Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death

Y Ishida, Y Agata, K Shibahara, T Honjo, Y Ishida, Y Agata, K Shibahara, T Honjo

Abstract

The classical type of programmed cell death is characterized by its dependence on de novo RNA and protein synthesis and morphological features of apoptosis. We confirmed that stimulated 2B4.11 (a murine T-cell hybridoma) and interleukin-3 (IL-3)-deprived LyD9 (a murine haematopoietic progenitor cell line) died by the classical type of programmed cell death. Assuming that common biochemical pathways might be involved in the deaths of 2B4.11 and LyD9, we isolated the PD-1 gene, a novel member of the immunoglobulin gene superfamily, by using subtractive hybridization technique. The predicted PD-1 protein has a variant form of the consensus sequence found in cytoplasmic tails of signal transducing polypeptides associated with immune recognition receptors. The PD-1 gene was activated in both stimulated 2B4.11 and IL-3-deprived LyD9 cells, but not in other death-induced cell lines that did not show the characteristic features of the classical programmed cell death. Expression of the PD-1 mRNA in mouse was restricted to the thymus and increased when thymocyte death was augmented by in vivo injection of anti-CD3 antibody. These results suggest that activation of the PD-1 gene may be involved in the classical type of programmed cell death.

References

    1. Nature. 1977 Jul 14;268(5616):154-6
    1. Science. 1992 Jan 3;255(5040):79-82
    1. Dev Biol. 1990 Mar;138(1):104-13
    1. Annu Rev Cell Biol. 1991;7:663-98
    1. Immunol Rev. 1991 Jun;121:29-65
    1. Annu Rev Neurosci. 1991;14:453-501
    1. J Exp Med. 1990 Nov 1;172(5):1367-75
    1. Eur J Immunol. 1990 Jun;20(6):1405-7
    1. J Cell Biol. 1988 Mar;106(3):829-44
    1. Nature. 1989 Jan 12;337(6203):181-4
    1. Eur J Immunol. 1988 Jan;18(1):97-104
    1. Cancer Res. 1988 Nov 1;48(21):6006-10
    1. Nature. 1988 Sep 29;335(6189):440-2
    1. J Exp Med. 1987 Jan 1;165(1):173-94
    1. Nucleic Acids Res. 1986 Mar 25;14(6):2829
    1. Dev Biol. 1966 Feb;13(1):77-94
    1. J Immunol. 1981 Feb;126(2):626-31
    1. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463-7
    1. Nature. 1992 Mar 26;356(6367):314-7
    1. Cell. 1992 Jan 10;68(1):83-95
    1. Cell. 1992 Mar 6;68(5):889-97
    1. Cell. 1991 Jul 26;66(2):233-43
    1. Cell. 1991 Nov 29;67(5):879-88
    1. Annu Rev Immunol. 1991;9:243-69
    1. Cell. 1991 Nov 29;67(5):889-99
    1. J Immunol. 1990 May 1;144(9):3602-10
    1. Eur J Immunol. 1990 Aug;20(8):1685-90
    1. Nature. 1990 Feb 15;343(6259):642-4
    1. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6594-8
    1. J Exp Med. 1989 May 1;169(5):1747-56
    1. J Immunol. 1989 Dec 1;143(11):3461-9
    1. Nature. 1989 Jun 22;339(6226):625-6
    1. Nature. 1989 Mar 30;338(6214):383-4
    1. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1374-8
    1. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4473-7
    1. Annu Rev Immunol. 1988;6:381-405
    1. EMBO J. 1987 Dec 1;6(12):3687-93
    1. Nucleic Acids Res. 1986 Jun 11;14(11):4683-90
    1. Methods Enzymol. 1974;29:363-418
    1. J Immunol. 1984 Jan;132(1):38-42
    1. Annu Rev Neurosci. 1984;7:171-88

Source: PubMed

3
Předplatit