The effects of postprandial glucose and insulin levels on postprandial endothelial function in subjects with normal glucose tolerance

Kazunari Suzuki, Kentaro Watanabe, Shoko Futami-Suda, Hiroyuki Yano, Masayuki Motoyama, Noriaki Matsumura, Yoshimasa Igari, Tatsuya Suzuki, Hiroshi Nakano, Kenzo Oba, Kazunari Suzuki, Kentaro Watanabe, Shoko Futami-Suda, Hiroyuki Yano, Masayuki Motoyama, Noriaki Matsumura, Yoshimasa Igari, Tatsuya Suzuki, Hiroshi Nakano, Kenzo Oba

Abstract

Background: Previous studies have demonstrated that postprandial hyperglycemia attenuates brachial artery flow-mediated dilation (FMD) in prediabetic patients, in diabetic patients, and even in normal subjects. We have previously reported that postprandial hyperinsulinemia also attenuates FMD. In the present study we evaluated the relationship between different degrees of postprandial attenuation of FMD induced by postprandial hyperglycemia and hyperinsulinemia and differences in ingested carbohydrate content in non-diabetic individuals.

Methods: Thirty-seven healthy subjects with no family history of diabetes were divided into 3 groups: a 75-g oral glucose loading group (OG group) (n = 14), a test meal group (TM group) (n = 12; 400 kcal, carbohydrate content 40.7 g), and a control group (n = 11). The FMD was measured at preload (FMD0) and at 60 minutes (FMD60) and 120 (FMD120) minutes after loading. Plasma glucose (PG) and immunoreactive insulin (IRI) levels were determined at preload (PG0, IRI0) and at 30 (PG30, IRI30), 60 (PG60, IRI60), and 120 (PG120, IRI120) minutes after loading.

Result: Percentage decreases from FMD0 to FMD60 were significantly greater in the TM group (-21.19% ± 17.90%; P < 0.001) and the OG group (-17.59% ± 26.64%) than in the control group (6.46% ± 9.17%; P < 0.01), whereas no significant difference was observed between the TM and OG groups. In contrast, the percentage decrease from FMD0 to FMD120 was significantly greater in the OG group (-18.91% ± 16.58%) than in the control group (6.78% ± 11.43%; P < 0.001) or the TM group (5.22% ± 37.22%; P < 0.05), but no significant difference was observed between the control and TM groups. The FMD60 was significantly correlated with HOMA-IR (r = -0.389; P < 0.05). In contrast, FMD120 was significantly correlated with IRI60 (r = -0.462; P < 0.05) and the AUC of IRI (r = -0.468; P < 0.05). Furthermore, the percentage change from FMD0 to FMD120 was significantly correlated with the CV of PG (r = 0.404; P < 0.05), IRI60 (r = 0.401; p < 0.05) and the AUC of IRI (r = 0.427; P < 0.05). No significant correlation was observed between any other FMDs and glucose metabolic variables.

Conclusion: Differences in the attenuation of postprandial FMD induced by different postprandial insulin levels may occur a long time postprandially but not shortly after a meal.

Figures

Figure 1
Figure 1
Changes in PG (A), IRI (B), and FMD (C) in the TM, OG, and control groups. #P < 0.05, ## P < 0.01 vs. PG or IRI in the TM group, €P < 0.05 vs. FMD0 in the OG group, $P < 0.01 vs. FMD0 and FMD120 in the TM group,*P < 0.05 vs. FMD60 of the control group, \P < 0.05 vs. FMD120 in the TM and control groups.
Figure 2
Figure 2
Percentage changes in FMD in the control, TM, and OG groups. From FMD0 to FMD 60: 100 × (FMD60-FMD0)/FMD0. From FMD0 to FMD120: 100 × (FMD120-FMD0)/FMD0. TM group: test meal group, OG group: 75-g oral glucose loading group.

References

    1. The DECODE study group on behalf of the European Diabetes Epidemiology Group. Glucose tolerance and mortality: comparison of WHO and American Diabetic Association diagnostic criteria. Lancet. 1999;354:617–621.
    1. Ceriello A, Hanefeld M, Leiter L, Monnier L, Moses A, Owens D. Postprandial glucose regulation and diabetic complications. Arch Intern Med. 2004;164:2090–2095. doi: 10.1001/archinte.164.19.2090.
    1. Tominaga M, Igarashi K, Eguchi H, Kato T, Manaka H, Sekikawa A. Impaired glucose tolerance is a risk factor for cardiovascular diseases, but not impaired fasting glucose: the Funagata Diabetes Study. Diabetes Care. 1999;22:920–924. doi: 10.2337/diacare.22.6.920.
    1. Hanefeld M, Kehler C, Henkel E, Fuecker K, Schaper F, Temelkova-Kurktschiev T. Post-challenge hyperglycemia relates more strongly than fasting hyperglycemia with carotid-intima-media thickness: the RIAD study. Diabet Med. 2000;17:835–840. doi: 10.1046/j.1464-5491.2000.00408.x.
    1. Widlansky ME, Gokce N, Keaney JF, Vita JA. The clinical implications of endothelial dysfunction. J Am Coll Cardiol. 2003;42:1149–1160. doi: 10.1016/S0735-1097(03)00994-X.
    1. Corretti MC, Anderson TJ, Benjamin EJ, Celermajer D, Charbonneau F, Creager MA, Deanfield J, Drexler H, Gerhard-Herman M, Herrington D. et al.Guideline for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol. 2002;39:257–265.
    1. Esper RJ, Nordaby RA, Vilarino JO, Paragano A, Cacharron JL, Machado RA. Endothelial dysfunction: a comprehensive appraisal. Cardiovasc Diabetol. 2006;5:4. doi: 10.1186/1475-2840-5-4.
    1. Kawano H, Motoyama T, Hirashima O, Hirai N, Miyao Y, Sakamoto T, Kugiyama K, Ogawa H, Yasue H. Hyperglycemia rapidly suppresses flow-mediated endothelium-dependent vasodilation of brachial artery. J Am Coll Cardiol. 1999;34:146–154. doi: 10.1016/S0735-1097(99)00168-0.
    1. Xiang GD, Sun HL, Hou J, Yue L, Xu L. Acute hyperglycemia rapidly suppresses endothelium-dependent arterial dilation in first-degree relatives of type 2 diabetic patients. Exp Clin Endocrinol Diabetes. 2008;116:112–117. doi: 10.1055/s-2007-984478.
    1. Xiang GD, Sun HL, Zhao LS, Hou J, Yue L, Xu L. The antioxidant alpha-lipoic acid improves endothelial dysfunction induced by acute hyperglycaemia during OGTT in impaired glucose tolerance. Clin Endocrinol. 2008;68:716–723. doi: 10.1111/j.1365-2265.2007.03099.x.
    1. Title LM, Cummings PM, Giddens K, Nassar BA. Oral glucose loading acutely attenuates endothelium-dependent vasodilation in healthy adults without diabetes: an effect prevented by vitamins C and E. J Am Coll Cardiol. 2000;36:2185–2191. doi: 10.1016/S0735-1097(00)00980-3.
    1. Watanabe K, Oba K, Suzuki T, Ouchi M, Kazunari Suzuki K, Futami-Suda S, Sekimizu K, Yamamoto N, Nakano H. Oral glucose loading attenuates endothelial function in normal individual. Eur J Clin Invest. 2011;41:465–473. doi: 10.1111/j.1365-2362.2010.02424.x.
    1. Lavi T, Karasik A, Koren-Morag N, Kanety H, Feinberg MS, Shechter M. The acute effect of various glycemic index dietary carbohydrates on endothelial function in nondiabetic overweight and obese subjects. J Am Coll Cardiol. 2009;53:2283–2287. doi: 10.1016/j.jacc.2009.03.025.
    1. Volek JS, Ballard KD, Silvestre R, Judelson DA, Quann EE, Forsythe CE, Fernandez ML, Kraemer WJ. Effects of dietary carbohydrate restriction versus low-fat diet on flow-mediated dilation. Metabolism. 2009;58:1769–1777. doi: 10.1016/j.metabol.2009.06.005.
    1. Bae JH, Schwemmer M, Lee IK, Lee HJ, Park KR, Kim KY, Bassenge E. Postprandial hypertriglyceridemia-induced endothelial dysfunction in healthy subjects is independent of lipid oxidation. Int J Cardiol. 2003;87:259–267. doi: 10.1016/S0167-5273(02)00347-9.
    1. Williams MJ, Sutherland WH, McCormick MP, de Jong SA, Walker RJ, Wilkins GT. Impaired endothelial function following a meal rich in used cooking fat. J Am Coll Cardiol. 1999;33:1050–1055. doi: 10.1016/S0735-1097(98)00681-0.
    1. Ansar S, Koska J, Reaven PD. Postprandial hyperlipidemia, endothelial dysfunction and cardiovascular risk: focus on incretins. Cardiovasc Diabetol. 2011;10:61. doi: 10.1186/1475-2840-10-61.
    1. The Committee of the Japan Diabetes Society on the diagnostic criteria of diabetes mellitus. Report of the Committee on the classification and diagnostic criteria of diabetes mellitus. Diabetol Int. 2010;1:2–20. doi: 10.1007/s13340-010-0006-7.
    1. Japanese Society of Hypertension Committee. The Japanese Society of Hypertension Guidelines for the Management of Hypertension (JSH 2009) Hypertens Res. 2009;32:3–107.
    1. Committee for Epidemiology and Clinical Management of Atherosclerosis. Executive Summary of Japan Atherosclerosis Society Guideline for Diagnosis and Prevention of Atherosclerotic Cardiovascular Disease of Japanese. J Atheroscler Thromb. 2007;14:45–50. doi: 10.5551/jat.14.45.
    1. Kashiwagi A, Kasuga M, Araki E, Oka Y, Hanahusa T, Ito H, Tominaga M, Seino Y, Oikawa S, Noda M. et al.Committee on the Standardization of Diabetes Mellitus-Related Laboratory Testing of Japan Diabetes Society (JDS): International clinical harmonization of glycated hemoglobin in Japan: From Japan Diabetes Society to National Glycohemoglobin Standardization Program values. Diabetol Int. 2012;3:8–10. doi: 10.1007/s13340-012-0069-8.
    1. Papathanassiou K, Naka KK, Kazakos N, Kanioglou C, Makriyiannis D, Pappas K, Katsouras CS, Liveris K, Kolettis T, Tsatsoulis A. et al.Pioglitazone vs glimepiride: Differential effects on vascular endothelial function in patients with type 2 diabetes. Atherosclerosis. 2009;205:221–226. doi: 10.1016/j.atherosclerosis.2008.11.027.
    1. Quinn CE, Lockhart CJ, Hamilton PK, Loughrey CM, McVeigh GE. Effect of pioglitazone on endothelial function in impaired glucose tolerance. Diabetes Obes Metab. 2010;12:709–715. doi: 10.1111/j.1463-1326.2010.01224.x.
    1. Lteif AA, Han K, Mather KJ. Obesity, insulin resistance, and the metabolic syndrome: determinants of endothelial dysfunction in whites and blacks. Circulation. 2005;112:32–38. doi: 10.1161/CIRCULATIONAHA.104.520130.
    1. Balletshofer BM, Rittig K, Enderle MD, Volk A, Maerker E, Jacob S, Matthaei S, Rett K, Häring HU. Endothelial dysfunction is detectable in young normotensive first-degree relatives of subjects with type 2 diabetes in association with insulin resistance. Circulation. 2000;101:1780–1784. doi: 10.1161/01.CIR.101.15.1780.
    1. Potenza MA, Gagliardi S, Nacci C, Carratu MR, Montagnani M. Endothelial dysfunction in diabetes: from mechanism to therapeutic targets. Curr Med Chem. 2009;16:94–112. doi: 10.2174/092986709787002853.
    1. Chen LL, Yu F, Zeng TS, Liao YF, Li YM, Ding HC. Effects of gliclazide on endothelial function in patients with newly diagnosed type 2 diabetes. Eur J Pharmacol. 2011;659:296–301. doi: 10.1016/j.ejphar.2011.02.044.
    1. Shimabukuro M, Higa N, Chinen I, Yamakawa K, Takasu N. Effects of a single administration of acarbose on postprandial glucose excursion and endothelial dysfunction in type 2 diabetic patients: a randomized crossover study. J Clin Endocrinol Metab. 2006;91:837–842.
    1. Mather KJ, Verma S, Anderson TJ. Improved endothelial function with metformin in type 2 diabetes mellitus. J Am Coll Cardiol. 2001;37:1344–1350. doi: 10.1016/S0735-1097(01)01129-9.
    1. Kato T, Inoue T, Node K. Postprandial endothelial dysfunction in subjects with new-onset type 2 diabetes: an acarbose and nateglinide comparative study. Cardiovasc Diabetol. 2010;9:12. doi: 10.1186/1475-2840-9-12.
    1. Kitasato L, Tojo T, Hatakeyama Y, Kameda R, Hashikata T, Yamaoka-Tojo M. Postprandial hyperglycemia and endothelial function in type 2 diabetes: focus on mitiglinide. Cardiovasc Diabetol. 2012;11:79. doi: 10.1186/1475-2840-11-79.
    1. Wascher TC, Schmoelzer I, Wiegratz A, Stuehlinger M, Mueller-Wieland D, Kotzka J, Enderle M. Reduction of postchallenge hyperglycaemia prevents acute endothelial dysfunction in subjects with impaired glucose tolerance. Eur J Clin Invest. 2005;35:551–557. doi: 10.1111/j.1365-2362.2005.01550.x.
    1. Azuma K, Kawamori R, Toyofuku Y, Kitahara Y, Sato F, Shimizu T, Miura K, Mine T, Tanaka Y, Mitsumata M. et al.Repetitive fluctuations in blood glucose enhance monocyte adhesion to the endothelium of rat thoracic aorta. Arterioscler Thromb Vasc Biol. 2006;26:2275–2280. doi: 10.1161/01.ATV.0000239488.05069.03.
    1. Mikhail N, Tuck ML. Insulin and the vasculature. Curr Hypertens Rep. 2000;2:148–153. doi: 10.1007/s11906-000-0074-3.
    1. Cubbon RM, Kahn MB, Wheatcroft SB. Effects of insulin resistance on endothelial progenitor cells and vascular repair. Clin Sci. 2009;117:173–190. doi: 10.1042/CS20080263.
    1. Arcaro G, Cretti A, Balzano S, Lechi A, Muggeo M, Bonora E, Bonadonna RC. Insulin causes endothelial dysfunction in humans: sites and mechanisms. Circulation. 2002;105:576–582. doi: 10.1161/hc0502.103333.
    1. Major-Pedersen A, Ihlemann N, Hermann TS, Christiansen B, Dominguez H, Kveiborg B, Nielsen DB, Svendsen OL, Køber L, Torp-Pedersen C. Effects of oral glucose load on endothelial function and on insulin and glucose fluctuations in healthy individuals. Exp Diabetes Res. 2008.
    1. Basu R, Breda E, Oberg AL, Powell CC, Dalla Man C, Basu A, Vittone JL, Klee GG, Arora P, Jensen MD. et al.Mechanisms of the age-associated deterioration in glucose tolerance: contribution of alterations in insulin secretion, action, and clearance. Diabetes. 2003;52:1738–1748. doi: 10.2337/diabetes.52.7.1738.

Source: PubMed

3
Předplatit