Functional analysis of androgen receptor mutations that confer anti-androgen resistance identified in circulating cell-free DNA from prostate cancer patients

Nada Lallous, Stanislav V Volik, Shannon Awrey, Eric Leblanc, Ronnie Tse, Josef Murillo, Kriti Singh, Arun A Azad, Alexander W Wyatt, Stephane LeBihan, Kim N Chi, Martin E Gleave, Paul S Rennie, Colin C Collins, Artem Cherkasov, Nada Lallous, Stanislav V Volik, Shannon Awrey, Eric Leblanc, Ronnie Tse, Josef Murillo, Kriti Singh, Arun A Azad, Alexander W Wyatt, Stephane LeBihan, Kim N Chi, Martin E Gleave, Paul S Rennie, Colin C Collins, Artem Cherkasov

Abstract

Background: The androgen receptor (AR) is a pivotal drug target for the treatment of prostate cancer, including its lethal castration-resistant (CRPC) form. All current non-steroidal AR antagonists, such as hydroxyflutamide, bicalutamide, and enzalutamide, target the androgen binding site of the receptor, competing with endogenous androgenic steroids. Several AR mutations in this binding site have been associated with poor prognosis and resistance to conventional prostate cancer drugs. In order to develop an effective CRPC therapy, it is crucial to understand the effects of these mutations on the functionality of the AR and its ability to interact with endogenous steroids and conventional AR inhibitors.

Results: We previously utilized circulating cell-free DNA (cfDNA) sequencing technology to examine the AR gene for the presence of mutations in CRPC patients. By modifying our sequencing and data analysis approaches, we identify four additional single AR mutations and five mutation combinations associated with CRPC. Importantly, we conduct experimental functionalization of all the AR mutations identified by the current and previous cfDNA sequencing to reveal novel gain-of-function scenarios. Finally, we evaluate the effect of a novel class of AR inhibitors targeting the binding function 3 (BF3) site on the activity of CRPC-associated AR mutants.

Conclusions: This work demonstrates the feasibility of a prognostic and/or diagnostic platform combining the direct identification of AR mutants from patients' serum, and the functional characterization of these mutants in order to provide personalized recommendations regarding the best future therapy.

Figures

Fig. 1
Fig. 1
AR mutations identified in CRPC patients. a AR gene organization showing the AR-LBD mutants. b AR mutants mapped on the X-ray structure (PDB: 2 AM9) of the LBD (cartoon representation, in gray) in complex with testosterone (TES, ball-and-stick representation, in cyan). AR mutants encoded by exon 8 are shown in magenta ball-and-stick representation. The rest of the mutants are shown in blue
Fig. 2
Fig. 2
Characterization of AR mutants identified in patient VC-012 after progression on bicalutamide and enzalutamide. a Two AR mutants were identified in the cfDNA isolated after patient progression on bicalutamide. Both mutants show agonist response to bicalutamide in an in vitro transcription assay. b Four additional mutants were identified in the same patient VC-012 after progression on enzalutamide, all with various agonist effects toward enzalutamide in vitro. The percentage in the charts only reflects the mutated form of the androgen receptor. Each concentration was assayed in quadruplicate n = 4, with a biological replicate of n = 3. Results were averaged and normalized by expressing them as a percentage of the wild-type AR activity ± SEM
Fig. 3
Fig. 3
Steroid activation of AR mutants in comparison with the wild-type receptor in luciferase reporter assay. While most of the AR mutants showed similar or lower affinity to the activation by DHT (a), when compared to wild-type, several variants presented better activation by estradiol (b), progesterone (c), or hydrocortisone (d) than the wild-type. PC3 cells were transfected with both wild-type or mutated AR and a reporter plasmid pARR3-tk-luciferase. After 48 h post transfection, cells were treated with increasing concentrations of steroids. The graphs represent the average ± SEM of three independent experiments with four replicates each. The activity of each mutant in the presence of a steroid was normalized to the wild-type stimulated by 500 nM of the same steroid
Fig. 4
Fig. 4
AR mutants associated with enzalutamide resistance in CRPC patients. a Molecular dynamics (MD) model of AR LBD (cartoon representation, in gray) in complex with enzalutamide (ball-and-stick representation, in blue). The residues presented as gray sticks are found to be mutated in patients progressing on enzalutamide treatment. b The F877L mutant showed an agonist response to enzalutamide in an in vitro cell-based assay but was inhibited by the first generation anti-androgens hydroxyflutamide and bicalutamide. Each concentration was assayed in quadruplicate n = 4, with a biological replicate of n = 3. Results were averaged and normalized by expressing them as a percentage of WT AR activity ± SEM
Fig. 5
Fig. 5
Characterization of the in-house developed AR inhibitor VPC-13566. a Dose-response curve illustrating the inhibiting effect of the VPC-13566 and enzalutamide on the AR transcriptional activity in PC3 cells transfected with wild-type AR plasmid. Data points represent the mean of three independent experiments performed in four replicates each. Error bars represent the standard error of the mean ± SEM for n = 12 values. b The specific binding to the BF3 site was confirmed by BAG1L peptide (1-20) displacement using a TR-FRET assay. c The effect of VPC-13566 on PC3 cell viability. % cell viability is plotted in dose dependent manner. Data points represent the mean ± SEM of two independent experiments performed in quadruplicate

References

    1. de Bono JS, Logothetis CJ, Molina A, Fizazi K, North S, Chu L, et al. Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med. 2011;364:1995–2005. doi: 10.1056/NEJMoa1014618.
    1. Li Z, Bishop AC, Alyamani M, Garcia JA, Dreicer R, Bunch D, et al. Conversion of abiraterone to D4A drives anti-tumour activity in prostate cancer. Nature. 2015;523:347–51. doi: 10.1038/nature14406.
    1. Beer TM, Armstrong AJ, Rathkopf DE, Loriot Y, Sternberg CN, Higano CS, et al. Enzalutamide in metastatic prostate cancer before chemotherapy. N Engl J Med. 2014;371:424–33. doi: 10.1056/NEJMoa1405095.
    1. Scher HI, Beer TM, Higano CS, Anand A, Taplin ME, Efstathiou E, et al. Antitumour activity of MDV3100 in castration-resistant prostate cancer: a phase 1-2 study. Lancet. 2010;375:1437–46. doi: 10.1016/S0140-6736(10)60172-9.
    1. Montgomery RB, Mostaghel EA, Vessella R, Hess DL, Kalhorn TF, Higano CS, et al. Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res. 2008;68:4447–54. doi: 10.1158/0008-5472.CAN-08-0249.
    1. Mohler JL, Gregory CW, Ford OH, 3rd, Kim D, Weaver CM, Petrusz P, et al. The androgen axis in recurrent prostate cancer. Clin Cancer Res. 2004;10:440–8. doi: 10.1158/1078-0432.CCR-1146-03.
    1. Dehm SM, Tindall DJ. Alternatively spliced androgen receptor variants. Endocr Relat Cancer. 2011;18:R183–196. doi: 10.1530/ERC-11-0141.
    1. Watson PA, Chen YF, Balbas MD, Wongvipat J, Socci ND, Viale A, et al. Constitutively active androgen receptor splice variants expressed in castration-resistant prostate cancer require full-length androgen receptor. Proc Natl Acad Sci U S A. 2010;107:16759–65. doi: 10.1073/pnas.1012443107.
    1. Taplin ME, Bubley GJ, Shuster TD, Frantz ME, Spooner AE, Ogata GK, et al. Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N Engl J Med. 1995;332:1393–8. doi: 10.1056/NEJM199505253322101.
    1. Suzuki H, Sato N, Watabe Y, Masai M, Seino S, Shimazaki J. Androgen receptor gene mutations in human prostate cancer. J Steroid Biochem Mol Biol. 1993;46:759–65. doi: 10.1016/0960-0760(93)90316-O.
    1. Taplin ME, Bubley GJ, Ko YJ, Small EJ, Upton M, Rajeshkumar B, et al. Selection for androgen receptor mutations in prostate cancers treated with androgen antagonist. Cancer Res. 1999;59:2511–5.
    1. Waltering KK, Urbanucci A, Visakorpi T. Androgen receptor (AR) aberrations in castration-resistant prostate cancer. Mol Cell Endocrinol. 2012;360:38–43. doi: 10.1016/j.mce.2011.12.019.
    1. Lorente D, Mateo J, Zafeiriou Z, Smith AD, Sandhu S, Ferraldeschi R, et al. Switching and withdrawing hormonal agents for castration-resistant prostate cancer. Nat Rev Urol. 2015;12:37–47. doi: 10.1038/nrurol.2014.345.
    1. Bohl CE, Miller DD, Chen J, Bell CE, Dalton JT. Structural basis for accommodation of nonsteroidal ligands in the androgen receptor. J Biol Chem. 2005;280:37747–54. doi: 10.1074/jbc.M507464200.
    1. Zhao XY, Malloy PJ, Krishnan AV, Swami S, Navone NM, Peehl DM, et al. Glucocorticoids can promote androgen-independent growth of prostate cancer cells through a mutated androgen receptor. Nat Med. 2000;6:703–6. doi: 10.1038/76287.
    1. Bohl CE, Gao W, Miller DD, Bell CE, Dalton JT. Structural basis for antagonism and resistance of bicalutamide in prostate cancer. Proc Natl Acad Sci U S A. 2005;102:6201–6. doi: 10.1073/pnas.0500381102.
    1. Hara T, Miyazaki J, Araki H, Yamaoka M, Kanzaki N, Kusaka M, et al. Novel mutations of androgen receptor: a possible mechanism of bicalutamide withdrawal syndrome. Cancer Res. 2003;63:149–53.
    1. Taplin ME, Rajeshkumar B, Halabi S, Werner CP, Woda BA, Picus J, et al. Androgen receptor mutations in androgen-independent prostate cancer: Cancer and Leukemia Group B Study 9663. J Clin Oncol. 2003;21:2673–8. doi: 10.1200/JCO.2003.11.102.
    1. Korpal M, Korn JM, Gao X, Rakiec DP, Ruddy DA, Doshi S, et al. An F876L mutation in androgen receptor confers genetic and phenotypic resistance to MDV3100 (enzalutamide) Cancer Discov. 2013;3:1030–43. doi: 10.1158/-13-0142.
    1. Balbas MD, Evans MJ, Hosfield DJ, Wongvipat J, Arora VK, Watson PA, et al. Overcoming mutation-based resistance to antiandrogens with rational drug design. Elife. 2013;2:e00499. doi: 10.7554/eLife.00499.
    1. Joseph JD, Lu N, Qian J, Sensintaffar J, Shao G, Brigham D, et al. A clinically relevant androgen receptor mutation confers resistance to second-generation antiandrogens enzalutamide and ARN-509. Cancer Discov. 2013;3:1020–9. doi: 10.1158/-13-0226.
    1. Schwarzenbach H, Alix-Panabieres C, Muller I, Letang N, Vendrell JP, Rebillard X, et al. Cell-free tumor DNA in blood plasma as a marker for circulating tumor cells in prostate cancer. Clin Cancer Res. 2009;15:1032–8. doi: 10.1158/1078-0432.CCR-08-1910.
    1. Swarup V, Rajeswari MR. Circulating (cell-free) nucleic acids--a promising, non-invasive tool for early detection of several human diseases. FEBS Lett. 2007;581:795–9. doi: 10.1016/j.febslet.2007.01.051.
    1. Schwarzenbach H, Hoon DS, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer. 2011;11:426–37. doi: 10.1038/nrc3066.
    1. Azad AA, Volik SV, Wyatt AW, Haegert A, Le Bihan S, Bell RH, et al. Androgen receptor gene aberrations in circulating cell-free DNA: biomarkers of therapeutic resistance in castration-resistant prostate cancer. Clin Cancer Res. 2015;21(10):2315–24. doi: 10.1158/1078-0432.CCR-14-2666.
    1. Munuganti Ravi SN, Hassona Mohamed DH, Leblanc E, Frewin K, Singh K, Ma D, et al. Identification of a Potent Antiandrogen that Targets the BF3 Site of the Androgen Receptor and Inhibits Enzalutamide-Resistant Prostate Cancer. Chem Biol. 2014;21:1476–85. doi: 10.1016/j.chembiol.2014.09.012.
    1. Jehle K, Cato L, Neeb A, Muhle-Goll C, Jung N, Smith EW, et al. Coregulator Control of Androgen Receptor Action by a Novel Nuclear Receptor-Binding Motif. J Biol Chem. 2014;289:8839–51. doi: 10.1074/jbc.M113.534859.
    1. Estebanez-Perpina E, Arnold LA, Nguyen P, Rodrigues ED, Mar E, Bateman R, et al. A surface on the androgen receptor that allosterically regulates coactivator binding. Proc Natl Acad Sci U S A. 2007;104:16074–9. doi: 10.1073/pnas.0708036104.
    1. Monge A, Jagla M, Lapouge G, Sasorith S, Cruchant M, Wurtz JM, et al. Unfaithfulness and promiscuity of a mutant androgen receptor in a hormone-refractory prostate cancer. Cell Mol Life Sci. 2006;63:487–97. doi: 10.1007/s00018-005-5471-y.
    1. van de Wijngaart DJ, Molier M, Lusher SJ, Hersmus R, Jenster G, Trapman J, et al. Systematic structure-function analysis of androgen receptor Leu701 mutants explains the properties of the prostate cancer mutant L701H. J Biol Chem. 2010;285:5097–105. doi: 10.1074/jbc.M109.039958.
    1. Duff J, McEwan IJ. Mutation of histidine 874 in the androgen receptor ligand-binding domain leads to promiscuous ligand activation and altered p160 coactivator interactions. Mol Endocrinol. 2005;19:2943–54. doi: 10.1210/me.2005-0231.
    1. Fenton MA, Shuster TD, Fertig AM, Taplin ME, Kolvenbag G, Bubley GJ, et al. Functional characterization of mutant androgen receptors from androgen-independent prostate cancer. Clin Cancer Res. 1997;3:1383–8.
    1. Hoffman-Censits J, Kelly WK. Enzalutamide: a novel anti-androgen for patients with castrate resistant prostate cancer. Clin Cancer Res. 2013;19:1335–9. doi: 10.1158/1078-0432.CCR-12-2910.
    1. Pal SK, Stein CA, Sartor O. Enzalutamide for the treatment of prostate cancer. Expert Opin Pharmacother. 2013;14:679–85. doi: 10.1517/14656566.2013.775251.
    1. Vogelzang NJ. Enzalutamide--a major advance in the treatment of metastatic prostate cancer. N Engl J Med. 2012;367:1256–7. doi: 10.1056/NEJMe1209041.
    1. Clegg NJ, Wongvipat J, Joseph JD, Tran C, Ouk S, Dilhas A, et al. ARN-509: a novel antiandrogen for prostate cancer treatment. Cancer Res. 2012;72:1494–503. doi: 10.1158/0008-5472.CAN-11-3948.
    1. Toren PJ, Kim S, Pham S, Mangalji A, Adomat H, Guns ES, et al. Anticancer activity of a novel selective CYP17A1 inhibitor in preclinical models of castrate-resistant prostate cancer. Mol Cancer Ther. 2015;14:59–69. doi: 10.1158/1535-7163.MCT-14-0521.
    1. Romanel A, Tandefelt DG, Conteduca V, Jayaram A, Casiraghi N, Wetterskog D, et al. Plasma AR and abiraterone-resistant prostate cancer. Sci Transl Med. 2015;7:312re310. doi: 10.1126/scitranslmed.aac9511.
    1. Chen E, Sowalsky AG, Gao S, Cai C, Voznesensky O, Schaefer R, et al. Abiraterone treatment in castration-resistant prostate cancer selects for progesterone responsive mutant androgen receptors. Clin Cancer Res. 2015;21(6):1273–80. doi: 10.1158/1078-0432.CCR-14-1220.
    1. De Leon JT, Iwai A, Feau C, Garcia Y, Balsiger HA, Storer CL, et al. Targeting the regulation of androgen receptor signaling by the heat shock protein 90 cochaperone FKBP52 in prostate cancer cells. Proc Natl Acad Sci U S A. 2011;108:11878–83. doi: 10.1073/pnas.1105160108.
    1. Munuganti RS, Leblanc E, Axerio-Cilies P, Labriere C, Frewin K, Singh K, et al. Targeting the binding function 3 (BF3) site of the androgen receptor through virtual screening. 2. Development of 2-((2-phenoxyethyl) thio)-1H-benzimidazole derivatives. J Med Chem. 2013;56:1136–48. doi: 10.1021/jm3015712.
    1. Lack NA, Axerio-Cilies P, Tavassoli P, Han FQ, Chan KH, Feau C, et al. Targeting the binding function 3 (BF3) site of the human androgen receptor through virtual screening. J Med Chem. 2011;54:8563–73. doi: 10.1021/jm201098n.
    1. Ban F, Leblanc E, Li H, Munuganti RS, Frewin K, Rennie PS, et al. Discovery of 1H-indole-2-carboxamides as novel inhibitors of the androgen receptor binding function 3 (BF3) J Med Chem. 2014;57:6867–72. doi: 10.1021/jm500684r.
    1. Lallous N, Dalal K, Cherkasov A, Rennie PS. Targeting alternative sites on the androgen receptor to treat castration-resistant prostate cancer. Int J Mol Sci. 2013;14:12496–519. doi: 10.3390/ijms140612496.
    1. Dalal K, Roshan-Moniri M, Sharma A, Li H, Ban F, Hassona MD, et al. Selectively targeting the DNA binding domain of the androgen receptor as a prospective therapy for prostate cancer. J Biol Chem. 2014;289:26417–29. doi: 10.1074/jbc.M114.553818.
    1. Jenster G, van der Korput HA, van Vroonhoven C, van der Kwast TH, Trapman J, Brinkmann AO. Domains of the human androgen receptor involved in steroid binding, transcriptional activation, and subcellular localization. Mol Endocrinol. 1991;5:1396–404. doi: 10.1210/mend-5-10-1396.
    1. Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM, et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015;161:1215–28. doi: 10.1016/j.cell.2015.05.001.
    1. Scher HI, Sawyers CL. Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis. J Clin Oncol. 2005;23:8253–61. doi: 10.1200/JCO.2005.03.4777.
    1. Veldscholte J, Ris-Stalpers C, Kuiper GG, Jenster G, Berrevoets C, Claassen E, et al. A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens. Biochem Biophys Res Commun. 1990;173:534–40. doi: 10.1016/S0006-291X(05)80067-1.
    1. Culig Z, Hobisch A, Cronauer MV, Cato AC, Hittmair A, Radmayr C, et al. Mutant androgen receptor detected in an advanced-stage prostatic carcinoma is activated by adrenal androgens and progesterone. Mol Endocrinol. 1993;7:1541–50.
    1. Newmark JR, Hardy DO, Tonb DC, Carter BS, Epstein JI, Isaacs WB, et al. Androgen receptor gene mutations in human prostate cancer. Proc Natl Acad Sci U S A. 1992;89:6319–23. doi: 10.1073/pnas.89.14.6319.
    1. Denis L, Mahler C. Pharmacodynamics and pharmacokinetics of bicalutamide: defining an active dosing regimen. Urology. 1996;47:26–8. doi: 10.1016/S0090-4295(96)80004-5.
    1. Gao W, Bohl CE, Dalton JT. Chemistry and structural biology of androgen receptor. Chem Rev. 2005;105:3352–70. doi: 10.1021/cr020456u.
    1. He B, Gampe RT, Jr, Kole AJ, Hnat AT, Stanley TB, An G, et al. Structural basis for androgen receptor interdomain and coactivator interactions suggests a transition in nuclear receptor activation function dominance. Mol Cell. 2004;16:425–38. doi: 10.1016/j.molcel.2004.09.036.
    1. Thorvaldsdóttir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2013;14:178–92. doi: 10.1093/bib/bbs017.

Source: PubMed

3
Předplatit