Decreased serum levels of the inflammaging marker miR-146a are associated with clinical non-response to tocilizumab in COVID-19 patients

Jacopo Sabbatinelli, Angelica Giuliani, Giulia Matacchione, Silvia Latini, Noemi Laprovitera, Giovanni Pomponio, Alessia Ferrarini, Silvia Svegliati Baroni, Marianna Pavani, Marco Moretti, Armando Gabrielli, Antonio Domenico Procopio, Manuela Ferracin, Massimiliano Bonafè, Fabiola Olivieri, Jacopo Sabbatinelli, Angelica Giuliani, Giulia Matacchione, Silvia Latini, Noemi Laprovitera, Giovanni Pomponio, Alessia Ferrarini, Silvia Svegliati Baroni, Marianna Pavani, Marco Moretti, Armando Gabrielli, Antonio Domenico Procopio, Manuela Ferracin, Massimiliano Bonafè, Fabiola Olivieri

Abstract

Current COVID-19 pandemic poses an unprecedented threat to global health and healthcare systems. The most amount of the death toll is accounted by old people affected by age-related diseases that develop a hyper-inflammatory syndrome. In this regard, we hypothesized that COVID-19 severity may be linked to inflammaging. Here, we examined 30 serum samples from patients enrolled in the clinical trial NCT04315480 assessing the clinical response to a single-dose intravenous infusion of the anti-IL-6 receptor drug Tocilizumab (TCZ) in COVID-19 patients with multifocal interstitial pneumonia. In these serum samples, as well as in 29 age- and gender-matched healthy control subjects, we assessed a set of microRNAs that regulate inflammaging, i.e. miR-146a-5p, miR-21-5p, and miR-126-3p, which were quantified by RT-PCR and Droplet Digital PCR. We showed that COVID-19 patients who did not respond to TCZ have lower serum levels of miR-146a-5p after the treatment (p = 0.007). Among non-responders, those with the lowest serum levels of miR-146a-5p experienced the most adverse outcome (p = 0.008). Our data show that a blood-based biomarker, such as miR-146a-5p, can provide clues about the molecular link between inflammaging and COVID-19 clinical course, thus allowing to better understand the use of biologic drug armory against this worldwide health threat.

Keywords: COVID-19; Inflammaging; Tocilizumab; interleukin-6; microRNA.

Conflict of interest statement

The authors report no declarations of interest.

Copyright © 2020 Elsevier B.V. All rights reserved.

Figures

Fig. 1
Fig. 1
(A) Serum levels of miR-146a-5p, -21-5p, and -126-3p in 29 COVID-19 patients at baseline (T0) and after 72 h from treatment with tocilizumab (T1), divided into responders (R) and non-responders (NR), and in 29 age-matched healthy control subjects (CTR). Data are expressed as Z-scores of log2(relative expression) and presented as mean ± SD. *, p < 0.05; ***, p < 0.001 for unpaired t test (CTR vs. COVID-19). °°°, p < 0.001 for simple main effects of time (T0 vs. T1) and responder status (R vs. NR). (B) Bland-Altman plot for inter-method agreement between Droplet Digital PCR (ddPCR) and RT-PCR in the quantification of circulating miR-146a-5p. The blue line represents the mean bias between the two methods, the dashed lines indicate the limits of agreement. (C) Correlation plot showing partial correlations, controlling for age, between inflamma-miR levels and selected variables at both time points. Bold squares indicate correlations between variables assessed at the same time point. The color and the size of the circles depend on the magnitude of the correlation. Blue, positive correlation; red, negative correlation. Significant correlations are marked with * (p < 0.05), ** (p < 0.01), or *** (p < 0.001) (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.).
Fig. 2
Fig. 2
(A) Summary of exploratory factor analysis and subsequent logistic regressions on COVID-19 patients. Baseline variables are reported into each circle according to the factor loading. The areas of the circles are proportional to the amount of variance (reported in brackets) explained by each factor. Overlapping circles include variables loading onto two factors. The green arrow points out the significant association between factor 1 and survival, while the gray lines indicate non-significant associations. (B) Age-adjusted baseline miR-21-5p, -126-3p, and -146-5p levels in dead vs. survivor NR patients. Data are expressed as Z-scores of log2(relative expression) and presented as estimated marginal mean ± SEM. *, p < 0.05; **, p < 0.01 for one-way ANCOVA (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.).

References

    1. Akira S., Isshiki H., Sugita T., Tanabe O., Kinoshita S., Nishio Y., Nakajima T., Hirano T., Kishimoto T. A nuclear factor for IL-6 expression (NF-IL6) is a member of a C/EBP family. EMBO J. 1990;9:1897–1906.
    1. Benz F., Roy S., Trautwein C., Roderburg C., Luedde T. Circulating MicroRNAs as biomarkers for Sepsis. Int. J. Mol. Sci. 2016:17.
    1. Boldin M.P., Taganov K.D., Rao D.S., Yang L., Zhao J.L., Kalwani M., Garcia-Flores Y., Luong M., Devrekanli A., Xu J., Sun G., Tay J., Linsley P.S., Baltimore D. miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J. Exp. Med. 2011;208:1189–1201.
    1. Bonafè M., Prattichizzo F., Giuliani A., Storci G., Sabbatinelli J., Olivieri F. Inflamm-aging: why older men are the most susceptible to SARS-CoV-2 complicated outcomes. Cytokine Growth Factor Rev. 2020;53:33–37.
    1. Crisafulli S., Isgro V., La Corte L., Atzeni F., Trifiro G. Potential role of anti-interleukin (IL)-6 drugs in the treatment of COVID-19: rationale, clinical evidence and risks. BioDrugs. 2020;34:415–422.
    1. Feng X., Wang H., Ye S., Guan J., Tan W., Cheng S., Wei G., Wu W., Wu F., Zhou Y. Up-regulation of microRNA-126 may contribute to pathogenesis of ulcerative colitis via regulating NF-kappaB inhibitor IkappaBalpha. PLoS One. 2012;7:e52782.
    1. Ferracin M., Lupini L., Salamon I., Saccenti E., Zanzi M.V., Rocchi A., Da Ros L., Zagatti B., Musa G., Bassi C., Mangolini A., Cavallesco G., Frassoldati A., Volpato S., Carcoforo P., Hollingsworth A.B., Negrini M. Absolute quantification of cell-free microRNAs in cancer patients. Oncotarget. 2015;6:14545–14555.
    1. Grants J.M., Wegrzyn J., Hui T., O’Neill K., Shadbolt M., Knapp D., Parker J., Deng Y., Gopal A., Docking T.R., Fuller M., Li J., Boldin M., Eaves C.J., Hirst M., Karsan A. Altered microRNA expression links IL6 and TNF-induced inflammaging with myeloid malignancy in humans and mice. Blood. 2020;135:2235–2251.
    1. Hung I.F., Lung K.C., Tso E.Y., Liu R., Chung T.W., Chu M.Y., Ng Y.Y., Lo J., Chan J., Tam A.R., Shum H.P., Chan V., Wu A.K., Sin K.M., Leung W.S., Law W.L., Lung D.C., Sin S., Yeung P., Yip C.C., Zhang R.R., Fung A.Y., Yan E.Y., Leung K.H., Ip J.D., Chu A.W., Chan W.M., Ng A.C., Lee R., Fung K., Yeung A., Wu T.C., Chan J.W., Yan W.W., Chan W.M., Chan J.F., Lie A.K., Tsang O.T., Cheng V.C., Que T.L., Lau C.S., Chan K.H., To K.K., Yuen K.Y. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet. 2020;395:1695–1704.
    1. Istituto Superiore di Sanità . 2020. Characteristics of COVID-19 Patients Dying in Italy.
    1. Khiali S., Khani E., Entezari-Maleki T. A comprehensive review on tocilizumab in COVID-19 acute respiratory distress syndrome. J. Clin. Pharmacol. 2020;60(9):1131–1146.
    1. Kong Y.W., Ferland-McCollough D., Jackson T.J., Bushell M. microRNAs in cancer management. Lancet Oncol. 2012;13:e249–258.
    1. Li X., Ji Z., Li S., Sun Y.N., Liu J., Liu Y., Tian W., Zhou Y.T., Shang X.M. miR-146a-5p antagonized AGEs- and P.g-LPS-Induced ABCA1 and ABCG1 dysregulation in macrophages via IRAK-1 downregulation. Inflammation. 2015;38:1761–1768.
    1. Li K., Fang Y., Li W., Pan C., Qin P., Zhong Y., Liu X., Huang M., Liao Y., Li S. CT image visual quantitative evaluation and clinical classification of coronavirus disease (COVID-19) Eur. Radiol. 2020;30:4407–4416.
    1. Libermann T.A., Baltimore D. Activation of interleukin-6 gene expression through the NF-kappa B transcription factor. Mol. Cell. Biol. 1990;10:2327–2334.
    1. Liu B., Li M., Zhou Z., Guan X., Xiang Y. Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 (COVID-19)-induced cytokine release syndrome (CRS)? J. Autoimmun. 2020;111
    1. Liu G.J., Zhang Q.R., Gao X., Wang H., Tao T., Gao Y.Y., Zhou Y., Chen X.X., Li W., Hang C.H. MiR-146a ameliorates hemoglobin-induced microglial inflammatory response via TLR4/IRAK1/TRAF6 associated pathways. Front. Neurosci. 2020;14:311.
    1. Luo P., Liu Y., Qiu L., Liu X., Liu D., Li J. Tocilizumab treatment in COVID-19: a single center experience. J. Med. Virol. 2020;92:814–818.
    1. Luo Y., Zheng S.G. Hall of fame among pro-inflammatory cytokines: Interleukin-6 gene and its transcriptional regulation mechanisms. Front. Immunol. 2016;7:604.
    1. Mensà E., Giuliani A., Matacchione G., Gurău F., Bonfigli A.R., Romagnoli F., De Luca M., Sabbatinelli J., Olivieri F. Circulating miR-146a in healthy aging and type 2 diabetes: age- and gender-specific trajectories. Mech. Ageing Dev. 2019;180:1–10.
    1. Mensà E., Guescini M., Giuliani A., Bacalini M.G., Ramini D., Corleone G., Ferracin M., Fulgenzi G., Graciotti L., Prattichizzo F., Sorci L., Battistelli M., Monsurrò V., Bonfigli A.R., Cardelli M., Recchioni R., Marcheselli F., Latini S., Maggio S., Fanelli M., Amatori S., Storci G., Ceriello A., Stocchi V., De Luca M., Magnani L., Rippo M.R., Procopio A.D., Sala C., Budimir I., Bassi C., Negrini M., Garagnani P., Franceschi C., Sabbatinelli J., Bonafè M., Olivieri F. Small extracellular vesicles deliver miR-21 and miR-217 as pro-senescence effectors to endothelial cells. J. Extracell. Vesicles. 2020;9
    1. Mussbacher M., Salzmann M., Brostjan C., Hoesel B., Schoergenhofer C., Datler H., Hohensinner P., Basilio J., Petzelbauer P., Assinger A., Schmid J.A. Cell type-specific roles of NF-kappaB linking inflammation and thrombosis. Front. Immunol. 2019;10:85.
    1. Olivieri F., Spazzafumo L., Santini G., Lazzarini R., Albertini M.C., Rippo M.R., Galeazzi R., Abbatecola A.M., Marcheselli F., Monti D., Ostan R., Cevenini E., Antonicelli R., Franceschi C., Procopio A.D. Age-related differences in the expression of circulating microRNAs: miR-21 as a new circulating marker of inflammaging. Mech. Ageing Dev. 2012;133:675–685.
    1. Olivieri F., Lazzarini R., Recchioni R., Marcheselli F., Rippo M.R., Di Nuzzo S., Albertini M.C., Graciotti L., Babini L., Mariotti S., Spada G., Abbatecola A.M., Antonicelli R., Franceschi C., Procopio A.D. MiR-146a as marker of senescence-Associated pro-inflammatory status in cells involved in vascular remodelling. Age. 2013;35:1157–1172.
    1. Olivieri F., Rippo M.R., Procopio A.D., Fazioli F. Circulating inflamma-miRs in aging and age-related diseases. Front. Genet. 2013;4:121.
    1. Ong J., Woldhuis R.R., Boudewijn I.M., van den Berg A., Kluiver J., Kok K., Terpstra M.M., Guryev V., de Vries M., Vermeulen C.J., Timens W., van den Berge M., Brandsma C.A. Age-related gene and miRNA expression changes in airways of healthy individuals. Sci. Rep. 2019;9:3765.
    1. Ramiro S., Mostard R.L.M., Magro-Checa C., van Dongen C.M.P., Dormans T., Buijs J., Gronenschild M., de Kruif M.D., van Haren E.H.J., van Kraaij T., Leers M.P.G., Peeters R., Wong D.R., Landewe R.B.M. Historically controlled comparison of glucocorticoids with or without tocilizumab versus supportive care only in patients with COVID-19-associated cytokine storm syndrome: results of the CHIC study. Ann. Rheum. Dis. 2020;79:1143–1151.
    1. Remuzzi A., Remuzzi G. COVID-19 and Italy: what next? Lancet. 2020;395:1225–1228.
    1. Roos J., Enlund E., Funcke J.B., Tews D., Holzmann K., Debatin K.M., Wabitsch M., Fischer-Posovszky P. miR-146a-mediated suppression of the inflammatory response in human adipocytes. Sci. Rep. 2016;6:38339.
    1. Ruan Q., Yang K., Wang W., Jiang L., Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46:846–848.
    1. Rusanova I., Diaz-Casado M.E., Fernandez-Ortiz M., Aranda-Martinez P., Guerra-Librero A., Garcia-Garcia F.J., Escames G., Manas L., Acuna-Castroviejo D. Analysis of plasma MicroRNAs as predictors and biomarkers of aging and frailty in humans. Oxid. Med. Cell. Longev. 2018;2018
    1. Sheedy F.J. Turning 21: induction of miR-21 as a key switch in the inflammatory response. Front. Immunol. 2015;6:19.
    1. Spazzafumo L., Olivieri F., Abbatecola A.M., Castellani G., Monti D., Lisa R., Galeazzi R., Sirolla C., Testa R., Ostan R., Scurti M., Caruso C., Vasto S., Vescovini R., Ogliari G., Mari D., Lattanzio F., Franceschi C. Remodelling of biological parameters during human ageing: evidence for complex regulation in longevity and in type 2 diabetes. Age Dordr. (Dordr) 2013;35:419–429.
    1. Sriram K., Insel P.A. Inflammation and thrombosis in COVID-19 pathophysiology: proteinase-activated and purinergic receptors as drivers and candidate therapeutic targets. Physiol. Rev. 2020 doi: 10.1152/physrev.00035.2020. In press.
    1. Storci G., Bonifazi F., Garagnani P., Olivieri F., Bonafe M. How studies on inflamm-aging may help to understand and combat COVID-19 pandemic. Preprints. 2020
    1. Su Y.L., Wang X., Mann M., Adamus T.P., Wang D., Moreira D.F., Zhang Z., Ouyang C., He X., Zhang B., Swiderski P.M., Forman S.J., Baltimore D., Li L., Marcucci G., Boldin M.P., Kortylewski M. Myeloid cell-targeted miR-146a mimic inhibits NF-kappaB-driven inflammation and leukemia progression in vivo. Blood. 2020;135:167–180.
    1. Varga Z., Flammer A.J., Steiger P., Haberecker M., Andermatt R., Zinkernagel A.S., Mehra M.R., Schuepbach R.A., Ruschitzka F., Moch H. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395:1417–1418.
    1. Wilk A.J., Rustagi A., Zhao N.Q., Roque J., Martinez-Colon G.J., McKechnie J.L., Ivison G.T., Ranganath T., Vergara R., Hollis T., Simpson L.J., Grant P., Subramanian A., Rogers A.J., Blish C.A. A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nat. Med. 2020;26:1070–1076.
    1. Xiang Z., Liu J., Shi D., Chen W., Li J., Yan R., Bi Y., Hu W., Zhu Z., Yu Y., Yang Z. Glucocorticoids improve severe or critical COVID-19 by activating ACE2 and reducing IL-6 levels. Int. J. Biol. Sci. 2020;16:2382–2391.
    1. Xu X., Han M., Li T., Sun W., Wang D., Fu B., Zhou Y., Zheng X., Yang Y., Li X., Zhang X., Pan A., Wei H. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci U S A. 2020;117:10970–10975.
    1. Zhang X., Wang X., Fan M., Tu F., Yang K., Ha T., Liu L., Kalbfleisch J., Williams D., Li C. Endothelial HSPA12B exerts protection against sepsis-induced severe cardiomyopathy via suppression of adhesion molecule expression by miR-126. Front. Immunol. 2020;11:566.
    1. Zhong L., Simard M.J., Huot J. Endothelial microRNAs regulating the NF-kappaB pathway and cell adhesion molecules during inflammation. FASEB J. 2018;32:4070–4084.
    1. Zhou C., Zhao L., Wang K., Qi Q., Wang M., Yang L., Sun P., Mu H. MicroRNA-146a inhibits NF-kappaB activation and pro-inflammatory cytokine production by regulating IRAK1 expression in THP-1 cells. Exp. Ther. Med. 2019;18:3078–3084.
    1. Zhou F., Yu T., Du R., Fan G., Liu Y., Liu Z., Xiang J., Wang Y., Song B., Gu X., Guan L., Wei Y., Li H., Wu X., Xu J., Tu S., Zhang Y., Chen H., Cao B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062.

Source: PubMed

3
Předplatit