A randomized cross-over trial to define neurophysiological correlates of AV-101 N-methyl-D-aspartate receptor blockade in healthy veterans

Nicholas Murphy, Nithya Ramakrishnan, Bylinda Vo-Le, Brittany Vo-Le, Mark A Smith, Tabish Iqbal, Alan C Swann, Sanjay J Mathew, Marijn Lijffijt, Nicholas Murphy, Nithya Ramakrishnan, Bylinda Vo-Le, Brittany Vo-Le, Mark A Smith, Tabish Iqbal, Alan C Swann, Sanjay J Mathew, Marijn Lijffijt

Abstract

The kynurenine pathway (KP) is a strategic metabolic system that combines regulation of neuronal excitability via glutamate receptor function and neuroinflammation via other KP metabolites. This pathway has great promise in treatment of depression and suicidality. The KP modulator AV-101 (4-chlorokynurenine, 4-Cl-KYN), an oral prodrug of 7-chlorokynurenic acid (7-Cl-KYNA), an N-methyl-D-aspartate receptor (NMDAR) glycine site antagonist, and of 4-chloro-3-hydroxyanthranilic acid (4-Cl-3-HAA), a suppressor of NMDAR agonist quinolinic acid (QUIN), is a promising potential antidepressant that targets glutamate functioning via the KP. However, a recent placebo-controlled clinical trial of AV-101 in depression found negative results. This raises the question of whether AV-101 can penetrate the brain and engage the NMDAR and KP effectively. To address this problem, ten healthy US military veterans (mean age = 32.6 years ± 6.11; 1 female) completed a phase-1 randomized, double-blind, placebo-controlled, crossover study to examine dose-related effects of AV-101 (720 and 1440 mg) on NMDAR engagement measured by γ-frequency band auditory steady-state response (40 Hz ASSR) and resting EEG. Linear mixed models revealed that 1440 mg AV-101, but not 720 mg, increased 40 Hz ASSR and 40 Hz ASSR γ-inter-trial phase coherence relative to placebo. AV-101 also increased 4-Cl-KYN, 7-Cl-KYNA, 4-Cl-3-HAA, 3-HAA, and KYNA in a dose-dependent manner, without affecting KYN and QUIN. AV-101 was safe and well tolerated. These results corroborate brain target engagement of 1440 mg AV-101 in humans, consistent with blockade of interneuronal NMDAR blockade. Future studies should test higher doses of AV-101 in depression. Suicidal behavior, which has been associated with high QUIN and low KYNA, is also a potential target for AV-101.

Figures

Fig. 1. Summary of the measurements of…
Fig. 1. Summary of the measurements of γ-oscillations relative to AV-101 administration.
a 40 Hz ASSR γ-power at hourly intervals, displayed relative to baseline. b Grand average (across time) time-frequency power plot of the response to 40 Hz ASSR presentation for placebo, low, and high doses. c 40 Hz ASSR γ-inter-trial phase coherence (ITPC) at hourly intervals, displayed relative to baseline. d Grand average (across time) time-frequency ITPC plot of the response to 40 Hz ASSR presentation for placebo, low, and high doses. e Change in 10*log10 resting γ-power relative to baseline. f Resting-state power spectral density plot averaged across time, for placebo, low, and high doses.
Fig. 2. A summary of the blood…
Fig. 2. A summary of the blood metabolite findings with respect to their position on the microglial element of the kynurenine pathway.
Concentrations are displayed corrected to the baseline timepoint measurement. Variations in the concentration of metabolites during the placebo condition reflect diurnal fluctuations.
Fig. 3. A summary of the blood…
Fig. 3. A summary of the blood metabolite findings with respect to their position on kynurenine pathway.
Concentrations are displayed corrected to the baseline timepoint measurement.

References

    1. Kiss C, Ceresoli-Borroni G, Guidetti P, Zielke CL, Zielke HR, Schwarcz R. Kynurenate production by cultured human astrocytes. J Neural Transm. 2003;110:1–14. doi: 10.1007/s00702-002-0770-z.
    1. Salituro FG, Tomlinson RC, Baron BM, Palfreyman MG, McDonald IA, Schmidt W, et al. Enzyme-activated antagonists of the strychnine-insensitive glycine/NMDA receptor. J Med Chem. 1994;37:334–6. doi: 10.1021/jm00029a003.
    1. Kleckner NW, Dingledine R. Selectivity of quinoxalines and kynurenines as antagonists of the glycine site on N-methyl-D-aspartate receptors. Mol Pharm. 1989;36:430–6.
    1. Pullan LM, Powel RJ. Comparison of binding at strychnine-sensitive (inhibitory glycine receptor) and strychnine-insensitive (N-methyl-D-aspartate receptor) glycine binding sites. Neurosci Lett. 1992;148:199–201. doi: 10.1016/0304-3940(92)90838-X.
    1. Kemp JA, Foster AC, Leeson PD, Priestley T, Tridgett R, Iversen LL, et al. 7-Chlorokynurenic acid is a selective antagonist at the glycine modulatory site of the N-methyl-D-aspartate receptor complex. Proc Natl Acad Sci USA. 1988;85:6547–50. doi: 10.1073/pnas.85.17.6547.
    1. Guidetti P, Wu HQ, Schwarcz R. In situ produced 7-chlorokynurenate provides protection against quinolinate- and malonate-induced neurotoxicity in the rat striatum. Exp Neurol. 2000;163:123–30. doi: 10.1006/exnr.1999.7284.
    1. Walsh JL, Wu HQ, Ungerstedt U, Schwarcz R. 4-Chloro-3-hydroxyanthranilate inhibits quinolinate production in the rat hippocampus in vivo. Brain Res Bull. 1994;33:513–6. doi: 10.1016/0361-9230(94)90076-0.
    1. Zanos P, Piantadosi SC, Wu H-Q, Pribut HJ, Dell MJ, Can A, et al. The prodrug 4-chlorokynurenine causes ketamine-like antidepressant effects, but not side effects, by NMDA/GlycineB-site inhibition. J Pharm Exp Ther. 2015;355:76–85. doi: 10.1124/jpet.115.225664.
    1. Park LT, Kadriu B, Gould TD, Zanos P, Greenstein D, Evans JW, et al. A randomized trial of the N-methyl-d-aspartate receptor glycine site antagonist prodrug 4-chlorokynurenine in treatment-resistant depression. Int. J. Neuropsychopharmacol. 2020;23:417–25.
    1. Sullivan EM, Timi P, Hong LE, O’Donnell P. Effects of NMDA and GABA-A receptor antagonism on auditory steady-state synchronization in awake behaving rats. Int J Neuropsychopharmacol. 2015;18:pyu118. doi: 10.1093/ijnp/pyu118.
    1. Sullivan EM, Timi P, Hong LE, O’Donnell P. Reverse translation of clinical electrophysiological biomarkers in behaving rodents under acute and chronic NMDA receptor antagonism. Neuropsychopharmacology. 2015;40:719–27. doi: 10.1038/npp.2014.228.
    1. Williams S, Boksa P. Gamma oscillations and schizophrenia. J Psychiatry Neurosci JPN. 2010;35:75–77. doi: 10.1503/jpn.100021.
    1. Homayoun H, Moghaddam B. NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. J Neurosci. 2007;27:11496–500. doi: 10.1523/JNEUROSCI.2213-07.2007.
    1. Carlén M, Meletis K, Siegle JH, Cardin JA, Futai K, Vierling-Claassen D, et al. A critical role for NMDA receptors in parvalbumin interneurons for gamma rhythm induction and behavior. Mol Psychiatry. 2012;17:537–48. doi: 10.1038/mp.2011.31.
    1. Sivarao DV, Chen P, Senapati A, Yang Y, Fernandes A, Benitex Y, et al. 40 Hz auditory steady-state response is a pharmacodynamic biomarker for cortical NMDA receptors. Neuropsychopharmacology. 2016;41:2232–40. doi: 10.1038/npp.2016.17.
    1. Plourde G, Baribeau J, Bonhomme V. Ketamine increases the amplitude of the 40-Hz auditory steady-state response in humans. Br J Anaesth. 1997;78:524–9. doi: 10.1093/bja/78.5.524.
    1. Cho RY, Walker CP, Polizzotto NR, Wozny TA, Fissell C, Chen C-MA, et al. Development of sensory gamma oscillations and cross-frequency coupling from childhood to early adulthood. Cereb Cortex. 2015;25:1509–18. doi: 10.1093/cercor/bht341.
    1. O’Donnell BF, Vohs JL, Krishnan GP, Rass O, Hetrick WP, Morzorati SL. The auditory steady-state response (ASSR): a translational biomarker for schizophrenia. Suppl Clin Neurophysiol. 2013;62:101–12. doi: 10.1016/B978-0-7020-5307-8.00006-5.
    1. Williams LM. Defining biotypes for depression and anxiety based on large-scale circuit dysfunction: a theoretical review of the evidence and future directions for clinical translation. Depress Anxiety. 2017;34:9–24. doi: 10.1002/da.22556.
    1. Fitzgerald PJ, Watson BO. Gamma oscillations as a biomarker for major depression: an emerging topic. Transl Psychiatry. 2018;8:177. doi: 10.1038/s41398-018-0239-y.
    1. Murphy N, Ramakrishnan N, Walker CP, Polizzotto NR, Cho RY. Intact Auditory cortical cross-frequency coupling in early and chronic schizophrenia. Front Psychiatry. 2020;11:507. doi: 10.3389/fpsyt.2020.00507.
    1. Muthukumaraswamy SD, Shaw AD, Jackson LE, Hall J, Moran R, Saxena N. Evidence that subanesthetic doses of ketamine cause sustained disruptions of NMDA and AMPA-mediated frontoparietal connectivity in humans. J Neurosci. 2015;35:11694–706.. doi: 10.1523/JNEUROSCI.0903-15.2015.
    1. Goonawardena A, Heiss J, Glavis-Bloom C, et al. Alterations in high-frequency neuronal oscillations in a cynomolgus macaque test of sustained attention following NMDA receptor antagonism. Neuropsychopharmacology. 2016;41:1319–28. doi: 10.1038/npp.2015.281.
    1. de la Salle S, Choueiry J, Shah D, Bowers H, McIntosh J, Ilivitsky V, et al. Effects of ketamine on resting-state EEG activity and their relationship to perceptual/dissociative symptoms in healthy humans. Front Pharmacol. 2016;7:348.
    1. Blain-Moraes S, Lee U, Ku S, Noh G, Mashour GA. Electroencephalographic effects of ketamine on power, cross-frequency coupling, and connectivity in the alpha bandwidth. Front Syst Neurosci. 2014;8:114. doi: 10.3389/fnsys.2014.00114.
    1. Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E. The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry. 1998;59:22–33.
    1. Wallace M, White A, Grako KA, Lane R, Cato AJ, Snodgrass HR. Randomized, double-blind, placebo-controlled, dose-escalation study: Investigation of the safety, pharmacokinetics, and antihyperalgesic activity of l-4-chlorokynurenine in healthy volunteers. Scand J Pain. 2017;17:243–51. doi: 10.1016/j.sjpain.2017.05.004.
    1. Heuchert JP, McNair DM. Profile of Mood States 2nd Edition (POMS 2). MHS, Inc.; 2012.
    1. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134:9–21. doi: 10.1016/j.jneumeth.2003.10.009.
    1. Hiyoshi T, Kambe D, Karasawa J, Chaki S. Differential effects of NMDA receptor antagonists at lower and higher doses on basal gamma band oscillation power in rat cortical electroencephalograms. Neuropharmacology. 2014;85:384–96. doi: 10.1016/j.neuropharm.2014.05.037.
    1. Voytek B, Kramer MA, Case J, Lepage KQ, Tempesta ZR, Knight RT, et al. Age-related changes in 1/f neural electrophysiological noise. J Neurosci. 2015;35:13257–65. doi: 10.1523/JNEUROSCI.2332-14.2015.
    1. Freeman WJ, Zhai J. Simulated power spectral density (PSD) of background electrocorticogram (ECoG) Cogn Neurodyn. 2009;3:97–103. doi: 10.1007/s11571-008-9064-y.
    1. Voytek B, Knight RT. Dynamic network communication as a unifying neural basis for cognition, development, aging, and disease. Biol Psychiatry. 2015;77:1089–97. doi: 10.1016/j.biopsych.2015.04.016.
    1. Steiner J, Walter M, Gos T, Guillemin GJ, Bernstein H-G, Sarnyai Z, et al. Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: evidence for an immune-modulated glutamatergic neurotransmission? J Neuroinflamm. 2011;8:94. doi: 10.1186/1742-2094-8-94.
    1. Erhardt S, Lim CK, Linderholm KR, Janelidze S, Lindqvist D, Samuelsson M, et al. Connecting inflammation with glutamate agonism in suicidality. Neuropsychopharmacology. 2013;38:743–52. doi: 10.1038/npp.2012.248.
    1. Bay-Richter C, Linderholm KR, Lim CK, Samuelsson M, Träskman-Bendz L, Guillemin GJ, et al. A role for inflammatory metabolites as modulators of the glutamate N-methyl-D-aspartate receptor in depression and suicidality. Brain Behav Immun. 2015;43:110–7. doi: 10.1016/j.bbi.2014.07.012.
    1. Clark SM, Pocivavsek A, Nicholson JD, Notarangelo FM, Langenberg P, McMahon RP, et al. Reduced kynurenine pathway metabolism and cytokine expression in the prefrontal cortex of depressed individuals. J Psychiatry Neurosci. 2016;41:386–94. doi: 10.1503/jpn.150226.
    1. Colabroy KL, Zhai H, Li T, Ge Y, Zhang Y, Liu A, et al. The mechanism of inactivation of 3-hydroxyanthranilate-3,4-dioxygenase by 4-chloro-3-hydroxyanthranilate. Biochemistry. 2005;44:7623–31. doi: 10.1021/bi0473455.
    1. Wu HQ, Salituro FG, Schwarcz R. Enzyme-catalyzed production of the neuroprotective NMDA receptor antagonist 7-chlorokynurenic acid in the rat brain in vivo. Eur J Pharm. 1997;319:13–20. doi: 10.1016/S0014-2999(96)00829-1.
    1. Hokari M, Wu HQ, Schwarcz R, Smith QR. Facilitated brain uptake of 4-chlorokynurenine and conversion to 7-chlorokynurenic acid. Neuroreport. 1996;8:15–18. doi: 10.1097/00001756-199612200-00004.
    1. Naritsin DB, Saito K, Markey SP, Chen CY, Heyes MP. Metabolism of L-tryptophan to kynurenate and quinolinate in the central nervous system: effects of 6-chlorotryptophan and 4-chloro-3-hydroxyanthranilate. J Neurochem. 1995;65:2217–26. doi: 10.1046/j.1471-4159.1995.65052217.x.
    1. Yates JR, Heyes MP, Blight AR. 4-chloro-3-hydroxyanthranilate reduces local quinolinic acid synthesis, improves functional recovery, and preserves white matter after spinal cord injury. J Neurotrauma. 2006;23:866–81. doi: 10.1089/neu.2006.23.866.
    1. Saito K, Markey SP, Heyes MP. 6-Chloro-D,L-tryptophan, 4-chloro-3-hydroxyanthranilate and dexamethasone attenuate quinolinic acid accumulation in brain and blood following systemic immune activation. Neurosci Lett. 1994;178:211–5. doi: 10.1016/0304-3940(94)90761-7.

Source: PubMed

3
Předplatit