:38–48. doi: 10.1001/jama.2017.19826
    1. Knip M, Virtanen SM, Seppa K, Ilonen J, Savilahti E, Vaarala O, et al. . Dietary Intervention in Infancy and Later Signs of Beta-Cell Autoimmunity. N Engl J Med (2010) 363:1900–8. doi: 10.1056/NEJMoa1004809
    1. Sheshkin DJ. Handbook of Parametric and Nonparametric Statistical Procedures (3rd Ed.). Boca Raton FL: Chapman & Hall/CRC; (2004).
    1. Zar JH. Biostatistical Analysis (4th Ed.). Upper Saddle River NJ: Prentice Hall; (1999).
    1. Reinert-Hartwall L, Honkanen J, Salo HM, Nieminen JK, Luopajarvi K, Harkonen T, et al. . Th1/Th17 Plasticity Is a Marker of Advanced Beta Cell Autoimmunity and Impaired Glucose Tolerance in Humans. J Immunol (2015) 194:68–75. doi: 10.4049/jimmunol.1401653
    1. Viladomiu M, Hontecillas R, Bassaganya-Riera J. Modulation of Inflammation and Immunity by Dietary Conjugated Linoleic Acid. Eur J Pharmacol (2016) 785:87–95. doi: 10.1016/j.ejphar.2015.03.095
    1. Rutti S, Howald C, Arous C, Dermitzakis E, Halban PA, Bouzakri K. IL-13 Improves Beta-Cell Survival and Protects Against IL-1beta-Induced Beta-Cell Death. Mol Metab (2015) 5:122–31. doi: 10.1016/j.molmet.2015.11.003
    1. Fu Y, Wang Y, Gao H, Li D, Jiang R, Ge L, et al. . Associations Among Dietary Omega-3 Polyunsaturated Fatty Acids, the Gut Microbiota, and Intestinal Immunity. Mediators Inflammation (2021) 2021:8879227. doi: 10.1155/2021/8879227
    1. Knip M, Honkanen J. Modulation of Type 1 Diabetes Risk by the Intestinal Microbiome. Curr Diabetes Rep (2017) 17:105–9. doi: 10.1007/s11892-017-0933-9
    1. Gaposchkin DP, Farber HW, Zoeller RA. On the Importance of Plasmalogen Status in Stimulated Arachidonic Acid Release in the Macrophage Cell Line RAW 264.7. Biochim Biophys Acta (2008) 1781:213. doi: 10.1016/j.bbalip.2008.01.007
    1. Gaposchkin DP, Zoeller RA. Plasmalogen Status Influences Docosahexaenoic Acid Levels in a Macrophage Cell Line. Insights Using Ether Lipid-Deficient Variants. J Lipid Res (1999) 40:495–503. doi: 10.1016/S0022-2275(20)32454-8
    1. Wu Y, Chen Z, Darwish WS, Terada K, Chiba H, Hui SP. Choline and Ethanolamine Plasmalogens Prevent Lead-Induced Cytotoxicity and Lipid Oxidation in HepG2 Cells. J Agric Food Chem (2019) 67:7716–25. doi: 10.1021/acs.jafc.9b02485
    1. La Torre D, Seppanen-Laakso T, Larsson HE, Hyotylainen T, Ivarsson SA, Lernmark A, et al. . Decreased Cord-Blood Phospholipids in Young Age-At-Onset Type 1 Diabetes. Diabetes (2013) 62:3951–6. doi: 10.2337/db13-0215
    1. Oki E, Norde MN, Carioca AAF, Souza JMP, Castro IA, Marchioni DML, et al. . Polymorphisms of the TNF-Alpha Gene Interact With Plasma Fatty Acids on Inflammatory Biomarker Profile: A Population-Based, Cross-Sectional Study in Sao Paulo, Brazil. Br J Nutr (2017) 117:1663–73. doi: 10.1017/S0007114517001416

Source: PubMed

3
Předplatit