Disease-Course Adapting Machine Learning Prognostication Models in Elderly Patients Critically Ill With COVID-19: Multicenter Cohort Study With External Validation

Christian Jung, Behrooz Mamandipoor, Jesper Fjølner, Raphael Romano Bruno, Bernhard Wernly, Antonio Artigas, Bernardo Bollen Pinto, Joerg C Schefold, Georg Wolff, Malte Kelm, Michael Beil, Sigal Sviri, Peter V van Heerden, Wojciech Szczeklik, Miroslaw Czuczwar, Muhammed Elhadi, Michael Joannidis, Sandra Oeyen, Tilemachos Zafeiridis, Brian Marsh, Finn H Andersen, Rui Moreno, Maurizio Cecconi, Susannah Leaver, Dylan W De Lange, Bertrand Guidet, Hans Flaatten, Venet Osmani, Christian Jung, Behrooz Mamandipoor, Jesper Fjølner, Raphael Romano Bruno, Bernhard Wernly, Antonio Artigas, Bernardo Bollen Pinto, Joerg C Schefold, Georg Wolff, Malte Kelm, Michael Beil, Sigal Sviri, Peter V van Heerden, Wojciech Szczeklik, Miroslaw Czuczwar, Muhammed Elhadi, Michael Joannidis, Sandra Oeyen, Tilemachos Zafeiridis, Brian Marsh, Finn H Andersen, Rui Moreno, Maurizio Cecconi, Susannah Leaver, Dylan W De Lange, Bertrand Guidet, Hans Flaatten, Venet Osmani

Abstract

Background: The COVID-19 pandemic caused by SARS-CoV-2 is challenging health care systems globally. The disease disproportionately affects the elderly population, both in terms of disease severity and mortality risk.

Objective: The aim of this study was to evaluate machine learning-based prognostication models for critically ill elderly COVID-19 patients, which dynamically incorporated multifaceted clinical information on evolution of the disease.

Methods: This multicenter cohort study (COVIP study) obtained patient data from 151 intensive care units (ICUs) from 26 countries. Different models based on the Sequential Organ Failure Assessment (SOFA) score, logistic regression (LR), random forest (RF), and extreme gradient boosting (XGB) were derived as baseline models that included admission variables only. We subsequently included clinical events and time-to-event as additional variables to derive the final models using the same algorithms and compared their performance with that of the baseline group. Furthermore, we derived baseline and final models on a European patient cohort, which were externally validated on a non-European cohort that included Asian, African, and US patients.

Results: In total, 1432 elderly (≥70 years old) COVID-19-positive patients admitted to an ICU were included for analysis. Of these, 809 (56.49%) patients survived up to 30 days after admission. The average length of stay was 21.6 (SD 18.2) days. Final models that incorporated clinical events and time-to-event information provided superior performance (area under the receiver operating characteristic curve of 0.81; 95% CI 0.804-0.811), with respect to both the baseline models that used admission variables only and conventional ICU prediction models (SOFA score, P<.001). The average precision increased from 0.65 (95% CI 0.650-0.655) to 0.77 (95% CI 0.759-0.770).

Conclusions: Integrating important clinical events and time-to-event information led to a superior accuracy of 30-day mortality prediction compared with models based on the admission information and conventional ICU prediction models. This study shows that machine-learning models provide additional information and may support complex decision-making in critically ill elderly COVID-19 patients.

Trial registration: ClinicalTrials.gov NCT04321265; https://ichgcp.net/clinical-trials-registry/NCT04321265.

Keywords: COVID-19; clinical informatics; elderly population; machine learning; machine-based learning; outcome prediction; pandemic; patient data; prediction models.

Conflict of interest statement

Conflicts of Interest: None declared.

©Christian Jung, Behrooz Mamandipoor, Jesper Fjølner, Raphael Romano Bruno, Bernhard Wernly, Antonio Artigas, Bernardo Bollen Pinto, Joerg C Schefold, Georg Wolff, Malte Kelm, Michael Beil, Sigal Sviri, Peter V van Heerden, Wojciech Szczeklik, Miroslaw Czuczwar, Muhammed Elhadi, Michael Joannidis, Sandra Oeyen, Tilemachos Zafeiridis, Brian Marsh, Finn H Andersen, Rui Moreno, Maurizio Cecconi, Susannah Leaver, Dylan W De Lange, Bertrand Guidet, Hans Flaatten, Venet Osmani. Originally published in JMIR Medical Informatics (https://medinform.jmir.org), 31.03.2022.

Figures

Figure 1
Figure 1
Graphical methods. (1) Study design, from admission to derivation and validation of baseline setup. (2) Derivation and validation of six models incorporating clinical events individually.Performance of individual models is shown in Multimedia Appendix 2-5. (3) Derivation of the final model, including baseline variables as well as clinical events. (4) Evaluation of the final model in predicting 30-day outcomes. SOFA: Sequential Organ Failure Assessment; ICU: intensive care unit.
Figure 2
Figure 2
Performance of the baseline model (top) and improved performance in the final model (bottom) in response to clinical events with respect to the area under the receiver operating characteristic (ROC) curve (AUC) and area under the precision-recall curve (PRC). The PRC shows the relationship between the positive predictive value (precision) and sensitivity (recall) at all thresholds. XGB: extreme gradient boosting; RF: random forest; LR: logistic regression; SOFA: Sequential Organ Failure Assessment.
Figure 3
Figure 3
Performance of the final model derived using the EU patient cohort and externally validated on a non-EU patient cohort, comprising Asian, African, and US patients. Model performance is measured using area under the receiver operating characteristic (ROC) curve (AUC) and area under the precision-recall curve (PRC). XGB: extreme gradient boosting; RF: random forest; LR: logistic regression.
Figure 4
Figure 4
Ranking of input variables of the final setup derived from the extreme gradient boost algorithm, using the shapely additive explanation (SHAP) method.
Figure 5
Figure 5
Calibration curves for each model and individual algorithms used to derive the model. XGB, extreme gradient boosting; RF: random forest; LR: logistic regression.

References

    1. European Society of Intensive Care Medicine (ESICM) Global Sepsis Alliance (GSA) Society of Critical Care Medicine (SCCM) Reducing the global burden of sepsis: a positive legacy for the COVID-19 pandemic? Intensive Care Med. 2021 Jul 16;47(7):733–736. doi: 10.1007/s00134-021-06409-y.10.1007/s00134-021-06409-y
    1. Maltese G, Corsonello A, Di Rosa M, Soraci L, Vitale C, Corica F, Lattanzio F. Frailty and COVID-19: a systematic scoping review. J Clin Med. 2020 Jul 04;9(7):2106. doi: 10.3390/jcm9072106. jcm9072106
    1. Alkuzweny M, Raj A, Mehta S. Preparing for a COVID-19 surge: ICUs. EClinicalMedicine. 2020 Aug;25:100502. doi: 10.1016/j.eclinm.2020.100502. S2589-5370(20)30246-7
    1. Chopra V, Flanders SA, Vaughn V, Petty L, Gandhi T, McSparron JI, Malani A, O'Malley M, Kim T, McLaughlin E, Prescott H. Variation in COVID-19 characteristics, treatment and outcomes in Michigan: an observational study in 32 hospitals. BMJ Open. 2021 Jul 23;11(7):e044921. doi: 10.1136/bmjopen-2020-044921. bmjopen-2020-044921
    1. Mudatsir M, Fajar JK, Wulandari L, Soegiarto G, Ilmawan M, Purnamasari Y, Mahdi BA, Jayanto GD, Suhendra S, Setianingsih YA, Hamdani R, Suseno DA, Agustina K, Naim HY, Muchlas M, Alluza HHD, Rosida NA, Mayasari M, Mustofa M, Hartono A, Aditya R, Prastiwi F, Meku FX, Sitio M, Azmy A, Santoso AS, Nugroho RA, Gersom C, Rabaan AA, Masyeni S, Nainu F, Wagner AL, Dhama K, Harapan H. Predictors of COVID-19 severity: a systematic review and meta-analysis. F1000Res. 2020 Sep 9;9:1107. doi: 10.12688/f1000research.26186.1.
    1. Flaatten H, De Lange DW, Morandi A, Andersen FH, Artigas A, Bertolini G, Boumendil A, Cecconi M, Christensen S, Faraldi L, Fjølner J, Jung C, Marsh B, Moreno R, Oeyen S, Öhman CA, Pinto BB, Soliman IW, Szczeklik W, Valentin A, Watson X, Zaferidis T, Guidet B, VIP1 study group The impact of frailty on ICU and 30-day mortality and the level of care in very elderly patients (≥ 80 years) Intensive Care Med. 2017 Dec 21;43(12):1820–1828. doi: 10.1007/s00134-017-4940-8.10.1007/s00134-017-4940-8
    1. Zhao Z, Chen A, Hou W, Graham JM, Li H, Richman PS, Thode HC, Singer AJ, Duong TQ. Prediction model and risk scores of ICU admission and mortality in COVID-19. PLoS One. 2020 Jul 30;15(7):e0236618. doi: 10.1371/journal.pone.0236618. PONE-D-20-15746
    1. Jung C, Bruno RR, Wernly B, Wolff G, Beil M, Kelm M. Frailty as a prognostic indicator in intensive care. Dtsch Arztebl Int. 2020 Oct 02;117(40):668–673. doi: 10.3238/arztebl.2020.0668.arztebl.2020.0668
    1. Wernly B, Mamandipoor B, Baldia P, Jung C, Osmani V. Machine learning predicts mortality in septic patients using only routinely available ABG variables: a multi-centre evaluation. Int J Med Inform. 2021 Jan;145:104312. doi: 10.1016/j.ijmedinf.2020.104312.S1386-5056(20)30976-X
    1. Masyuk M, Wernly B, Lichtenauer M, Franz M, Kabisch B, Muessig JM, Zimmermann G, Lauten A, Schulze PC, Hoppe UC, Kelm M, Bakker J, Jung C. Prognostic relevance of serum lactate kinetics in critically ill patients. Intensive Care Med. 2019 Jan 26;45(1):55–61. doi: 10.1007/s00134-018-5475-3.10.1007/s00134-018-5475-3
    1. Bruno RR, Wernly B, Flaatten H, Fjølner J, Artigas A, Bollen Pinto B, Schefold JC, Binnebössel S, Baldia PH, Kelm M, Beil M, Sigal S, van Heerden PV, Szczeklik W, Elhadi M, Joannidis M, Oeyen S, Zafeiridis T, Wollborn J, Arche Banzo MJ, Fuest K, Marsh B, Andersen FH, Moreno R, Leaver S, Boumendil A, De Lange DW, Guidet B, Jung C, COVIP Study Group Lactate is associated with mortality in very old intensive care patients suffering from COVID-19: results from an international observational study of 2860 patients. Ann Intensive Care. 2021 Aug 21;11(1):128. doi: 10.1186/s13613-021-00911-8. 10.1186/s13613-021-00911-8
    1. Leeuwenberg AM, Schuit E. Prediction models for COVID-19 clinical decision making. Lancet Digit Health. 2020 Oct;2(10):e496–e497. doi: 10.1016/S2589-7500(20)30226-0. S2589-7500(20)30226-0
    1. Perrotta F, Corbi G, Mazzeo G, Boccia M, Aronne L, D'Agnano V, Komici K, Mazzarella G, Parrella R, Bianco A. COVID-19 and the elderly: insights into pathogenesis and clinical decision-making. Aging Clin Exp Res. 2020 Aug 16;32(8):1599–1608. doi: 10.1007/s40520-020-01631-y. 10.1007/s40520-020-01631-y
    1. Quer G, Arnaout R, Henne M, Arnaout R. Machine learning and the future of cardiovascular care: JACC state-of-the-art review. J Am Coll Cardiol. 2021 Jan 26;77(3):300–313. doi: 10.1016/j.jacc.2020.11.030. S0735-1097(20)37894-3
    1. Izquierdo JL, Ancochea J, Savana COVID-19 Research Group. Soriano JB. Clinical characteristics and prognostic factors for intensive care unit admission of patients with COVID-19: retrospective study using machine learning and natural language processing. J Med Internet Res. 2020 Oct 28;22(10):e21801. doi: 10.2196/21801. v22i10e21801
    1. Bolourani S, Brenner M, Wang P, McGinn T, Hirsch JS, Barnaby D, Zanos TP, Northwell COVID-19 Research Consortium A machine learning prediction model of respiratory failure within 48 hours of patient admission for COVID-19: model development and validation. J Med Internet Res. 2021 Feb 10;23(2):e24246. doi: 10.2196/24246. v23i2e24246
    1. Aktar S, Ahamad MM, Rashed-Al-Mahfuz M, Azad A, Uddin S, Kamal A, Alyami SA, Lin P, Islam SMS, Quinn JM, Eapen V, Moni MA. Machine learning approach to predicting COVID-19 disease severity based on clinical blood test data: statistical analysis and model development. JMIR Med Inform. 2021 Apr 13;9(4):e25884. doi: 10.2196/25884. v9i4e25884
    1. Vaid A, Jaladanki SK, Xu J, Teng S, Kumar A, Lee S, Somani S, Paranjpe I, De Freitas JK, Wanyan T, Johnson KW, Bicak M, Klang E, Kwon YJ, Costa A, Zhao S, Miotto R, Charney AW, Böttinger E, Fayad ZA, Nadkarni GN, Wang F, Glicksberg BS. Federated learning of electronic health records to improve mortality prediction in hospitalized patients with COVID-19: machine learning approach. JMIR Med Inform. 2021 Jan 27;9(1):e24207. doi: 10.2196/24207. v9i1e24207
    1. Domínguez-Olmedo JL, Gragera-Martínez Á, Mata J, Pachón Álvarez V. Machine learning applied to clinical laboratory data in Spain for COVID-19 outcome prediction: model development and validation. J Med Internet Res. 2021 Apr 14;23(4):e26211. doi: 10.2196/26211. v23i4e26211
    1. Subudhi S, Verma A, Patel AB, Hardin CC, Khandekar MJ, Lee H, McEvoy D, Stylianopoulos T, Munn LL, Dutta S, Jain RK. Comparing machine learning algorithms for predicting ICU admission and mortality in COVID-19. NPJ Digit Med. 2021 May 21;4(1):87. doi: 10.1038/s41746-021-00456-x.10.1038/s41746-021-00456-x
    1. Syeda HB, Syed M, Sexton KW, Syed S, Begum S, Syed F, Prior F, Yu F. Role of machine learning techniques to tackle the COVID-19 crisis: systematic review. JMIR Med Inform. 2021 Jan 11;9(1):e23811. doi: 10.2196/23811. v9i1e23811
    1. Pan P, Li Y, Xiao Y, Han B, Su L, Su M, Li Y, Zhang S, Jiang D, Chen X, Zhou F, Ma L, Bao P, Xie L. Prognostic assessment of COVID-19 in the intensive care unit by machine learning methods: model development and validation. J Med Internet Res. 2020 Nov 11;22(11):e23128. doi: 10.2196/23128. v22i11e23128
    1. Kim H, Han D, Kim J, Kim D, Ha B, Seog W, Lee Y, Lim D, Hong SO, Park M, Heo J. An easy-to-use machine learning model to predict the prognosis of patients with COVID-19: retrospective cohort study. J Med Internet Res. 2020 Nov 09;22(11):e24225. doi: 10.2196/24225. v22i11e24225
    1. Burian E, Jungmann F, Kaissis G, Lohöfer FK, Spinner CD, Lahmer T, Treiber M, Dommasch M, Schneider G, Geisler F, Huber W, Protzer U, Schmid RM, Schwaiger M, Makowski MR, Braren RF. Intensive care risk estimation in COVID-19 pneumonia based on clinical and imaging parameters: experiences from the Munich Cohort. J Clin Med. 2020 May 18;9(5):1514. doi: 10.3390/jcm9051514. jcm9051514
    1. Shashikumar SP, Wardi G, Paul P, Carlile M, Brenner LN, Hibbert KA, North CM, Mukerji SS, Robbins GK, Shao Y, Westover MB, Nemati S, Malhotra A. Development and prospective validation of a deep learning algorithm for predicting need for mechanical ventilation. Chest. 2021 Jun;159(6):2264–2273. doi: 10.1016/j.chest.2020.12.009. S0012-3692(20)35454-4
    1. Jung C, Flaatten H, Fjølner J, Bruno RR, Wernly B, Artigas A, Bollen Pinto B, Schefold JC, Wolff G, Kelm M, Beil M, Sviri S, van Heerden PV, Szczeklik W, Czuczwar M, Elhadi M, Joannidis M, Oeyen S, Zafeiridis T, Marsh B, Andersen FH, Moreno R, Cecconi M, Leaver S, Boumendil A, De Lange DW, Guidet B, COVIP study group The impact of frailty on survival in elderly intensive care patients with COVID-19: the COVIP study. Crit Care. 2021 Apr 19;25(1):149. doi: 10.1186/s13054-021-03551-3. 10.1186/s13054-021-03551-3
    1. Li Y, Sperrin M, Ashcroft DM, van Staa TP. Consistency of variety of machine learning and statistical models in predicting clinical risks of individual patients: longitudinal cohort study using cardiovascular disease as exemplar. BMJ. 2020 Nov 04;371:m3919. doi: 10.1136/bmj.m3919.
    1. Guidet B, de Lange DW, Boumendil A, Leaver S, Watson X, Boulanger C, Szczeklik W, Artigas A, Morandi A, Andersen F, Zafeiridis T, Jung C, Moreno R, Walther S, Oeyen S, Schefold JC, Cecconi M, Marsh B, Joannidis M, Nalapko Y, Elhadi M, Fjølner J, Flaatten H, VIP2 study group The contribution of frailty, cognition, activity of daily life and comorbidities on outcome in acutely admitted patients over 80 years in European ICUs: the VIP2 study. Intensive Care Med. 2020 Jan 29;46(1):57–69. doi: 10.1007/s00134-019-05853-1. 10.1007/s00134-019-05853-1
    1. COVIP Study. VIPSTUDY. [2021-10-11].
    1. Chen T, Guestrin C. XGBoost: a scalable tree boosting system. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; August 2016; Machineryan Francisco, CA. 2016.
    1. Ho TK. Random decision forests. Third International Conference on Document Analysis and Recognition; August 14-16, 1995; Montreal. 1995. pp. 278–282.
    1. McCullagh P, Nelder JA. Generalized Linear Models. 2nd edition. Milton Park, England: Routledge; 1989.
    1. Wynants L, Van Calster B, Collins GS, Riley RD, Heinze G, Schuit E, Bonten MMJ, Dahly DL, Damen JAA, Debray TPA, de Jong VMT, De Vos M, Dhiman P, Haller MC, Harhay MO, Henckaerts L, Heus P, Kammer M, Kreuzberger N, Lohmann A, Luijken K, Ma J, Martin GP, McLernon DJ, Andaur Navarro CL, Reitsma JB, Sergeant JC, Shi C, Skoetz N, Smits LJM, Snell KIE, Sperrin M, Spijker R, Steyerberg EW, Takada T, Tzoulaki I, van Kuijk SMJ, van Bussel B, van der Horst ICC, van Royen FS, Verbakel JY, Wallisch C, Wilkinson J, Wolff R, Hooft L, Moons KGM, van Smeden M. Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal. BMJ. 2020 Apr 07;369:m1328. doi: 10.1136/bmj.m1328.
    1. Saito T, Rehmsmeier M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS One. 2015 Mar 4;10(3):e0118432. doi: 10.1371/journal.pone.0118432. PONE-D-14-26790
    1. Lundberg S, Lee SI. A unified approach to interpreting model predictions. arXiv. 2017. [2022-02-22]. .
    1. Vink EE, Azoulay E, Caplan A, Kompanje EJO, Bakker J. Time-limited trial of intensive care treatment: an overview of current literature. Intensive Care Med. 2018 Sep 22;44(9):1369–1377. doi: 10.1007/s00134-018-5339-x.10.1007/s00134-018-5339-x
    1. Shrime MG, Ferket BS, Scott DJ, Lee J, Barragan-Bradford D, Pollard T, Arabi YM, Al-Dorzi HM, Baron RM, Hunink MGM, Celi LA, Lai PS. Time-limited trials of intensive care for critically ill patients with cancer: how long is long enough? JAMA Oncol. 2016 Jan 01;2(1):76–83. doi: 10.1001/jamaoncol.2015.3336. 2457396
    1. Beil M, Proft I, van Heerden D, Sviri S, van Heerden PV. Ethical considerations about artificial intelligence for prognostication in intensive care. Intensive Care Med Exp. 2019 Dec 10;7(1):70. doi: 10.1186/s40635-019-0286-6. 10.1186/s40635-019-0286-6
    1. Jung C, Fjølner J, Bruno RR, Wernly B, Artigas A, Bollen Pinto B, Schefold JC, Wolff G, Kelm M, Beil M, Sviri S, van Heerden PV, Szczeklik W, Czuczwar M, Joannidis M, Oeyen S, Zafeiridis T, Andersen FH, Moreno R, Leaver S, Boumendil A, De Lange DW, Guidet B, Flaatten H, COVIP Study Group Differences in mortality in critically ill elderly patients during the second COVID-19 surge in Europe. Crit Care. 2021 Sep 23;25(1):344. doi: 10.1186/s13054-021-03739-7. 10.1186/s13054-021-03739-7
    1. Bruno RR, Wernly B, Hornemann J, Flaatten H, FjØlner J, Artigas A, Bollen Pinto B, Schefold JC, Wolff G, Baldia PH, Binneboessel S, Kelm M, Beil M, Sviri S, van Heerden PV, Szczeklik W, Elhadi M, Joannidis M, Oeyen S, Kondili E, Wollborn J, Marsh B, Andersen FH, Moreno R, Leaver S, Boumendil A, De Lange DW, Guidet B, Jung C, COVIP study group Early evaluation of organ failure using MELD-XI in critically ill elderly COVID-19 patients. Clin Hemorheol Microcirc. 2021;79(1):109–120. doi: 10.3233/CH-219202.CH219202
    1. Jung C, Bruno RR, Wernly B, Joannidis M, Oeyen S, Zafeiridis T, Marsh B, Andersen FH, Moreno R, Fernandes AM, Artigas A, Pinto BB, Schefold J, Wolff G, Kelm M, De Lange DW, Guidet B, Flaatten H, Fjølner J, COVIP study group Inhibitors of the renin-angiotensin-aldosterone system and COVID-19 in critically ill elderly patients. Eur Heart J Cardiovasc Pharmacother. 2021 Jan 16;7(1):76–77. doi: 10.1093/ehjcvp/pvaa083. 5869436
    1. Jung C, Wernly B, Fjølner J, Bruno RR, Dudzinski D, Artigas A, Bollen Pinto B, Schefold JC, Wolff G, Kelm M, Beil M, Sigal S, van Heerden PV, Szczeklik W, Czuczwar M, Elhadi M, Joannidis M, Oeyen S, Zafeiridis T, Marsh B, Andersen FH, Moreno R, Cecconi M, Leaver S, Boumendil A, De Lange DW, Guidet B, Flaatten H, the COVIP study group Steroid use in elderly critically ill COVID-19 patients. Eur Respir J. 2021 Oct 25;58(4):2100979. doi: 10.1183/13993003.00979-2021. 13993003.00979-2021
    1. Flaatten H, deLange D, Jung C, Beil M, Guidet B. The impact of end-of-life care on ICU outcome. Intensive Care Med. 2021 May 19;47(5):624–625. doi: 10.1007/s00134-021-06365-7.10.1007/s00134-021-06365-7

Source: PubMed

3
Předplatit