The effects of a secondary task on gait in axial spondyloarthritis

Julie Soulard, Jacques Vaillant, Athan Baillet, Philippe Gaudin, Nicolas Vuillerme, Julie Soulard, Jacques Vaillant, Athan Baillet, Philippe Gaudin, Nicolas Vuillerme

Abstract

Studies on the effects of dual tasking in patients with chronic inflammatory rheumatic diseases are limited. The aim of this study was to assess dual tasking while walking in patients with axial spondyloarthritis (axSpA) in comparison to healthy controls. Thirty patients with axSpA and thirty healthy controls underwent a 10-m walk test at a self-selected comfortable walking speed in single- and dual-task conditions. Foot-worn inertial sensors were used to compute spatiotemporal gait parameters. Analysis of spatiotemporal gait parameters showed that the secondary manual task negatively affected walking performance in terms of significantly decreased mean speed (p < 0.001), stride length (p < 0.001) and swing time (p = 0.008) and increased double support (p = 0.002) and stance time (p = 0.008). No significant interaction of group and condition was observed. Both groups showed lower gait performance in dual task condition by reducing speed, swing time and stride length, and increasing double support and stance time. Patients with axSpA were not more affected by the dual task than matched healthy controls, suggesting that the secondary manual task did not require greater attention in patients with axSpA. Increasing the complexity of the walking and/or secondary task may increase the sensitivity of the dual-task design to axial spondyloarthritis.

Conflict of interest statement

The authors declare no competing interests.

© 2021. The Author(s).

Figures

Figure 1
Figure 1
Picture showing the placement of the two foot-worn inertial sensors.
Figure 2
Figure 2
Mean and standard deviation of the spatiotemporal gait parameters obtained in healthy controls and patients with axSpA in single- and dual-task conditions (A gait speed, B cadence, C stride length, D double support time, E swing time, F stance time) (**p < 0.01, ***p < 0.001, NS non significant).

References

    1. McIsaac, T. L., Lamberg, E. M. & Muratori, L. M. Building a framework for a dual task taxonomy. BioMed Research International (2015).
    1. Kelly VE, Janke AA, Shumway-Cook A. Effects of instructed focus and task difficulty on concurrent walking and cognitive task performance in healthy young adults. Exp. Brain Res. Exp. Hirnforsch. Exp. Cerebrale. 2010;207:65–73. doi: 10.1007/s00221-010-2429-6.
    1. Beurskens R, Steinberg F, Antoniewicz F, Wolff W, Granacher U. Neural correlates of dual-task walking: effects of cognitive versus motor interference in young adults. Neural Plast. 2016;2016:8032180. doi: 10.1155/2016/8032180.
    1. Stöckel T, Mau-Moeller A. Cognitive control processes associated with successful gait performance in dual-task walking in healthy young adults. Psychol. Res. 2020;84:1766–1776. doi: 10.1007/s00426-019-01184-4.
    1. Kwon Y, Kwon JW, Cho IH. The difference of gait characteristic according to the variety of dual tasks in young healthy adults. Work Read. Mass. 2019;63:33–38.
    1. Johnson RS, Scott KH, Lynall RC. A proposal for complex gait evaluation using dual-task gait termination time. J. Sport Rehabil. 2020 doi: 10.1123/jsr.2020-0080.
    1. Beurskens R, Bock O. Age-related deficits of dual-task walking: a review. Neural Plast. 2012;2012:1–9. doi: 10.1155/2012/131608.
    1. Al-Yahya E, et al. Cognitive motor interference while walking: a systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2011;35:715–728. doi: 10.1016/j.neubiorev.2010.08.008.
    1. Smith E, Cusack T, Cunningham C, Blake C. The influence of a cognitive dual task on the gait parameters of healthy older adults: a systematic review and meta-analysis. J. Aging Phys. Act. 2017;25:671–686. doi: 10.1123/japa.2016-0265.
    1. Wollesen B, Wanstrath M, van Schooten KS, Delbaere K. A taxonomy of cognitive tasks to evaluate cognitive-motor interference on spatiotemoporal gait parameters in older people: A systematic review and meta-analysis. Eur. Rev. Aging Phys. Act. Off. J. Eur. Group Res. Elder. Phys. Act. 2019;16:12. doi: 10.1186/s11556-019-0218-1.
    1. Lee H, Sullivan SJ, Schneiders AG. The use of the dual-task paradigm in detecting gait performance deficits following a sports-related concussion: a systematic review and meta-analysis. J. Sci. Med. Sport. 2013;16:2–7. doi: 10.1016/j.jsams.2012.03.013.
    1. Deblock-Bellamy A, Lamontagne A, Blanchette AK. Cognitive-locomotor dual-task interference in stroke survivors and the influence of the tasks: a systematic review. Front. Neurol. 2020;11:25689. doi: 10.3389/fneur.2020.00882.
    1. Yogev G, et al. Dual tasking, gait rhythmicity, and Parkinson’s disease: which aspects of gait are attention demanding? Eur. J. Neurosci. 2005;22:1248–1256. doi: 10.1111/j.1460-9568.2005.04298.x.
    1. Postigo-Alonso B, et al. Cognitive-motor interference during gait in patients with Multiple Sclerosis: a mixed methods Systematic Review. Neurosci. Biobehav. Rev. 2018;94:126–148. doi: 10.1016/j.neubiorev.2018.08.016.
    1. Bayot M, et al. The interaction between cognition and motor control: A theoretical framework for dual-task interference effects on posture, gait initiation, gait and turning. Neurophysiol. Clin. Clin. Neurophysiol. 2018;48:361–375. doi: 10.1016/j.neucli.2018.10.003.
    1. Aboutorabi A, Arazpour M, Bahramizadeh M, Hutchins SW, Fadayevatan R. The effect of aging on gait parameters in able-bodied older subjects: a literature review. Aging Clin. Exp. Res. 2016;28:393–405. doi: 10.1007/s40520-015-0420-6.
    1. Chatterjee SA, et al. Mobility function and recovery after stroke: preliminary insights from sympathetic nervous system activity. J. Neurol. Phys. Ther. JNPT. 2018;42:224–232. doi: 10.1097/NPT.0000000000000238.
    1. Pirker W, Katzenschlager R. Gait disorders in adults and the elderly. Wien. Klin. Wochenschr. 2017;129:81–95. doi: 10.1007/s00508-016-1096-4.
    1. Lam R. Office management of gait disorders in the elderly. Can. Fam. Physician. 2011;57:765–770.
    1. Soulard, J., Vaillant, J., Baillet, A., Gaudin, P. & Vuillerme, N. Gait and axial spondyloarthritis: A comparative gait analysis study using foot-worn inertial sensors. JMIR MHealth UHealth (2021).
    1. Belur P, Hsiao D, Myers PS, Earhart GM, Rawson KS. Dual-task costs of texting while walking forward and backward are greater for older adults than younger adults. Hum. Mov. Sci. 2020;71:102619. doi: 10.1016/j.humov.2020.102619.
    1. Prupetkaew P, Lugade V, Kamnardsiri T, Silsupadol P. Cognitive and visual demands, but not gross motor demand, of concurrent smartphone use affect laboratory and free-living gait among young and older adults. Gait Posture. 2019;68:30–36. doi: 10.1016/j.gaitpost.2018.11.003.
    1. Soulard J, et al. Gait as predictor of physical function in axial spondyloarthritis: The prospective longitudinal FOLOMI (Function, Locomotion, Measurement, Inflammation) study protocol. Rheumatol. Int. 2019 doi: 10.1007/s00296-019-04396-4.
    1. Zebouni L, Helliwell PS, Howe A, Wright V. Gait analysis in ankylosing spondylitis. Ann. Rheum. Dis. 1992;51:898–899. doi: 10.1136/ard.51.7.898.
    1. Lwanga SK, Lemeshow S, Organization WH. Sample Size Determination in Health Studies: A Practical Manual. World Health Organization; 1991.
    1. —Sample size calculator. .
    1. Zochling J. Measures of symptoms and disease status in ankylosing spondylitis: Ankylosing Spondylitis Disease Activity Score (ASDAS), Ankylosing Spondylitis Quality of Life Scale (ASQoL), Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), Bath Ankylosing Spondylitis Functional Index (BASFI), Bath Ankylosing Spondylitis Global Score (BAS-G), Bath Ankylosing Spondylitis Metrology Index (BASMI), Dougados Functional Index (DFI), and Health Assessment Questionnaire for the Spondylarthropathies (HAQ-S) Arthritis Care Res. Hoboken. 2011;63(Suppl 11):S47–58. doi: 10.1002/acr.20575.
    1. Graham JE, Ostir GV, Fisher SR, Ottenbacher KJ. Assessing walking speed in clinical research: a systematic review. J. Eval. Clin. Pract. 2008;14:552–562. doi: 10.1111/j.1365-2753.2007.00917.x.
    1. Beauchet O, et al. Guidelines for assessment of gait and reference values for spatiotemporal gait parameters in older adults: The biomathics and Canadian gait consortiums initiative. Front. Hum. Neurosci. 2017;11:353. doi: 10.3389/fnhum.2017.00353.
    1. Yang L, He C, Pang MYC. Reliability and validity of dual-task mobility assessments in people with chronic stroke. PLoS ONE. 2016;11:e0147833. doi: 10.1371/journal.pone.0147833.
    1. Nordin E, Moe-Nilssen R, Ramnemark A, Lundin-Olsson L. Changes in step-width during dual-task walking predicts falls. Gait Posture. 2010;32:92–97. doi: 10.1016/j.gaitpost.2010.03.012.
    1. Deblock-Bellamy A, Lamontagne A, Blanchette AK. Cognitive-locomotor dual-task interference in stroke survivors and the influence of the tasks: a systematic review. Front. Neurol. 2020;11:882. doi: 10.3389/fneur.2020.00882.
    1. Leone C, et al. Comparing 16 different dual-tasking paradigms in individuals with multiple sclerosis and healthy controls: Working memory tasks indicate cognitive-motor interference. Front. Neurol. 2020;11:918. doi: 10.3389/fneur.2020.00918.
    1. Lima LCA, Ansai JH, Andrade LP, Takahashi ACM. The relationship between dual-task and cognitive performance among elderly participants who exercise regularly. Braz. J. Phys. Ther. 2015;19:159–166. doi: 10.1590/bjpt-rbf.2014.0082.
    1. Cedervall Y, et al. Timed up-and-go dual-task testing in the assessment of cognitive function: A mixed methods observational study for development of the UDDGait protocol. Int. J. Environ. Res. Public. Health. 2020;17:1715. doi: 10.3390/ijerph17051715.
    1. Lefeber N, Degelaen M, Truyers C, Safin I, Beckwee D. Validity and reproducibility of inertial physilog sensors for spatiotemporal gait analysis in patients with stroke. IEEE Trans. Neural Syst. Rehabil. Eng. Publ. IEEE Eng. Med. Biol. Soc. 2019;27:1865–1874. doi: 10.1109/TNSRE.2019.2930751.
    1. Truong PH, Lee J, Kwon A-R, Jeong G-M. Stride counting in human walking and walking distance estimation using insole sensors. Sensors. 2016;16:823. doi: 10.3390/s16060823.
    1. Anwary AR, Yu H, Vassallo M. An automatic gait feature extraction method for identifying gait asymmetry using wearable sensors. Sensors. 2018;18:676. doi: 10.3390/s18020676.
    1. Song Y, Wang C, Chen H. Functional limitation and associated factors in outpatients with ankylosing spondylitis in Southwest China. Clin. Rheumatol. 2017;36:871–877. doi: 10.1007/s10067-017-3563-3.
    1. Soulard J, et al. Foot-worn inertial sensors are reliable to assess spatiotemporal gait parameters in axial spondyloarthritis under single and dual task walking in axial spondyloarthritis. Sensors. 2020;20:6453. doi: 10.3390/s20226453.
    1. Soulard, J., Vaillant, J. & Vuillerme, N. Gait in patients with axial spondyloarthritis: a systematic review of the literature. Curr. Rheumatol. Rev.10.2174/1573397117666210921114949 (2021).
    1. Abbruzzese LD, et al. Effects of manual task complexity on gait parameters in school-aged children and adults. Gait Posture. 2014;40:658–663. doi: 10.1016/j.gaitpost.2014.07.017.
    1. Yang Y-R, Chen Y-C, Lee C-S, Cheng S-J, Wang R-Y. Dual-task-related gait changes in individuals with stroke. Gait Posture. 2007;25:185–190. doi: 10.1016/j.gaitpost.2006.03.007.
    1. Fino PC, et al. Detecting gait abnormalities after concussion or mild traumatic brain injury: A systematic review of single-task, dual-task, and complex gait. Gait Posture. 2018;62:157–166. doi: 10.1016/j.gaitpost.2018.03.021.
    1. Nazary-Moghadam S, et al. Gait speed is more challenging than cognitive load on the stride-to-stride variability in individuals with anterior cruciate ligament deficiency. Knee. 2018;26:88–96. doi: 10.1016/j.knee.2018.11.009.
    1. Shkuratova N, Morris ME, Huxham F. Effects of age on balance control during walking. Arch. Phys. Med. Rehabil. 2004;85:582–588. doi: 10.1016/j.apmr.2003.06.021.
    1. Smith E, Cusack T, Blake C. The effect of a dual task on gait speed in community dwelling older adults: A systematic review and meta-analysis. Gait Posture. 2016;44:250–258. doi: 10.1016/j.gaitpost.2015.12.017.
    1. Yang Q, et al. Gait change in dual task as a behavioral marker to detect mild cognitive impairment in elderly persons: A systematic review and meta-analysis. Arch. Phys. Med. Rehabil. 2020;101:1813–1821. doi: 10.1016/j.apmr.2020.05.020.
    1. Tjon SS, Geurts AC, van’t Pad Bosch P, Laan RF, Mulder T. Postural control in rheumatoid arthritis patients scheduled for total knee arthroplasty. Arch. Phys. Med. Rehabil. 2000;81:1489–1493. doi: 10.1053/apmr.2000.9627.
    1. Madsen OR. Stability of fatigue, pain, patient global assessment and the Bath Ankylosing Spondylitis Functional Index (BASFI) in spondyloarthropathy patients with stable disease according to the Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) Rheumatol. Int. 2018;38:425–432. doi: 10.1007/s00296-017-3920-1.
    1. Sieper J, et al. The Assessment of SpondyloArthritis international Society (ASAS) handbook: A guide to assess spondyloarthritis. Ann. Rheum. Dis. 2009;68:1–44. doi: 10.1136/ard.2008.097774.
    1. van der Linden S, Valkenburg HA, Cats A. Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis Rheum. 1984;27:361–368. doi: 10.1002/art.1780270401.

Source: PubMed

3
Předplatit