Endothelin Receptor Antagonism Improves Lipid Profiles and Lowers PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9) in Patients With Chronic Kidney Disease

Tariq E Farrah, Atul Anand, Peter J Gallacher, Robert Kimmitt, Edwin Carter, James W Dear, Nicholas L Mills, David J Webb, Neeraj Dhaun, Tariq E Farrah, Atul Anand, Peter J Gallacher, Robert Kimmitt, Edwin Carter, James W Dear, Nicholas L Mills, David J Webb, Neeraj Dhaun

Abstract

Dyslipidemia is common in chronic kidney disease (CKD). Despite statins, many patients fail to adequately lower lipids and remain at increased risk of cardiovascular disease. Selective ETA (endothelin-A) receptor antagonists reduce cardiovascular disease risk factors. Preclinical data suggest that ETA antagonism has beneficial effects on circulating lipids. We assessed the effects of selective ETA antagonism on circulating lipids and PCSK9 (proprotein convertase subtilisin/kexin type 9) in CKD. This was a secondary analysis of a fully randomized, double-blind, 3-phase crossover study. Twenty-seven subjects with predialysis CKD on optimal cardio- and renoprotective treatment were randomly assigned to receive 6 weeks dosing with placebo, the selective ETA receptor antagonist, sitaxentan, or long-acting nifedipine. We measured circulating lipids and PCSK9 at baseline and then after 3 and 6 weeks. Baseline lipids and PCSK9 did not differ before each study phase. Whereas placebo and nifedipine had no effect on lipids, 6 weeks of ETA antagonism significantly reduced total (-11±1%) and low-density lipoprotein-associated (-20±3%) cholesterol, lipoprotein (a) (-16±2%) and triglycerides (-20±4%); high-density lipoprotein-associated cholesterol increased (+14±2%), P<0.05 versus baseline for all. Additionally, ETA receptor antagonism, but neither placebo nor nifedipine, reduced circulating PCSK9 (-19±2%; P<0.001 versus baseline; P<0.05 versus nifedipine and placebo). These effects were independent of statin use and changes in blood pressure or proteinuria. Selective ETA antagonism improves lipid profiles in optimally-managed patients with CKD, effects that may occur through a reduction in circulating PCSK9. ETA receptor antagonism offers a potentially novel strategy to reduce cardiovascular disease risk in CKD. Clinical Trial Registration- URL: http://www.clinicaltrials.gov . Unique identifier: NCT00810732.

Keywords: atherosclerosis; cardiovascular disease; cholesterol; endothelins; triglycerides.

Figures

Figure 1.
Figure 1.
Changes in lipid profiles. Bar chart of mean change from baseline of total cholesterol (A), low-density lipoprotein–associated cholesterol (LDL-C); B), high-density lipoprotein–associated cholesterol (HDL-C; C), triglycerides (D), and Lp(a) (lipoprotein(a); E) after week 3 and week 6 of dosing with placebo (blue bars), nifedipine (green bars), and selective ETA receptor antagonism (red bars). ***P<0.001 for change at week 6 vs baseline; ···P<0.001 for change at timepoint vs placebo and nifedipine; and ·P<0.05 for change at timepoint vs placebo or nifedipine. Analysis by ANOVA. Error bars are SE of mean. Conversion factors for units: cholesterol, LDL-C, and HDL-C in mg/dL to mmol/L, ×0.02586; and triglycerides in mg/dL to mmol/L, ×0.01129.
Figure 2.
Figure 2.
Change in circulating PCSK9 (proprotein convertase subtilisin/kexin type 9). Bar chart of mean change in plasma PCSK9 from baseline after week 3 and week 6 of dosing with placebo (blue bars), nifedipine (green bars), and selective ETA (endothelin-A) receptor antagonist (red bars). ***P<0.001 for selective ETA receptor antagonist at week 6 vs baseline; analysis by paired t tests. ·P<0.05 for change at timepoint vs placebo and nifedipine. Analysis by ANOVA. Error bars are SE of mean.
Figure 3.
Figure 3.
Change in lipids and circulating PCSK9 (proprotein convertase subtilisin/kexin type 9). Scatter plots of individual percentage changes from baseline in total cholesterol (A), low-density lipoprotein–associated cholesterol (LDL-C); B), high-density lipoprotein–associated cholesterol (HDL-C); C), and triglycerides (D) after 6 weeks of treatment vs individual percentage change in plasma PCSK9. Blue dots denote subjects receiving placebo; green dots denote subjects receiving nifedipine; and red dots denote subjects receiving selective ETA (endothelin-A) receptor antagonist.
Figure 4.
Figure 4.
Proposed pathways linking the endothelin system, PCSK9 (proprotein convertase subtilisin/kexin type 9) expression and cholesterol in chronic kidney disease. The liver is the major site of PCSK9 expression with HNF1α (hepatic nuclear factor 1α) and SREBP2 (sterol regulatory element binding protein 2) its principle promoters. Animals studies have shown that insulin binding to hepatocytes prevents nuclear translocation of HNF1α thus reducing PCSK9 transcription. ET-1 (endothelin-1) impairs hepatocyte insulin sensitivity which can be ameliorated by selective ETA receptor antagonism, and so may restore the inhibitory effect of insulin on HNF1α-mediated PCSK9 transcription in hepatocytes. Whether ET-1 has direct effects on HNF1α or SREBP2 in hepatocytes is unknown. Systemic inflammation can increase both hepatic and renal PCSK9 expression with a concurrent reduction in LDL-R (low density lipoprotein receptor) expression and a rise in low-density lipoprotein–associated cholesterol (LDL-C). In the vasculature, ET-1 has proinflammatory effects mediated predominantly through ETA receptor activation. In the kidney, podocyte damage is associated with increased circulating and renal PCSK9 expression, notably localized to proximal tubular cells in murine models. The relevance of renal PCSK9 expression to the circulating PCSK9 pool and lipids needs further clarification. Interestingly, ER (endoplasmic reticulum) stress leads to an upregulation of SREBP2 in renal proximal tubular cells with subsequent apoptosis, but effects on PCSK9 expression here are unexplored. However, selective ETA antagonism has been shown to ameliorate podocyte injury and proximal tubule ER stress suggesting a potential role in renal PCSK9 expression.

References

    1. James MT, Hemmelgarn BR, Tonelli M. Early recognition and prevention of chronic kidney disease. Lancet. 2010;375:1296–1309. doi: 10.1016/S0140-6736(09)62004-3.
    1. Gansevoort RT, Correa-Rotter R, Hemmelgarn BR, Jafar TH, Heerspink HJ, Mann JF, Matsushita K, Wen CP. Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. Lancet. 2013;382:339–352. doi: 10.1016/S0140-6736(13)60595-4.
    1. Kwan BC, Kronenberg F, Beddhu S, Cheung AK. Lipoprotein metabolism and lipid management in chronic kidney disease. J Am Soc Nephrol. 2007;18:1246–1261. doi: 10.1681/ASN.2006091006.
    1. Baigent C, Landray MJ, Reith C, et al. SHARP Investigators. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. Lancet. 2011;377:2181–2192. doi: 10.1016/S0140-6736(11)60739-3.
    1. Silverman MG, Ference BA, Im K, Wiviott SD, Giugliano RP, Grundy SM, Braunwald E, Sabatine MS. Association between lowering LDL-C and cardiovascular risk reduction among different therapeutic interventions: a systematic review and meta-analysis. JAMA. 2016;316:1289–1297. doi: 10.1001/jama.2016.13985.
    1. Foster MC, Rawlings AM, Marrett E, Neff D, Grams ME, Kasiske BL, Willis K, Inker LA, Coresh J, Selvin E. Potential effects of reclassifying CKD as a coronary heart disease risk equivalent in the US population. Am J Kidney Dis. 2014;63:753–760. doi: 10.1053/j.ajkd.2013.11.014.
    1. Zhang H, Plutzky J, Skentzos S, Morrison F, Mar P, Shubina M, Turchin A. Discontinuation of statins in routine care settings: a cohort study. Ann Intern Med. 2013;158:526–534. doi: 10.7326/0003-4819-158-7-201304020-00004.
    1. Zhang DW, Lagace TA, Garuti R, Zhao Z, McDonald M, Horton JD, Cohen JC, Hobbs HH. Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like repeat A of low density lipoprotein receptor decreases receptor recycling and increases degradation. J Biol Chem. 2007;282:18602–18612. doi: 10.1074/jbc.M702027200.
    1. Sabatine MS, Giugliano RP, Wiviott SD, Raal FJ, Blom DJ, Robinson J, Ballantyne CM, Somaratne R, Legg J, Wasserman SM, Scott R, Koren MJ, Stein EA Open-Label Study of Long-Term Evaluation against LDL Cholesterol (OSLER) Investigators. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372:1500–1509. doi: 10.1056/NEJMoa1500858.
    1. Robinson JG, Farnier M, Krempf M, et al. ODYSSEY LONG TERM Investigators. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372:1489–1499. doi: 10.1056/NEJMoa1501031.
    1. Feingold KR, Moser AH, Shigenaga JK, Patzek SM, Grunfeld C. Inflammation stimulates the expression of PCSK9. Biochem Biophys Res Commun. 2008;374:341–344. doi: 10.1016/j.bbrc.2008.07.023.
    1. Haas ME, Levenson AE, Sun X, Liao WH, Rutkowski JM, de Ferranti SD, Schumacher VA, Scherer PE, Salant DJ, Biddinger SB. The role of proprotein convertase subtilisin/kexin type 9 in nephrotic syndrome-associated hypercholesterolemia. Circulation. 2016;134:61–72. doi: 10.1161/CIRCULATIONAHA.115.020912.
    1. Dhaun N, Goddard J, Webb DJ. The endothelin system and its antagonism in chronic kidney disease. J Am Soc Nephrol. 2006;17:943–955. doi: 10.1681/ASN.2005121256.
    1. Kowala MC, Rose PM, Stein PD, Goller N, Recce R, Beyer S, Valentine M, Barton D, Durham SK. Selective blockade of the endothelin subtype A receptor decreases early atherosclerosis in hamsters fed cholesterol. Am J Pathol. 1995;146:819–826.
    1. Raichlin E, Prasad A, Mathew V, Kent B, Holmes DR, Jr, Pumper GM, Nelson RE, Lerman LO, Lerman A. Efficacy and safety of atrasentan in patients with cardiovascular risk and early atherosclerosis. Hypertension. 2008;52:522–528. doi: 10.1161/HYPERTENSIONAHA.108.113068.
    1. Wenzel RR, Littke T, Kuranoff S, Jürgens C, Bruck H, Ritz E, Philipp T, Mitchell A SPP301 (Avosentan) Endothelin Antagonist Evaluation in Diabetic Nephropathy Study Investigators. Avosentan reduces albumin excretion in diabetics with macroalbuminuria. J Am Soc Nephrol. 2009;20:655–664. doi: 10.1681/ASN.2008050482.
    1. Reriani M, Raichlin E, Prasad A, Mathew V, Pumper GM, Nelson RE, Lennon R, Rihal C, Lerman LO, Lerman A. Long-term administration of endothelin receptor antagonist improves coronary endothelial function in patients with early atherosclerosis. Circulation. 2010;122:958–966. doi: 10.1161/CIRCULATIONAHA.110.967406.
    1. Rafnsson A, Böhm F, Settergren M, Gonon A, Brismar K, Pernow J. The endothelin receptor antagonist bosentan improves peripheral endothelial function in patients with type 2 diabetes mellitus and microalbuminuria: a randomised trial. Diabetologia. 2012;55:600–607. doi: 10.1007/s00125-011-2415-y.
    1. de Zeeuw D, Coll B, Andress D, et al. The endothelin antagonist atrasentan lowers residual albuminuria in patients with type 2 diabetic nephropathy. J Am Soc Nephrol. 2014;25:1083–1093. doi: 10.1681/ASN.2013080830.
    1. Dhaun N, MacIntyre IM, Kerr D, Melville V, Johnston NR, Haughie S, Goddard J, Webb DJ. Selective endothelin-A receptor antagonism reduces proteinuria, blood pressure, and arterial stiffness in chronic proteinuric kidney disease. Hypertension. 2011;57:772–779. doi: 10.1161/HYPERTENSIONAHA.110.167486.
    1. Dhaun N, Macintyre IM, Melville V, Lilitkarntakul P, Johnston NR, Goddard J, Webb DJ. Blood pressure-independent reduction in proteinuria and arterial stiffness after acute endothelin-a receptor antagonism in chronic kidney disease. Hypertension. 2009;54:113–119.
    1. Writing C, Lloyd-Jones DM, Morris PB, Ballantyne CM, Birtcher KK, Daly DD, Jr, DePalma SM, Minissian MB, Orringer CE, Smith SC., Jr. 2016 ACC expert consensus decision pathway on the role of non-statin therapies for LDL-cholesterol lowering in the management of atherosclerotic cardiovascular disease risk: a report of the American College of Cardiology task force on clinical expert consensus documents. J Am Coll Cardiol. 2016;68:92–125.
    1. SEARCH Collaborative Group. SLCO1B1 variants and statin-induced myopathy — a genomewide study. N Engl J Med. 2008;359:789–799. doi: 10.1056/NEJMoa0801936.
    1. Schreuder TH, Duncker DJ, Hopman MT, Thijssen DH. Randomized controlled trial using bosentan to enhance the impact of exercise training in subjects with type 2 diabetes mellitus. Exp Physiol. 2014;99:1538–1547. doi: 10.1113/expphysiol.2014.081182.
    1. Kohan DE, Pollock DM. Endothelin antagonists for diabetic and non-diabetic chronic kidney disease. Br J Clin Pharmacol. 2013;76:573–579. doi: 10.1111/bcp.12064.
    1. Leander K, Mälarstig A, Van’t Hooft FM, Hyde C, Hellénius ML, Troutt JS, Konrad RJ, Öhrvik J, Hamsten A, de Faire U. Circulating proprotein convertase subtilisin/kexin type 9 (PCSK9) predicts future risk of cardiovascular events independently of established risk factors. Circulation. 2016;133:1230–1239. doi: 10.1161/CIRCULATIONAHA.115.018531.
    1. Rogacev KS, Heine GH, Silbernagel G, Kleber ME, Seiler S, Emrich I, Lennartz S, Werner C, Zawada AM, Fliser D, Böhm M, März W, Scharnagl H, Laufs U. PCSK9 plasma concentrations are independent of GFR and do not predict cardiovascular events in patients with decreased GFR. PLoS One. 2016;11:e0146920. doi: 10.1371/journal.pone.0146920.
    1. Tavori H, Christian D, Minnier J, Plubell D, Shapiro MD, Yeang C, Giunzioni I, Croyal M, Duell PB, Lambert G, Tsimikas S, Fazio S. PCSK9 association with lipoprotein(a). Circ Res. 2016;119:29–35. doi: 10.1161/CIRCRESAHA.116.308811.
    1. Willeit P, Ridker PM, Nestel PJ, Simes J, Tonkin AM, Pedersen TR, Schwartz GG, Olsson AG, Colhoun HM, Kronenberg F, Drechsler C, Wanner C, Mora S, Lesogor A, Tsimikas S. Baseline and on-statin treatment lipoprotein(a) levels for prediction of cardiovascular events: individual patient-data meta-analysis of statin outcome trials. Lancet. 2018;392:1311–1320. doi: 10.1016/S0140-6736(18)31652-0.
    1. Bajaj A, Damrauer SM, Anderson AH, Xie D, Budoff MJ, Go AS, et al. Lipoprotein(a) and risk of myocardial infarction and death in chronic kidney disease: findings from the CRIC study (Chronic Renal Insufficiency Cohort). Arterioscler Thromb Vasc Biol. 2017;37:1971–1978.
    1. Careskey HE, Davis RA, Alborn WE, Troutt JS, Cao G, Konrad RJ. Atorvastatin increases human serum levels of proprotein convertase subtilisin/kexin type 9. J Lipid Res. 2008;49:394–398. doi: 10.1194/jlr.M700437-JLR200.
    1. Kostner GM, Gavish D, Leopold B, Bolzano K, Weintraub MS, Breslow JL. HMG CoA reductase inhibitors lower LDL cholesterol without reducing Lp(a) levels. Circulation. 1989;80:1313–1319.
    1. Dias CS, Shaywitz AJ, Wasserman SM, et al. Effects of AMG 145 on low-density lipoprotein cholesterol levels: results from 2 randomized, double-blind, placebo-controlled, ascending-dose phase 1 studies in healthy volunteers and hypercholesterolemic subjects on statins. J Am Coll Cardiol. 2012;60:1888–1898. doi: 10.1016/j.jacc.2012.08.986.
    1. Fonarow GC, Keech AC, Pedersen TR, Giugliano RP, Sever PS, Lindgren P, van Hout B, Villa G, Qian Y, Somaratne R, Sabatine MS. Cost-effectiveness of evolocumab therapy for reducing cardiovascular events in patients with atherosclerotic cardiovascular disease. JAMA Cardiol. 2017;2:1069–1078. doi: 10.1001/jamacardio.2017.2762.
    1. Lhoták S, Sood S, Brimble E, Carlisle RE, Colgan SM, Mazzetti A, Dickhout JG, Ingram AJ, Austin RC. ER stress contributes to renal proximal tubule injury by increasing SREBP-2-mediated lipid accumulation and apoptotic cell death. Am J Physiol Renal Physiol. 2012;303:F266–F278. doi: 10.1152/ajprenal.00482.2011.
    1. De Miguel C, Hamrick WC, Hobbs JL, Pollock DM, Carmines PK, Pollock JS. Endothelin receptor-specific control of endoplasmic reticulum stress and apoptosis in the kidney. Sci Rep. 2017;7:43152. doi: 10.1038/srep43152.
    1. Ai D, Chen C, Han S, Ganda A, Murphy AJ, Haeusler R, Thorp E, Accili D, Horton JD, Tall AR. Regulation of hepatic LDL receptors by mTORC1 and PCSK9 in mice. J Clin Invest. 2012;122:1262–1270.
    1. Ottosson-Seeberger A, Lundberg JM, Alvestrand A, Ahlborg G. Exogenous endothelin-1 causes peripheral insulin resistance in healthy humans. Acta Physiol Scand. 1997;161:211–220. doi: 10.1046/j.1365-201X.1997.00212.x.
    1. Berthiaume N, Carlson CJ, Rondinone CM, Zinker BA. Endothelin antagonism improves hepatic insulin sensitivity associated with insulin signaling in Zucker fatty rats. Metabolism. 2005;54:1515–1523. doi: 10.1016/j.metabol.2005.05.019.
    1. Ahlborg G, Lindstrom J. Insulin sensitivity and big ET-1 conversion to ET-1 after ETA- or ETB-receptor blockade in humans. J Appl Physiol (1985) 2002;93:2112–2121.
    1. Ferri N, Tibolla G, Pirillo A, Cipollone F, Mezzetti A, Pacia S, Corsini A, Catapano AL. Proprotein convertase subtilisin kexin type 9 (PCSK9) secreted by cultured smooth muscle cells reduces macrophages LDLR levels. Atherosclerosis. 2012;220:381–386. doi: 10.1016/j.atherosclerosis.2011.11.026.
    1. Stawowy P, Meyborg H, Bezhaeva T, Fritzsche J, Molnar S, Urban D, Fleck E. Expression and regulation of proprotein convertase subtilisin/kexin type 9 in vascular smooth muscle cells. Eur Heart J. 2013;34:P4166–P4166.
    1. US National Library of Medicine. A Study of the Effect and Safety of Sparsentan in the Treatment of Patients With IgA Nephropathy (PROTECT). . Accessed April 23, 2019.
    1. US National Library of Medicine. Randomized, Double-Blind, Safety and Efficacy Study of RE-021 (Sparsentan) in Focal Segmental Glomerulosclerosis (DUET). . Accessed January 31, 2019.

Source: PubMed

3
Předplatit