Treatment Options for COVID-19: A Review

Mukarram Jamat Ali, Muhammad Hanif, Muhammad Adnan Haider, Muhammad Umer Ahmed, Fnu Sundas, Arham Hirani, Izhan Ali Khan, Khurram Anis, Amin H Karim, Mukarram Jamat Ali, Muhammad Hanif, Muhammad Adnan Haider, Muhammad Umer Ahmed, Fnu Sundas, Arham Hirani, Izhan Ali Khan, Khurram Anis, Amin H Karim

Abstract

Background: The recent COVID-19 pandemic sweeping the globe has caused great concern worldwide. Due to the limited evidence available on the dynamics of the virus and effective treatment options available, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had a huge impact in terms of morbidity and mortality. The economic impact is still to be assessed. Aims: The purpose of this article is to review the evidence for the multiple treatment options available, to consider the future of this global pandemic, and to identify some potential options that could revolutionize the treatment of COVID-19. Moreover, this article underscores the sheer importance of repurposing some of the available antiviral and antimicrobial agents that have long been in use so as to have an effective and expeditious response to this widespread pandemic and the need to conduct a multicenter global randomized controlled trial to find an effective single antiviral agent or a cocktail of available antimicrobial agents. Method: We thoroughly searched and reviewed various case reports, retrospective analyses, and in vitro studies published in PubMed, EMBASE, and Google Scholar regarding the treatment options used for SARS-CoV, MERS-CoV, and SARS-CoV-2 since its outbreak in an attempt to highlight treatments with the most promising results. Conclusion: We are currently facing one of the worst pandemics in history. Although SARS-CoV-2 is associated with a lower mortality rate than are SARS-CoV and MERS-CoV, its higher infectivity is making it a far more serious threat. Unfortunately, no vaccine against SARS-CoV-2 or effective drug regimen for COVID-19 currently exists. Drug repurposing of available antiviral agents may provide a respite; moreover, a cocktail of antiviral agents may be helpful in treating this disease. Here, we have highlighted a few available antimicrobial agents that could be very effective in treating COVID-19; indeed, a number of trials are underway to detect and confirm the efficacy of these agents.

Keywords: COVID-19; SARS-CoV-2; chloroquine/hydroxychloroquine; immunoglobulin; ivermectin; remdesivir; tocilizumab.

Copyright © 2020 Ali, Hanif, Haider, Ahmed, Sundas, Hirani, Khan, Anis and Karim.

References

    1. Ahmed SF, Quadeer AA, McKay MR. Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses. (2020) 12:254. 10.3390/v12030254
    1. Fantini J, Di Scala C, Chahinian H, Yahi N. Structural and molecular modelling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection. Int J Antimicrob Agents. (2020) 55:105960. 10.1016/j.ijantimicag.2020.105960
    1. Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, et al. . In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis. (2020) 9:ciaa237. 10.1093/cid/ciaa237. [Epub ahead of print].
    1. Weston S, Haupt R, Logue J, Matthews K, Frieman M. FDA approved drugs with broad anti-coronaviral activity inhibit SARS-CoV-2 in vitro. BioRxiv. (2020). 10.1101/2020.03.25.008482
    1. Dowall SD, Bosworth A, Watson R, Bewley K, Taylor I, Rayner E, et al. . Chloroquine inhibited Ebola virus replication in vitro but failed to protect against infection and disease in the in vivo guinea pig model. J Gen Virol. (2015) 96:3484–92. 10.1099/jgv.0.000309
    1. de Lamballerie X, Boisson V, Reynier JC, Enault S, Charrel RN, Flahault A, et al. . On chikungunya acute infection and chloroquine treatment. Vector Borne Zoonotic Dis. (2008) 8:837–9. 10.1089/vbz.2008.0049
    1. Paton NI, Lee L, Xu Y, Ooi EE, Cheung YB, Archuleta S, et al. . Chloroquine for influenza prevention: a randomised, double-blind, placebo controlled trial. Lancet Infect Dis. (2011) 11:677–83. 10.1016/S1473-3099(11)70065-2
    1. Sperber K, Louie M, Kraus T, Proner J, Sapira E, Lin S, et al. . Hydroxychloroquine treatment of patients with human immunodeficiency virus type 1. Clin Ther. (1995) 17:622–36. 10.1016/0149-2918(95)80039-5
    1. Tricou V, Minh NN, van TP, Lee SJ, Farrar J, Wills B, et al. . A randomized controlled trial of chloroquine for the treatment of dengue in Vietnamese adults. PLoS Negl Trop Dis. (2012) 4:e785. 10.1371/annotation/8683caec-b309-46d7-bc47-dc9cc27108e4
    1. Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, et al. . Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. (2020) 56:105949. 10.1016/j.ijantimicag.2020.105949
    1. Gao J, Tian Z, Yang X. Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends. (2020) 14:72–3. 10.5582/bst.2020.01047
    1. Nord JE, Shah PK, Rinaldi RZ, Weisman MH. Hydroxychloroquine cardiotoxicity in systemic lupus erythematosus: a report of 2 cases and review of the literature. Semin Arthritis Rheum. (2004) 33:336–51. 10.1016/j.semarthrit.2003.09.012
    1. Schilling W. National Library of Medicine (U.S) (2020). March, 11-. Identifier: NCT04303507 chloroquine/Hydroxychloroquine Prevention of Coronavirus Disease (COVID-19) in the Healthcare Setting (COPCOV). Available online at: (accessed Jun 24, 2020).
    1. Min JY, Jang YJ. Macrolide therapy in respiratory viral infections. Mediators Inflamm. (2012) 2012:649570. 10.1155/2012/649570
    1. Ohe M, Shida H, Jodo S, Kusunoki Y, Seki M, Furuya K, et al. . Macrolide treatment for COVID-19: Will this be the way forward? Biosci Trends. (2020) 14:159–60. 10.5582/bst.2020.03058
    1. . National Library of Medicine (U.S) (2020). March, 25-. Identifier: NCT04321278 Safety and Efficacy of hydroxychloroquine associated with azithromycin in SARS-CoV-2 virus (coalition Covid-19 Brasil II). Available online at: (accessed Jun 24, 2020).
    1. Warren TK, Jordan R, Lo MK, Ray AS, Mackman RL, Soloveva V, et al. . Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature. (2016) 531:381–5. 10.1038/nature17180
    1. Sheahan TP, Sims AC, Leist SR, Schäfer A, Won J, Brown AJ, et al. . Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun. (2020) 11:222. 10.1038/s41467-019-13940-6
    1. Holshue ML, deBolt C, Lindquist S, Lofy KH, Wiesman J, Bruc H, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med. (2020) 382:929–36. 10.1056/NEJMoa2001191
    1. . National Library of Medicine (U.S) (2020). Feb, 05-. Identifier: NCT04252664 A Trial of Remdesivir in Adults with Mild and Moderate COVID-19. Available online at: (accessed June 24, 2020).
    1. . National Library of Medicine (U.S) (2020). Feb, 06-. Identifier: NCT04257656 A Trial of Remdesivir in Adults with severe COVID-19. Available from: (accessed June 24, 2020).
    1. Agostini ML, Andres EL, Sims AC, Graham RL, Sheahan TP, Lu X, et al. . Coronavirus susceptibility to the antiviral Remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. mBio. (2018) 9:e00221-18. 10.1128/mBio.00221-18
    1. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. . Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. (2020) 30:269–71. 10.1038/s41422-020-0282-0
    1. Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, et al. Remdesivir for the treatment of covid-19 - preliminary report. N Engl J Med. (2020) NEJMoa2007764 10.1056/NEJMoa2007764
    1. Cvetkovic RS, Goa KL. Lopinavir/ritonavir: a review of its use in the management of HIV infection. Drugs. (2003) 63:769–802. 10.2165/00003495-200363080-00004
    1. Chandwani A, Shuter J. Lopinavir/ritonavir in the treatment of HIV-1 infection: a review. Ther Clin Risk Manag. (2008) 4:1023–33. 10.2147/TCRM.S3285
    1. de Wilde AH, Jochmans D, Posthuma CC, Zevenhoven-Dobbe JC, van Nieuwkoop S, Bestebroer TM, et al. . Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture. Antimicrob Agents Chemother. (2014) 58:4875–84. 10.1128/AAC.03011-14
    1. Chu CM, Cheng VC, Hung IF, Wong MM, Chan KH, Chan KS, et al. . Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax. (2004) 59:252–6. 10.1136/thorax.2003.012658
    1. Chan JF, Yao Y, Yeung ML, Deng W, Bao L, Jia L, et al. . Treatment with lopinavir/ritonavir or interferon-β1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset. J Infect Dis. (2015) 212:1904–13. 10.1093/infdis/jiv392
    1. Kim UJ, Won EJ, Kee SJ, Jung SI, Jang HC. Combination therapy with lopinavir/ritonavir, ribavirin and interferon-α for middle East respiratory syndrome. Antivir Ther. (2016) 21:455–9. 10.3851/IMP3002
    1. Spanakis N, Tsiodras S, Haagmans BL, Raj VS, Pontikis K, Koutsoukou A, et al. . Virological and serological analysis of a recent Middle East respiratory syndrome coronavirus infection case on a triple combination antiviral regimen. Int J Antimicrob Agents. (2014) 44:528–32. 10.1016/j.ijantimicag.2014.07.026
    1. Choy KT, Wong AY, Kaewpreedee P, Sia SF, Chen D, Hui KPY, et al. . Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res. (2020) 178:104786. 10.1016/j.antiviral.2020.104786
    1. Jin YH, Cai L, Cheng ZS, Cheng H, Deng T, Fan Y-P, et al. . A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil Med Res. (2020) 7:4. 10.1186/s40779-020-0233-6
    1. Wang Z, Chen X, Lu Y, Chen F, Zhang W. Clinical characteristics and therapeutic procedure for four cases with 2019 novel coronavirus pneumonia receiving combined Chinese and Western medicine treatment. Biosci Trends. (2020) 14:64–8. 10.5582/bst.2020.01030
    1. Lim J, Jeon S, Shin HY, Kim MJ, Seong YM, Lee WJ, et al. Case of the index patient who caused tertiary transmission of COVID-19 infection in Korea: the application of lopinavir/ritonavir for the treatment of COVID-19 infected pneumonia monitored by quantitative RT-PCR. J Korean Med Sci. (2020) 35:e79 10.3346/jkms.2020.35.e79
    1. Kim JY, Choe PG, Oh Y, Kim J, Park SJ, Park JH, et al. . The first case of 2019. novel coronavirus pneumonia imported into Korea from Wuhan, China: implication for infection prevention and control measures. J Korean Med Sci. (2020) 35:e61. 10.3346/jkms.2020.35.e61
    1. Furuta Y, Takahashi K, Kuno-Maekawa M, Sangawa H, Uehara S, Kozaki K, et al. . Mechanism of action of T-705 against influenza virus. Antimicrob Agents Chemother. (2005) 49:981–6. 10.1128/AAC.49.3.981-986.2005
    1. Furuta Y, Komeno T, Nakamura T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc Jpn Acad Ser B Phys Biol Sci. (2017) 93:449–63. 10.2183/pjab.93.027
    1. Baranovich T, Wong SS, Armstrong J, Marjuki H, Webby RJ, Webster RG, et al. . T-705 (favipiravir) induces lethal mutagenesis in influenza A H1N1 viruses in vitro. J Virol. (2013) 87:3741–751. 10.1128/JVI.02346-12
    1. Oestereich L, Lüdtke A, Wurr S, Rieger T, Muñoz-Fontela C, Günther S. Successful treatment of advanced Ebola virus infection with T-705 (favipiravir) in a small animal model. Antiviral Res. (2014) 105:17–21. 10.1016/j.antiviral.2014.02.014
    1. Yamada K, Noguchi K, Kimitsuki K, Kaimori R, Saito N, Komeno T, et al. . Reevaluation of the efficacy of favipiravir against rabies virus using in vivo imaging analysis. Antiviral Res. (2019) 172:104641. 10.1016/j.antiviral.2019.104641
    1. Chen C, Huang J, Cheng Z, Wu J, Chen S, Zhang Y, et al. Favipiravir versus arbidol for COVID-19: a randomized clinical trial. MedRxiv [Preprint]. (2020) 10.1101/2020.03.17.20037432
    1. Du YX, Chen XP. Favipiravir: pharmacokinetics and concerns about clinical trials for 2019-nCoV infection. Clin Pharmacol Ther. (2020) 108:242–7.10.1002/cpt.1844
    1. Maag D, Castro C, Hong Z, Cameron CE. Hepatitis C virus RNA-dependent RNA polymerase (NS5B) as a mediator of the antiviral activity of ribavirin. J Biol Chem. (2001) 276:46094–8. 10.1074/jbc.C100349200
    1. Crotty S, Cameron CE, Andino R. RNA virus error catastrophe: direct molecular test by using ribavirin. Proc Natl Acad Sci USA. (2001) 98:6895–900. 10.1073/pnas.111085598
    1. Zhou S, Liu R, Baroudy BM, Malcolm BA, Reyes GR. The effect of ribavirin and IMPDH inhibitors on hepatitis C virus subgenomic replicon RNA. Virology. (2003) 310:333–42. 10.1016/S0042-6822(03)00152-1
    1. Chemello L, Cavalletto L, Bernardinello E, Guido M, Pontisso P, Alberti A. The effect of interferon alfa and ribavirin combination therapy in naive patients with chronic hepatitis C. J Hepatol. (1995) 23(Suppl. 2):8–12.
    1. Marcelin JR, Wilson JW, Razonable RR, Mayo Clinic Hematology/Oncology and Transplant Infectious Diseases Services . Oral ribavirin therapy for respiratory syncytial virus infections in moderately to severely immunocompromised patients. Transpl Infect Dis. (2014) 16:242–50. 10.1111/tid.12194
    1. Lee N, Hui D, Wu A, et al. A major outbreak of severe acute respiratory syndrome in Hong Kong. N Engl J Med. (2003) 348:1986–94. 10.1056/NEJMoa030685
    1. Booth CM, Matukas LM, Tomlinson GA, Rachlis AR, Rose DB, Dwosh HA, et al. . Clinical features and short-term outcomes of 144 patients with SARS in the greater Toronto area. JAMA. (2003) 289:2801–9. 10.1001/jama.289.21.JOC30885
    1. So LK, Lau AC, Yam LY, Cheung TMT, Poon E, Yung RWH, et al. . Development of a standard treatment protocol for severe acute respiratory syndrome. Lancet. (2003). 361:1615–7. 10.1016/S0140-6736(03)13265-5
    1. Morgenstern B, Michaelis M, Baer PC, Doerr HW, Cinatl J. Ribavirin and interferon-beta synergistically inhibit SARS-associated coronavirus replication in animal and human cell lines. Biochem Biophys Res Commun. (2005) 326:905–8. 10.1016/j.bbrc.2004.11.128
    1. Wang WK, Chen SY, Liu IJ, Kao CL, Chen HL, Chiang BL, et al. . Temporal relationship of viral load, ribavirin, interleukin (IL)-6, IL-8, and clinical progression in patients with severe acute respiratory syndrome. Clin Infect Dis. (2004) 39:1071–5. 10.1086/423808
    1. Chen F, Chan KH, Jiang Y, Kao RY, Lu HT, Fan KW, et al. . In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. J Clin Virol. (2004) 31:69–75. 10.1016/j.jcv.2004.03.003
    1. Omrani AS, Saad MM, Baig K, Bahloul A, Abdul-Matin M, Alaidaroos AY, et al. . Ribavirin and interferon alfa-2a for severe middle East respiratory syndrome coronavirus infection: a retrospective cohort study. Lancet Infect Dis. (2014) 14:1090–5. 10.1016/S1473-3099(14)70920-X
    1. Zhao Z, Zhang F, Xu M, Huang K, Zhong W, Cai W, et al. . Description and clinical treatment of an early outbreak of severe acute respiratory syndrome (SARS) in Guangzhou, PR China. J Med Microbiol. (2003) 52(Pt 8):715–20. 10.1099/jmm.0.05320-0
    1. Leong HN, Ang B, Earnest A, Teoh C, Xu W, Leo YS. Investigational use of ribavirin in the treatment of severe acute respiratory syndrome, Singapore, 2003. Trop Med Int Health. (2004) 9:923–7. 10.1111/j.1365-3156.2004.01281.x
    1. Khalid M, Al Rabiah F, Khan B, Al Mobeireek A, Butt TS, Al Mutairy E. Ribavirin and interferon-α2b as primary and preventive treatment for Middle East respiratory syndrome coronavirus: a preliminary report of two cases. Antivir Ther. (2015) 20:87–91. 10.3851/IMP2792
    1. Stockman LJ, Bellamy R, Garner P. SARS: systematic review of treatment effects. PLoS Med. (2006) 3:e343. 10.1371/journal.pmed.0030343
    1. Morra ME, van Thanh L, Kamel MG, Ghazy AA, Altibi AMA, Dat LM, et al. . Clinical outcomes of current medical approaches for middle East respiratory syndrome: a systematic review and meta-analysis. Rev Med Virol. (2018) 28:e1977. 10.1002/rmv.1977
    1. Elfiky AA. Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life Sci. (2020) 248:117477. 10.1016/j.lfs.2020.117477
    1. Dong L, Hu S, Gao J. Discovering drugs to treat coronavirus disease 2019. (COVID-19). Drug Discov Ther. (2020). 14:58–60. 10.5582/ddt.2020.01012
    1. Elfiky AA. Ribavirin, remdesivir, sofosbuvir, galidesivir, and tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): a molecular docking study. Life Sci. (2020) 253:117592. 10.1016/j.lfs.2020.117592
    1. Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res. (2020) 178:104787. 10.1016/j.antiviral.2020.104787
    1. Mastrangelo E, Pezzullo M, de Burghgraeve T, Kaptein S, Pastorino B, Dallmeier K, et al. . Ivermectin is a potent inhibitor of flavivirus replication specifically targeting NS3 helicase activity: new prospects for an old drug. J Antimicrob Chemother. (2012) 67:1884–94. 10.1093/jac/dks147
    1. Wagstaff KM, Sivakumaran H, Heaton SM, Harrich D, Jans DA. Ivermectin is a specific inhibitor of importin α/β-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus. Biochem J. (2012) 443:851–6. 10.1042/BJ20120150
    1. Tay MY, Fraser JE, Chan WK, Moreland NJ, Rathore AP, Wang C, et al. . Nuclear localization of dengue virus (DENV) 1-4 non-structural protein 5; protection against all 4 DENV serotypes by the inhibitor Ivermectin. Antiviral Res. (2013). 99:301–6. 10.1016/j.antiviral.2013.06.002
    1. Galeotti C, Kaveri SV, Bayry J. IVIG-mediated effector functions in autoimmune and inflammatory diseases. Int Immunol. (2017) 29:491–8. 10.1093/intimm/dxx039
    1. Jolles S, Sewell WA, Misbah SA. Clinical uses of intravenous immunoglobulin. Clin Exp Immunol. (2005) 142:1–11. 10.1111/j.1365-2249.2005.02834.x
    1. Kaveri SV, Maddur MS, Hegde P, Lacroix-Desmazes S, Bayry J. Intravenous immunoglobulins in immunodeficiencies: more than mere replacement therapy. Clin Exp Immunol. (2011) 164(Suppl. 2):2–5. 10.1111/j.1365-2249.2011.04387.x
    1. Bayry J, Lacroix-Desmazes S, Kazatchkine MD, Kaveri SV. Intravenous immunoglobulin for infectious diseases: back to the pre-antibiotic and passive prophylaxis era? Trends Pharmacol Sci. (2004) 25:306–10. 10.1016/j.tips.2004.04.002
    1. Ben-Nathan D, Lustig S, Tam G, Robinzon S, Segal S, Rager-Zisman B. Prophylactic and therapeutic efficacy of human intravenous immunoglobulin in treating West Nile virus infection in mice. J Infect Dis. (2003) 188:5–12. 10.1086/376870
    1. Jiang S, Hillyer C, Du L. Neutralizing antibodies against SARS-CoV-2 and other human coronaviruses. Trends Immunol. (2020) 41:355–9. 10.1016/j.it.2020.03.007
    1. Jawhara S. Could intravenous immunoglobulin collected from recovered coronavirus patients protect against COVID-19 and strengthen the immune system of new patients? Int J Mol Sci. (2020) 21:2272. 10.3390/ijms21072272
    1. Shen C, Wang Z, Zhao F, Yang Y, Li J, Yuan J, et al. . Treatment of 5 critically Ill patients with COVID-19 with convalescent plasma. JAMA. (2020) 323:1582–9. 10.1001/jama.2020.4783
    1. Roback JD, Guarner J. Convalescent plasma to treat COVID-19: possibilities and challenges. JAMA. (2020) 10.1001/jama.2020.4940. [Epub ahead of print].
    1. Russell B, Moss C, George G, Santaolalla A, Cope A, Papa S, et al. . Associations between immune-suppressive and stimulating drugs and novel COVID-19-a systematic review of current evidence. Ecancermedicalscience. (2020) 14:1022. 10.3332/ecancer.2020.1022
    1. Chihrin S, Loutfy MR. Overview of antiviral and anti-inflammatory treatment for severe acute respiratory syndrome. Expert Rev Anti Infect Ther. (2005) 3:251–62. 10.1586/14787210.3.2.251
    1. Lam CW, Chan MH, Wong CK. Severe acute respiratory syndrome: clinical and laboratory manifestations. Clin Biochem Rev. (2004) 25:121–32.
    1. Zhang X, Alekseev K, Jung K, Vlasova A, Hadya N, Saif LJ. Cytokine responses in porcine respiratory coronavirus-infected pigs treated with corticosteroids as a model for severe acute respiratory syndrome. J Virol. (2008) 82:4420–8. 10.1128/JVI.02190-07
    1. Qin YY, Zhou YH, Lu YQ, Sun F, Yang S, Harypursat V, et al. . Effectiveness of glucocorticoid therapy in patients with severe coronavirus disease 2019: protocol of a randomized controlled trial. Chin Med J (Engl). (2020). 133:1080–6. 10.1097/CM9.0000000000000791
    1. Totura AL, Bavari S. Broad-spectrum coronavirus antiviral drug discovery. Expert Opin Drug Discov. (2019) 14:397–412. 10.1080/17460441.2019.1581171
    1. Ströher U, DiCaro A, Li Y, Strong JE, Aoki F, Plummer F, et al. . Severe acute respiratory syndrome-related coronavirus is inhibited by interferon- alpha. J Infect Dis. (2004) 189:1164–7. 10.1086/382597
    1. Falzarano D, de Wit E, Martellaro C, Callison J, Munster VJ, Feldmann H. Inhibition of novel β coronavirus replication by a combination of interferon-α2b and ribavirin. Sci Rep. (2013) 3:1686. 10.1038/srep01686
    1. Falzarano D, de Wit E, Rasmussen AL, Feldmann F, Okumura A, Scott DP, et al. . Treatment with interferon-α2b and ribavirin improves outcome in MERS-CoV-infected rhesus macaques. Nat Med. (2013) 19:1313–7. 10.1038/nm.3362
    1. Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr HW. Treatment of SARS with human interferons. Lancet. (2003). 362:293–4. 10.1016/S0140-6736(03)13973-6
    1. Sallard E, Lescure FX, Yazdanpanah Y, Mentre F, Peiffer-Smadja N. Type 1 interferons as a potential treatment against COVID-19. Antiviral Res. (2020) 178:104791. 10.1016/j.antiviral.2020.104791
    1. Kopecky-Bromberg SA, Martínez-Sobrido L, Frieman M, Baric RA, Palese P. Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J Virol. (2007) 81:548–57. 10.1128/JVI.01782-06
    1. Lokugamage KG, Hage A, Schindewolf C, Rajsbaum R, Menachery VD. SARS-CoV-2 is sensitive to type I interferon pretreatment. bioRxiv [Preprint]. (2020). 10.1101/2020.03.07.982264
    1. Shen KL, Yang YH. Diagnosis and treatment of 2019 novel coronavirus infection in children: a pressing issue. World J Pediatr. (2020) 16:219–21. 10.1007/s12519-020-00344-6. [Epub ahead of print].
    1. Zeng YM, Xu XL, He XQ, Tang SQ, Li Y, Huang YQ, et al. . Comparative effectiveness and safety of ribavirin plus interferon-alpha, lopinavir/ritonavir plus interferon-alpha, and ribavirin plus lopinavir/ritonavir plus interferon-alpha in patients with mild to moderate novel coronavirus disease 2019: study protocol. Chin Med J (Engl). (2020) 133:1132–4. 10.1097/CM9.0000000000000790
    1. Liu B, Li M, Zhou Z, Guan X, Xiang Y. Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 (COVID-19)-induced cytokine release syndrome (CRS)? J Autoimmun. (2020) 111:102452. 10.1016/j.jaut.2020.102452
    1. Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. (2017) 39:529–39. 10.1007/s00281-017-0629-x
    1. Zhou Y, Fu B, Zheng X, Wang D, Zhao C, Qi Y, et al. Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients. Natl Sci Rev. (2020) 7:998–1002. 10.1093/nsr/nwaa041
    1. Chen L, Liu HG, Liu W, Liu J, Liu K, Shang J, et al. [Analysis of clinical features of 29 patients with 2019 novel coronavirus pneumonia]. Zhonghua Jie He He Hu Xi Za Zhi. (2020). 43:E005 10.3760/cma.j.issn.1001-0939.2020.0005
    1. Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. (2020) 46:846–8. 10.1007/s00134-020-05991-x
    1. Zhang C, Wu Z, Li JW, Zhao H, Wang GQ. Cytokine release syndrome in severe COVID-19: interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. Int J Antimicrob Agents. (2020) 55:105954. 10.1016/j.ijantimicag.2020.105954
    1. Xu X, Han M, Li T, Sun W, Wang D, Fu B, et al. . Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci USA. (2020) 117:10970–5. 10.1073/pnas.2005615117
    1. Luo P, Liu Y, Qiu L, Liu X, Liu D, Li J. Tocilizumab treatment in COVID-19: a single center experience. J Med Virol. (2020) 92:814–8. 10.1002/jmv.25801
    1. Zhang X, Song K, Tong F, Fei M, Guo H, Lu Z, et al. . First case of COVID-19 in a patient with multiple myeloma successfully treated with tocilizumab. Blood Adv. (2020) 4:1307–10. 10.1182/bloodadvances.2020001907
    1. Michot JM, Albiges L, Chaput N, Saada V, Pommeret F, Griscelli F, et al. . Tocilizumab, an anti-IL-6 receptor antibody, to treat COVID-19-related respiratory failure: a case report. Ann Oncol. (2020) 31:961–4. 10.1016/j.annonc.2020.03.300
    1. de Luna G, Habibi A, Deux JF, Colard M, Pham Hung d&#39, Alexandry d&#39, et al. . Rapid and severe Covid-19 pneumonia with severe acute chest syndrome in a sickle cell patient successfully treated with tocilizumab. Am J Hematol. (2020) 95:876–8. 10.1002/ajh.25833
    1. . National Library of Medicine (U.S) (2020). Identifier: NCT04341389 A phase II Trial to evaluate the Recombinant Vaccine for COVID-19 (Adenovirus Vector) (CTII-nCoV). Available online at: (accessed June 24, 2020).
    1. . National Library of Medicine (U.S) (2020). Identifier: NCT04400838 Investigating a Vaccine against COVID-19. Available online at: (accessed June 24, 2020).

Source: PubMed

3
Předplatit