Brain microstructural antecedents of visual difficulties in infants born very preterm

Rahul Chandwani, Karen Harpster, Julia E Kline, Ved Mehta, Hui Wang, Stephanie L Merhar, Terry L Schwartz, Nehal A Parikh, Rahul Chandwani, Karen Harpster, Julia E Kline, Ved Mehta, Hui Wang, Stephanie L Merhar, Terry L Schwartz, Nehal A Parikh

Abstract

Infants born very preterm (VPT) are at risk of later visual problems. Although neonatal screening can identify ophthalmologic abnormalities, subtle perinatal brain injury and/or delayed brain maturation may be significant contributors to complex visual-behavioral problems. Our aim was to assess the micro and macrostructural antecedents of early visual-behavioral difficulties in VPT infants by using diffusion MRI (dMRI) at term-equivalent age. We prospectively recruited a cohort of 262 VPT infants (≤32 weeks gestational age [GA]) from five neonatal intensive care units. We obtained structural and diffusion MRI at term-equivalent age and administered the Preverbal Visual Assessment (PreViAs) questionnaire to parents at 3-4 months corrected age. We used constrained spherical deconvolution to reconstruct nine white matter tracts of the visual pathways with high reliability and performed fixel-based analysis to derive fiber density (FD), fiber-bundle cross-section (FC), and combined fiber density and cross-section (FDC). In multiple logistic regression analyses, we related these tract metrics to visual-behavioral function. Of 262 infants, 191 had both high-quality dMRI and completed PreViAs, constituting the final cohort: mean (SD) GA was 29.3 (2.4) weeks, 90 (47.1%) were males, and postmenstrual age (PMA) at MRI was 42.8 (1.3) weeks. FD and FC of several tracts were altered in infants with (N = 59) versus those without retinopathy of prematurity (N = 132). FDC of the left posterior thalamic radiations (PTR), left inferior longitudinal fasciculus (ILF), right superior longitudinal fasciculus (SLF), and left inferior fronto-occipital fasciculus (IFOF) were significantly associated with visual attention scores, prior to adjusting for confounders. After adjustment for PMA at MRI, GA, severe retinopathy of prematurity, and total brain volume, FDC of the left PTR, left ILF, and left IFOF remained significantly associated with visual attention. Early visual-behavioral difficulties in VPT infants are preceded by micro and macrostructural abnormalities in several major visual pathways at term-equivalent age.

Keywords: Cerebral visual impairment; Diffusion MRI; Neonatology; Very preterm; White matter.

Conflict of interest statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.

Figures

Fig. 1
Fig. 1
Single tissue constrained spherical deconvolution (CSD) fixel template and whole brain tractograph displayed in MRtrix3. (A) Coronal view of the CSD fixel template demonstrating the fiber orientation distribution (fOD) for all brain voxels (B) Axial view of the same fixel template as in A with a region of interest placed in the right corona radiata. (C) Magnified view of the fOD voxels from the region of interest highlighted in B. (D-F) Whole-brain tractograph produced from the fOD template to segment and generate all white matter tracts in coronal, axial, and sagittal orientations, respectively. Color indicates fiber trajectory: green (anterior to posterior), red (left to right), and blue/purple (superior to inferior) fibers. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 2
Fig. 2
Segmented White Matter Tracts of the Visual Pathways in Sagittal and Axial Orientations. A&B) posterior thalamic radiations; C&D) inferior longitudinal fasciculus; E&F) inferior fronto-occipital fasciculus; G&H) splenium of the corpus callosum; I&J) superior longitudinal fasciculus. Color indicates fiber trajectory: green (anterior to posterior), red (left to right), and blue/purple (superior to inferior) fibers. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

References

    1. Alexander A.L., Hasan K.M., Lazar M., Tsuruda J.S., Parker D.L. Analysis of partial volume effects in diffusion-tensor MRI. Magn. Reson. Med. 2001;45(5):770–780. doi: 10.1002/mrm.1105.
    1. Althouse A.D. Adjust for Multiple Comparisons? It’s Not That Simple. Ann. Thorac. Surg. 2016;101(5):1644–1645. doi: 10.1016/j.athoracsur.2015.11.024.
    1. Ashtari M. Anatomy and functional role of the inferior longitudinal fasciculus: a search that has just begun. Dev. Med. Child Neurol. 2012;54:6–7. doi: 10.1111/j.1469-8749.2011.04122.x.
    1. Auriat A.M., Borich M.R., Snow N.J., Wadden K.P., Boyd L.A. Comparing a diffusion tensor and non-tensor approach to white matter fiber tractography in chronic stroke. NeuroImage: Clinical. 2015;7:771–781. doi: 10.1016/j.nicl.2015.03.007.
    1. Bassi L., Ricci D., Volzone A., Allsop J.M., Srinivasan L., Pai A., Ribes C., Ramenghi L.A., Mercuri E., Mosca F., Edwards A.D., Cowan F.M., Rutherford M.A., Counsell S.J. Probabilistic diffusion tractography of the optic radiations and visual function in preterm infants at term equivalent age. Brain. 2008;131(2):573–582.
    1. Berman J.I., Glass H.C., Miller S.P., Mukherjee P., Ferriero D.M., Barkovich A.J., Vigneron D.B., Henry R.G. Quantitative fiber tracking analysis of the optic radiation correlated with visual performance in premature newborns. AJNR Am. J. Neuroradiol. 2009;30(1):120–124.
    1. Chandwani R., Kline J.E., Harpster K., Tkach J., Parikh N.A. Early micro- and macrostructure of sensorimotor tracts and development of cerebral palsy in high risk infants. Hum. Brain Mapp. 2021;42(14):4708–4721.
    1. Cioni G., Bertuccelli B., Boldrini A., Canapicchi R., Fazzi B., Guzzetta A., Mercuri E. Correlation between visual function, neurodevelopmental outcome, and magnetic resonance imaging findings in infants with periventricular leukomalacia. Arch. Dis. Child. Fetal Neonatal Ed. 2000;82(2):F134–F140. doi: 10.1136/fn.82.2.f134.
    1. Cioni G., Fazzi B., Coluccini M., Bartalena L., Boldrini A., van Hof-van Duin J. Cerebral visual impairment in preterm infants with periventricular leukomalacia. Pediatr. Neurol. 1997;17(4):331–338. doi: 10.1016/s0887-8994(97)00152-5.
    1. Committee on Practice and Ambulatory Medicine, Section on Ophthalmology. American Association of Certified Orthoptists, American Association for Pediatric Ophthalmology and Strabismus, & American Academy of Ophthalmology (2003). Eye examination in infants, children, and young adults by pediatricians. Pediatrics, 111(4 Pt 1), 902–907. .
    1. Cotter S.A., Cyert L.A., Miller J.M., Quinn G.E., National Expert Panel to the National Center for Children’s Vision and Eye Health Vision screening for children 36 to <72 months: recommended practices. Optometry and Vision Science. 2015;92(1):6–16. doi: 10.1097/OPX.0000000000000429.
    1. Dhollander T., Clemente A., Singh M., Boonstra F., Civier O., Duque J., Caeyenberghs K. Fixel-based Analysis of Diffusion MRI: Methods, Applications, Challenges and Opportunities. NeuroImage. 2021;241 doi: 10.31219/.
    1. Dick S.A., Tremblay P. Beyond the arcuate fasciculus: consensus and controversy in the connectional anatomy of language. Brain. 2012;135(12):3529–3550. doi: 10.1093/brain/aws222.
    1. Fazzi E., Bova S.M., Uggetti C., Signorini S.G., Bianchi P.E., Maraucci I., Zoppello M., Lanzi G. Visual-perceptual impairment in children with periventricular leukomalacia. Brain Dev. 2004;26(8):506–512.
    1. Fazzi E., Signorini S.G., Bova S.M., La Piana R., Ondei P., Bertone C., Misefari W., Bianchi P.E. Spectrum of visual disorders in children with cerebral visual impairment. J. Child Neurol. 2007;22(3):294–301.
    1. García-Ormaechea I., González I., Duplá M., Andres E., Pueyo V. Validation of the Preverbal Visual Assessment (PreViAs) questionnaire. Early Human Dev. 2014;90(10):635–638. doi: 10.1016/j.earlhumdev.2014.08.002.
    1. Gazzaniga M.S., Freedman H. Observations on visual processes after posterior callosal section. Neurology. 1973;23(10):1126–1130. doi: 10.1212/WNL.23.10.1126.
    1. Goodale M.A., Milner A.D. Separate visual pathways for perception and action. Trends Neurosci. 1992;15:20–25. doi: 10.1016/0166-2236(92)90344-8.
    1. Groppo M., Ricci D., Bassi L., Merchant N., Doria V., Arichi T., Allsop J.M., Ramenghi L., Fox M.J., Cowan F.M., Counsell S.J., Edwards A.D. Development of the optic radiations and visual function after premature birth. Cortex; a journal devoted to the study of the nervous system and behavior. 2014;56:30–37.
    1. Guzzetta A., Cioni G., Cowan F., Mercuri E. Visual disorders in children with brain lesions: 1. Maturation of visual function in infants with neonatal brain lesions: correlation with neuroimaging. EJPN. 2001;5(3):107–114. doi: 10.1053/ejpn.2001.0480.
    1. Harpster K., Merhar S., Illapani V.S., Peyton C., Kline-Fath B., Parikh N. Associations Between Early Structural Magnetic Resonance Imaging, Hammersmith Infant Neurological Examination, and General Movements Assessment in Infants Born Very Preterm. J. Pediatrics. 2021;232:80–86.e2. doi: 10.1016/j.jpeds.2020.12.056.
    1. Herbet G., Zemmoura I., Duffau H. Functional Anatomy of the Inferior Longitudinal Fasciculus: From Historical Reports to Current Hypotheses. Front. Neuroanat. 2018;12:77. doi: 10.3389/fnana.2018.00077.
    1. Jakobson, L.S., & Taylor, N.M. (2009). Differential vulnerability of cerebral visual functions in children born very prematurely. Acta paediatrica (Oslo, Norway: 1992), 98(2), 239-41. .
    1. Jeurissen B., Leemans A., Tournier J.D., Jones D.K., Sijbers J. Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging. Hum. Brain Mapp. 2013;34(11):2747–2766. doi: 10.1002/hbm.22099.
    1. Jeurissen B., Tournier J.D., Dhollander T., Connelly A., Sijbers J. Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data. NeuroImage. 2014;103:411–426. doi: 10.1016/j.neuroimage.2014.07.061.
    1. Kamali A., Flanders A.E., Brody J., Hunter J.V., Hasan K.M. Tracing superior longitudinal fasciculus connectivity in the human brain using high resolution diffusion tensor tractography. Brain Struct. Funct. 2014;219(1):269–281. doi: 10.1007/s00429-012-0498-y.
    1. Kaur S., Powell S., He L., Pierson C.R., Parikh N.A., He Y. Reliability and repeatability of quantitative tractography methods for mapping structural white matter connectivity in preterm and term infants at term-equivalent age. PLoS ONE. 2014;9(1) doi: 10.1371/journal.pone.0085807.
    1. Kelly C.E., Thompson D.K., Genc S., Chen J., Yang J.Y., Adamson C., Anderson P.J. Long-term development of white matter fibre density and morphology up to 13 years after preterm birth: A fixel-based analysis. NeuroImage. 2020;220 doi: 10.1016/j.neuroimage.2020.117068. 117068.
    1. Kidokoro H., Neil J.J., Inder T.E. New MR imaging assessment tool to define brain abnormalities in very preterm infants at term. AJNR Am. J. Neuroradiol. 2013;34(11):2208–2214. doi: 10.3174/ajnr.A3521.
    1. Kim S.H., Jeon H.E., Park C.H. Relationship between Visual Perception and Microstructural Change of the Superior Longitudinal Fasciculus in Patients with Brain Injury in the Right Hemisphere: A Preliminary Diffusion Tensor Tractography Study. Diagnostics (Basel, Switzerland) 2020;10(9):641. doi: 10.3390/diagnostics10090641.
    1. Kline J.E., Illapani V., He L., Altaye M., Parikh N.A. Retinopathy of Prematurity and Bronchopulmonary Dysplasia are Independent Antecedents of Cortical Maturational Abnormalities in Very Preterm Infants. Sci. Rep. 2019;9(1):19679. doi: 10.1038/s41598-019-56298-x.
    1. Kline J.E., Illapani V., He L., Altaye M., Logan J.W., Parikh N.A. Early cortical maturation predicts neurodevelopment in very preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 2020;105(5):460–465. doi: 10.1136/archdischild-2019-317466.
    1. Kline J.E., Illapani V.S., He L., Parikh N.A. Automated brain morphometric biomarkers from MRI at term predict motor development in very preterm infants. NeuroImage: Clinical. 2020;28 doi: 10.1016/j.nicl.2020.102475.
    1. Lee J., Kim M.G., Park H.Y., Nam K.E., Park J.H. Visual assessment of preterm and full-term infants under the age of 12 months using the Preverbal Visual Assessment questionnaire. Early Human Dev. 2021;153 doi: 10.1016/j.earlhumdev.2020.105289.
    1. Leergaard T.B., White N.S., de Crespigny A., Bolstad I., D'Arceuil H., Bjaalie J.G., Dale A.M., Valdes-Sosa P.A. Quantitative histological validation of diffusion MRI fiber orientation distributions in the rat brain. PLoS ONE. 2010;5(1) doi: 10.1371/journal.pone.0008595.
    1. Leung M.P., Thompson B., Black J., Dai S., Alsweiler J.M. The effects of preterm birth on visual development. Clinical & experimental optometry. 2018;101(1):4–12. doi: 10.1111/cxo.12578.
    1. Liu Y., Balériaux D., Kavec M., Metens T., Absil J., Denolin V., Pardou A., Avni F., Van Bogaert P., Aeby A. Structural asymmetries in motor and language networks in a population of healthy preterm neonates at term equivalent age: a diffusion tensor imaging and probabilistic tractography study. NeuroImage. 2010;51(2):783–788.
    1. Madan A., Jan J.E., Good W.V. Visual development in preterm infants. Dev. Med. Child Neurol. 2005;47(4):276–280. doi: 10.1017/s0012162205000514.
    1. Makropoulos A., Robinson E.C., Schuh A., Wright R., Fitzgibbon S., Bozek J., Counsell S.J., Steinweg J., Vecchiato K., Passerat-Palmbach J., Lenz G., Mortari F., Tenev T., Duff E.P., Bastiani M., Cordero-Grande L., Hughes E., Tusor N., Tournier J.-D., Hutter J., Price A.N., Teixeira R.P.A.G., Murgasova M., Victor S., Kelly C., Rutherford M.A., Smith S.M., Edwards A.D., Hajnal J.V., Jenkinson M., Rueckert D. The developing human connectome project: A minimal processing pipeline for neonatal cortical surface reconstruction. NeuroImage. 2018;173:88–112.
    1. Malhotra A., Sepehrizadeh T., Dhollander T., Wright D., Castillo-Melendez M., Sutherland A.E., Pham Y., Ditchfield M., Polglase G.R., de Veer M., Jenkin G., Pannek K., Shishegar R., Miller S.L. Advanced MRI analysis to detect white matter brain injury in growth restricted newborn lambs. NeuroImage: Clinical. 2019;24 doi: 10.1016/j.nicl.2019.101991.
    1. Merhar S.L., Gozdas E., Tkach J.A., Harpster K.L., Schwartz T.L., Yuan W., Kline-Fath B.M., Leach J.L., Altaye M., Holland S.K. Functional and structural connectivity of the visual system in infants with perinatal brain injury. Pediatr. Res. 2016;80(1):43–48.
    1. Novak I., Hines M., Goldsmith S., Barclay R. Clinical prognostic messages from a systematic review on cerebral palsy. Pediatrics. 2012;130(5):e1285–e1312. doi: 10.1542/peds.2012-0924.
    1. O'Connor A.R., Wilson C.M., Fielder A.R. Ophthalmological problems associated with preterm birth. Eye (London, England) 2007;21(10):1254–1260. doi: 10.1038/sj.eye.6702838.
    1. Ortibus E.L., De Cock P.P., Lagae L.G. Visual perception in preterm children: what are we currently measuring? Pediatr. Neurol. 2011;45(1):1–10. doi: 10.1016/j.pediatrneurol.2011.02.008.
    1. Pannek K., Fripp J., George J.M., Fiori S., Colditz P.B., Boyd R.N., Rose S.E. Fixel-based analysis reveals alterations is brain microstructure and macrostructure of preterm-born infants at term equivalent age. NeuroImage. Clinical. 2018;18:51–59. doi: 10.1016/j.nicl.2018.01.003.
    1. Parikh N.A. Advanced neuroimaging and its role in predicting neurodevelopmental outcomes in very preterm infants. Semin. Perinatol. 2016;40(8):530–541. doi: 10.1053/j.semperi.2016.09.005.
    1. Parikh N.A., Hershey A., Altaye M. Early Detection of Cerebral Palsy Using Sensorimotor Tract Biomarkers in Very Preterm Infants. Pediatr. Neurol. 2019;98:53–60. doi: 10.1016/j.pediatrneurol.2019.05.001.
    1. Pascal A., Govaert P., Oostra A., Naulaers G., Ortibus E., Van den Broeck C. Neurodevelopmental outcome in very preterm and very-low-birthweight infants born over the past decade: a meta-analytic review. Dev. Med. Child Neurol. 2018;60(4):342–355. doi: 10.1111/dmcn.13675.
    1. Blencowe H., Lawn J.E., Vazquez T., Fielder A., Gilbert C. Preterm-associated visual impairment and estimates of retinopathy of prematurity at regional and global levels for 2010. Pediatric Res. 2013;74(Suppl 1):35–49. doi: 10.1038/pr.2013.205.
    1. Philip S.S., Dutton G.N. Identifying and characterising cerebral visual impairment in children: a review. Clinical Exp. Optometry. 2014;97(3):196–208. doi: 10.1111/cxo.12155.
    1. Pueyo V., García-Ormaechea I., González I., Ferrer C., de la Mata G., Duplá M., Orós P., Andres E. Development of the Preverbal Visual Assessment (PreViAs) questionnaire. Early Human Dev. 2014;90(4):165–168.
    1. Raffelt D., Tournier J.-D., Rose S., Ridgway G.R., Henderson R., Crozier S., Salvado O., Connelly A. Apparent Fibre Density: A novel measure for the analysis of diffusion-weighted magnetic resonance images. NeuroImage. 2012;59(4):3976–3994.
    1. Raffelt D.A., Tournier J.D., Smith R.E., Vaughan D.N., Jackson G., Ridgway G.R., Connelly A. Investigating white matter fibre density and morphology using fixel-based analysis. NeuroImage. 2017;144:58–73. doi: 10.1016/j.neuroimage.2016.09.029.
    1. Reijmer Y.D., Leemans A., Heringa S.M., Wielaard I., Jeurissen B., Koek H.L., Biessels G.J., Zhan W. Improved Sensitivity to Cerebral White Matter Abnormalities in Alzheimer’s Disease with Spherical Deconvolution Based Tractography. PLoS ONE. 2012;7(8) doi: 10.1371/journal.pone.0044074.
    1. Ricci D., Anker S., Cowan F., Pane M., Gallini F., Luciano R., Donvito V., Baranello G., Cesarini L., Bianco F., Rutherford M., Romagnoli C., Atkinson J., Braddick O., Guzzetta F., Mercuri E. Thalamic atrophy in infants with PVL and cerebral visual impairment. Early Human Dev. 2006;82(9):591–595.
    1. Ricci D., Romeo D.M.M., Haataja L., van Haastert I.C., Cesarini L., Maunu J., Pane M., Gallini F., Luciano R., Romagnoli C., de Vries L.S., Cowan F.M., Mercuri E. Neurological examination of preterm infants at term equivalent age. Early Human Dev. 2008;84(11):751–761.
    1. Rojas-Vite G., Coronado-Leija R., Narvaez-Delgado O., Ramírez-Manzanares A., Marroquín J.L., Noguez-Imm R., Aranda M.L., Scherrer B., Larriva-Sahd J., Concha L. Histological validation of per-bundle water diffusion metrics within a region of fiber crossing following axonal degeneration. NeuroImage. 2019;201 doi: 10.1016/j.neuroimage.2019.116013.
    1. Rose J., Butler E.E., Lamont L.E., Barnes P.D., Atlas S.W., Stevenson D.K. Neonatal brain structure on MRI and diffusion tensor imaging, sex, and neurodevelopment in very-low-birthweight preterm children. Dev. Med. Child Neurol. 2009;51:526–535. doi: 10.1111/j.1469-8749.2008.03231.x.
    1. Rothman K.J. No adjustments are needed for multiple comparisons. Epidemiology (Cambridge, Mass.) 1990;1(1):43–46.
    1. Schmahmann J.D., Smith E.E., Eichler F.S., Filley C.M. Cerebral white matter: neuroanatomy, clinical neurology, and neurobehavioral correlates. Ann. N. Y. Acad. Sci. 2008;1142:266–309. doi: 10.1196/annals.1444.017.
    1. Shah D.K., Guinane C., August P., Austin N.C., Woodward L.J., Thompson D.K., Warfield S.K., Clemett R., Inder T.E. Reduced occipital regional volumes at term predict impaired visual function in early childhood in very low birth weight infants. Invest. Ophthalmol. Vis. Sci. 2006;47(8):3366.
    1. Taylor N.M., Jakobson L.S., Maurer D., Lewis T.L. Differential vulnerability of global motion, global form, and biological motion processing in full-term and preterm children. Neuropsychologia. 2009;47(13):2766–2778. doi: 10.1016/j.neuropsychologia.2009.06.001.
    1. Thompson D.K., Inder T.E., Faggian N., Johnston L., Warfield S.K., Anderson P.J., Doyle L.W., Egan G.F. Characterization of the corpus callosum in very preterm and full-term infants utilizing MRI. NeuroImage. 2011;55(2):479–490.
    1. Thompson D.K., Thai D., Kelly C.E., Leemans A., Tournier J.-D., Kean M.J., Lee K.J., Inder T.E., Doyle L.W., Anderson P.J., Hunt R.W. Alterations in the optic radiations of very preterm children-Perinatal predictors and relationships with visual outcomes. NeuroImage. Clinical. 2013;4:145–153.
    1. Tournier J.D., Calamante F., Connelly A. Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution. NeuroImage. 2007;35(4):1459–1472. doi: 10.1016/j.neuroimage.2007.02.016.
    1. Tournier J.D., Calamante F., Connelly A. Determination of the appropriate b value and number of gradient directions for high-angular-resolution diffusion-weighted imaging. NMR Biomed. 2013;26(12):1775–1786. doi: 10.1002/nbm.3017.
    1. Tournier J.D., Calamante F., Gadian D.G., Connelly A. Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. NeuroImage. 2004;23(3):1176–1185. doi: 10.1016/j.neuroimage.2004.07.037.
    1. Tournier J.D., Mori S., Leemans A. Diffusion tensor imaging and beyond. Magn. Reson. Med. 2011;65(6):1532–1556. doi: 10.1002/mrm.22924.
    1. Tournier J.-D., Smith R., Raffelt D., Tabbara R., Dhollander T., Pietsch M., Christiaens D., Jeurissen B., Yeh C.-H., Connelly A. MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation. NeuroImage. 2019;202 doi: 10.1016/j.neuroimage.2019.116137.
    1. Vollmer B., Lundequist A., Mårtensson G., Nagy Z., Lagercrantz H., Smedler A.-C., Forssberg H., Baud O. Correlation between white matter microstructure and executive functions suggests early developmental influence on long fibre tracts in preterm born adolescents. PLoS ONE. 2017;12(6) doi: 10.1371/journal.pone.0178893.
    1. Wakana S., Caprihan A., Panzenboeck M.M., Fallon J.H., Perry M., Gollub R.L., Hua K., Zhang J., Jiang H., Dubey P., Blitz A., van Zijl P., Mori S. Reproducibility of quantitative tractography methods applied to cerebral white matter. NeuroImage. 2007;36(3):630–644.
    1. Walani S.R. Global burden of preterm birth. Int. J. Gynaecol. Obstet. 2020;150(1):31–33. doi: 10.1002/ijgo.13195.
    1. Weinstein M., Ben-Sira L., Moran A., Berger I., Marom R., Geva R., Gross-Tsur V., Leitner Y., Ben Bashat D. The motor and visual networks in preterm infants: An fMRI and DTI study. Brain Res. 2016;1642:603–611.

Source: PubMed

3
Předplatit