Influence of Morbid Obesity on the Pharmacokinetics of Morphine, Morphine-3-Glucuronide, and Morphine-6-Glucuronide

Sjoerd de Hoogd, Pyry A J Välitalo, Albert Dahan, Simone van Kralingen, Michael M W Coughtrie, Eric P A van Dongen, Bert van Ramshorst, Catherijne A J Knibbe, Sjoerd de Hoogd, Pyry A J Välitalo, Albert Dahan, Simone van Kralingen, Michael M W Coughtrie, Eric P A van Dongen, Bert van Ramshorst, Catherijne A J Knibbe

Abstract

Introduction: Obesity is associated with many pathophysiological changes that may result in altered drug metabolism. The aim of this study is to investigate the influence of obesity on the pharmacokinetics of morphine, morphine-3-glucuronide (M3G), and morphine-6-glucuronide (M6G) through a combined analysis in morbidly obese patients and non-obese healthy volunteers.

Methods: In this analysis, data from 20 morbidly obese patients [mean body mass index 49.9 kg/m2 (range 37.6-78.6 kg/m2) and weight 151.3 kg (range 112-251.9 kg)] and 20 healthy volunteers [mean weight 70.6 kg (range 58-85 kg)] were included. Morbidly obese patients received 10 mg of intravenous (I.V.) morphine after gastric bypass surgery, with additional morphine I.V. doses as needed. Healthy volunteers received an I.V. bolus of morphine of 0.1 mg/kg followed by an infusion of 0.030 mg kg-1 h-1 for 1 h. Population pharmacokinetic modeling was performed using NONMEM 7.2.

Results: In morbidly obese patients, elimination clearance of M3G and M6G was decreased substantially compared with healthy volunteers (p < 0.001). Regarding glucuronidation, only a slight decrease in the formation of M6G and a delay in the formation of M3G was found (both p < 0.001). Obesity was also identified as a covariate for the peripheral volume of distribution of morphine (p < 0.001).

Conclusion: Metabolism of morphine is not altered in morbidly obese patients. However, decreased elimination of both M3G and M6G is evident, resulting in a substantial increase in exposure to these two metabolites. A rational explanation of this finding is that it results from alterations in membrane transporter function and/or expression in the liver. ClinicalTrials.gov identifier: NCT01097148.

Conflict of interest statement

Funding

No sources of funding were used in the preparation of this article.

Conflict of Interest

Sjoerd de Hoogd, Pyry A. J. Välitalo, Albert Dahan, Simone van Kralingen, Michael M. W. Coughtrie, Eric P. A. van Dongen, Bert van Ramshorst, and Catherijne A. J. Knibbe have no conflicts of interest directly relevant to the content of this article.

Ethics Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Figures

Fig. 1
Fig. 1
Schematic of the population pharmacokinetic model of morphine and morphine glucuronides. CLF formation clearance, CLE elimination clearance, Ktr transit rate constant, M3G morphine-3-glucuronide, M6G morphine-6-glucuronide, Q inter-compartmental clearance from the central compartment of morphine to the peripheral compartments of morphine, V1 central volume of distribution, V4M,V5M peripheral compartments of morphine, V3M6G = V2M3G central volumes of morpine glucuronides, CLnon-glucuronide = 35% of Cltotal (70 kg), CLtotal = Clnon-glucuronide + CLF M3G + CLF M6G
Fig. 2
Fig. 2
Goodness-of-fit plots of morbidly obese individuals (n = 20, blue squares) and healthy volunteers (n = 20, red rounds). On the first row morphine (a), second row morphine-3-glucuronide (b), and third row morphine-6-glucuronide (c). Please note the scale differences in the y-axis. conc. concentration, NPDE normalized prediction distribution error
Fig. 3
Fig. 3
Post-hoc parameters estimates of morbidly obese individuals (n = 20, blue squares) and healthy volunteers (n = 20, red rounds) from the final model vs. total body weight, including morphine-3-glucuronide elimination clearance (CLE M3G) vs. total body weight (a), morphine-6-glucuronide elimination clearance (CLE M6G) vs. total body weight (b), morphine-3-glucuronide transit rate constant (Ktr) vs. total body weight (c), morphine-6-glucuronide transit rate constant (Ktr2) vs. total body weight (d), peripheral volume of distribution of morphine (V1M) vs. total body weight (e), and formation clearance of morphine-6-glucuronide (CLF M6G) vs. total body weight (f)
Fig. 4
Fig. 4
Population predicted morphine, morphine-3-glucuronide (M3G), and morphine-6-glucuronide (M6G) concentrations over time in four typical study patients (56, 75, 125, and 253 kg) after a 10-mg intravenous bolus dose of morphine hydrochloride (ac) and a 2-mg/h continuous infusion of morphine hydrochloride for 48 h (df)

References

    1. World Health Organization. Fact sheet on obesity and overweight. January 2015. . Accessed 3 Feb 2016
    1. Knibbe CA, Brill MJ, van Rongen A, et al. Drug disposition in obesity: toward evidence-based dosing. Annu Rev Pharmacol Toxicol. 2015;55:149–167. doi: 10.1146/annurev-pharmtox-010814-124354.
    1. van Rongen A, Valitalo PA, Peeters MY, et al. Morbidly obese patients exhibit increased CYP2E1-mediated oxidation of acetaminophen. Clin Pharmacokinet. 2016;55(7):833–847. doi: 10.1007/s40262-015-0357-0.
    1. Brill MJ, van Rongen A, Houwink AP, et al. Midazolam pharmacokinetics in morbidly obese patients following semi-simultaneous oral and intravenous administration: a comparison with healthy volunteers. Clin Pharmacokinet. 2014;53(10):931–941. doi: 10.1007/s40262-014-0166-x.
    1. Brill MJ, van Rongen A, van Dongen EP, et al. The pharmacokinetics of the CYP3A substrate midazolam in morbidly obese patients before and one year after bariatric surgery. Pharm Res. 2015;32(12):3927–3936. doi: 10.1007/s11095-015-1752-9.
    1. Brill MJ, Houwink AP, Schmidt S, et al. Reduced subcutaneous tissue distribution of cefazolin in morbidly obese versus non-obese patients determined using clinical microdialysis. J Antimicrob Chemother. 2014;69(3):715–723. doi: 10.1093/jac/dkt444.
    1. Martini C, Olofsen E, Yassen A, et al. Pharmacokinetic-pharmacodynamic modeling in acute and chronic pain: an overview of the recent literature. Expert Rev Clin Pharmacol. 2011;4(6):719–728. doi: 10.1586/ecp.11.59.
    1. Sverrisdottir E, Lund TM, Olesen AE, et al. A review of morphine and morphine-6-glucuronide’s pharmacokinetic-pharmacodynamic relationships in experimental and clinical pain. Eur J Pharm Sci. 2015;74:45–62. doi: 10.1016/j.ejps.2015.03.020.
    1. Lloret-Linares C, Luo H, Rouquette A, et al. The effect of morbid obesity on morphine glucuronidation. Pharmacol Res. 2017;118:64–70. doi: 10.1016/j.phrs.2016.08.031.
    1. Lloret-Linares C, Miyauchi E, Luo H, et al. Oral morphine pharmacokinetic in obesity: the role of P-glycoprotein, MRP2, MRP3, UGT2B7, and CYP3A4 jejunal contents and obesity-associated biomarkers. Mol Pharm. 2016;13(3):766–773. doi: 10.1021/acs.molpharmaceut.5b00656.
    1. Lloret-Linares C, Hirt D, Bardin C, et al. Effect of a Roux-en-Y gastric bypass on the pharmacokinetics of oral morphine using a population approach. Clin Pharmacokinet. 2014;53(10):919–930. doi: 10.1007/s40262-014-0163-0.
    1. Ferslew BC, Johnston CK, Tsakalozou E, et al. Altered morphine glucuronide and bile acid disposition in patients with nonalcoholic steatohepatitis. Clin Pharmacol Ther. 2015;97(4):419–427. doi: 10.1002/cpt.66.
    1. Hitt HC, McMillen RC, Thornton-Neaves T, et al. Comorbidity of obesity and pain in a general population: results from the Southern Pain Prevalence Study. J Pain. 2007;8(5):430–436. doi: 10.1016/j.jpain.2006.12.003.
    1. Lloret Linares C, Decleves X, Oppert JM, et al. Pharmacology of morphine in obese patients: clinical implications. Clin Pharmacokinet. 2009;48(10):635–651. doi: 10.2165/11317150-000000000-00000.
    1. Rose DK, Cohen MM, Wigglesworth DF, DeBoer DP. Critical respiratory events in the postanesthesia care unit: patient, surgical, and anesthetic factors. Anesthesiology. 1994;81(2):410–418. doi: 10.1097/00000542-199408000-00020.
    1. Sarton E, Olofsen E, Romberg R, et al. Sex differences in morphine analgesia: an experimental study in healthy volunteers. Anesthesiology. 2000;93(5):1245–1254. doi: 10.1097/00000542-200011000-00018.
    1. Romberg R, Olofsen E, Sarton E, et al. Pharmacokinetic-pharmacodynamic modeling of morphine-6-glucuronide-induced analgesia in healthy volunteers: absence of sex differences. Anesthesiology. 2004;100(1):120–133. doi: 10.1097/00000542-200401000-00021.
    1. van Kralingen S, Taks M, Diepstraten J, et al. Pharmacokinetics and protein binding of cefazolin in morbidly obese patients. Eur J Clin Pharmacol. 2011;67(10):985–992. doi: 10.1007/s00228-011-1048-x.
    1. van Kralingen S, van de Garde EM, Knibbe CA, et al. Comparative evaluation of atracurium dosed on ideal body weight vs. total body weight in morbidly obese patients. Br J Clin Pharmacol. 2011;71(1):34–40. doi: 10.1111/j.1365-2125.2010.03803.x.
    1. Diepstraten J, Janssen EJ, Hackeng CM, et al. Population pharmacodynamic model for low molecular weight heparin nadroparin in morbidly obese and non-obese patients using anti-Xa levels as endpoint. Eur J Clin Pharmacol. 2015;71(1):25–34. doi: 10.1007/s00228-014-1760-4.
    1. Beal S, Sheiner L, Boeckmann A, Bauer R. NONMEM user’s guide (1989–2009) Ellicott City: Icon Development Solutions; 2009.
    1. Keizer RJ, Karlsson MO, Hooker A. Modeling and simulation workbench for NONMEM: tutorial on Pirana, PsN, and Xpose. CPT Pharmacomet Syst Pharmacol. 2013;2:e50. doi: 10.1038/psp.2013.24.
    1. R Development Core Team . R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2008.
    1. Meshkat N, Kuo CE, DiStefano J., 3rd On finding and using identifiable parameter combinations in nonlinear dynamic systems biology models and COMBOS: a novel web implementation. PLoS One. 2014;9(10):e110261. doi: 10.1371/journal.pone.0110261.
    1. Beal SL. Ways to fit a PK model with some data below the quantification limit. J Pharmacokinet Pharmacodyn. 2001;28(5):481–504. doi: 10.1023/A:1012299115260.
    1. Andersen G, Christrup L, Sjogren P. Relationships among morphine metabolism, pain and side effects during long-term treatment: an update. J Pain Symptom Manag. 2003;25(1):74–91. doi: 10.1016/S0885-3924(02)00531-6.
    1. Yafune A, Ishiguro M. Bootstrap approach for constructing confidence intervals for population pharmacokinetic parameters. I: a use of bootstrap standard error. Stat Med. 1999;18(5):581–599. doi: 10.1002/(SICI)1097-0258(19990315)18:5<581::AID-SIM47>;2-1.
    1. Brill MJ, Diepstraten J, van Rongen A, et al. Impact of obesity on drug metabolism and elimination in adults and children. Clin Pharmacokinet. 2012;51(5):277–304. doi: 10.2165/11599410-000000000-00000.
    1. Christrup LL. Morphine metabolites. Acta Anaesthesiol Scand. 1997;41(1 Pt 2):116–122. doi: 10.1111/j.1399-6576.1997.tb04625.x.
    1. Ouellet DM, Pollack GM. Biliary excretion and enterohepatic recirculation of morphine-3-glucuronide in rats. Drug Metab Dispos. 1995;23(4):478–484.
    1. Garrett ER, Jackson AJ. Pharmacokinetics of morphine and its surrogates. III: morphine and morphine 3-monoglucuronide pharmacokinetics in the dog as a function of dose. J Pharm Sci. 1979;68(6):753–771. doi: 10.1002/jps.2600680627.
    1. Dzierlenga AL, Clarke JD, Hargraves TL, et al. Mechanistic basis of altered morphine disposition in nonalcoholic steatohepatitis. J Pharmacol Exp Ther. 2015;352(3):462–470. doi: 10.1124/jpet.114.220764.
    1. Fisher CD, Lickteig AJ, Augustine LM, et al. Hepatic cytochrome P450 enzyme alterations in humans with progressive stages of nonalcoholic fatty liver disease. Drug Metab Dispos. 2009;37(10):2087–2094. doi: 10.1124/dmd.109.027466.
    1. Hardwick RN, Ferreira DW, More VR, et al. Altered UDP-glucuronosyltransferase and sulfotransferase expression and function during progressive stages of human nonalcoholic fatty liver disease. Drug Metab Dispos. 2013;41(3):554–561. doi: 10.1124/dmd.112.048439.
    1. Konig J, Rost D, Cui Y, Keppler D. Characterization of the human multidrug resistance protein isoform MRP3 localized to the basolateral hepatocyte membrane. Hepatology. 1999;29(4):1156–1163. doi: 10.1002/hep.510290404.
    1. Ahlers SJ, Valitalo PA, Peeters MY, et al. Morphine glucuronidation and elimination in intensive care patients: a comparison with healthy volunteers. Anesth Analg. 2015;121(5):1261–1273. doi: 10.1213/ANE.0000000000000936.
    1. Vanwijngaerden YM, Wauters J, Langouche L, et al. Critical illness evokes elevated circulating bile acids related to altered hepatic transporter and nuclear receptor expression. Hepatology. 2011;54(5):1741–1752. doi: 10.1002/hep.24582.
    1. Valkenburg AJ, Calvier EA, van Dijk M, et al. Pharmacodynamics and pharmacokinetics of orphine after cardiac surgery in children with and without Down syndrome. Pediatr Crit Care Med. 2016;17(10):930–938. doi: 10.1097/PCC.0000000000000904.
    1. Cherrington NJ, Slitt AL, Li N, Klaassen CD. Lipopolysaccharide-mediated regulation of hepatic transporter mRNA levels in rats. Drug Metab Dispos. 2004;32(7):734–741. doi: 10.1124/dmd.32.7.734.
    1. Smith MT, Watt JA, Cramond T. Morphine-3-glucuronide: a potent antagonist of morphine analgesia. Life Sci. 1990;47(6):579–585. doi: 10.1016/0024-3205(90)90619-3.
    1. Gong QL, Hedner T, Hedner J, et al. Antinociceptive and ventilatory effects of the morphine metabolites: morphine-6-glucuronide and morphine-3-glucuronide. Eur J Pharmacol. 1991;193(1):47–56. doi: 10.1016/0014-2999(91)90199-Z.
    1. Mercadante S. The role of morphine glucuronides in cancer pain. Palliat Med. 1999;13(2):95–104. doi: 10.1191/026921699678158579.
    1. Dahan A, Lotsch J. Morphine is not a prodrug. Br J Anaesth. 2015;114(6):1005–1006. doi: 10.1093/bja/aev125.

Source: PubMed

3
Předplatit