Suprachoroidal Delivery of Small Molecules, Nanoparticles, Gene and Cell Therapies for Ocular Diseases

Chen-Rei Wan, Leroy Muya, Viral Kansara, Thomas A Ciulla, Chen-Rei Wan, Leroy Muya, Viral Kansara, Thomas A Ciulla

Abstract

Suprachoroidal drug delivery technology has advanced rapidly and emerged as a promising administration route for a variety of therapeutic candidates, in order to target multiple ocular diseases, ranging from neovascular age-related macular degeneration to choroidal melanoma. This review summarizes the latest preclinical and clinical progress in suprachoroidal delivery of therapeutic agents, including small molecule suspensions, polymeric entrapped small molecules, gene therapy (viral and nonviral nanoparticles), viral nanoparticle conjugates (VNCs), and cell therapy. Formulation customization is critical in achieving favorable pharmacokinetics, and sustained drug release profiles have been repeatedly observed for multiple small molecule suspensions and polymeric formulations. Novel therapeutic agents such as viral and nonviral gene therapy, as well as VNCs, have demonstrated promise in animal studies. Several of these suprachoroidally-administered therapies have been assessed in clinical trials, including small molecule suspensions of triamcinolone acetonide and axitinib, viral vector RGX-314 for gene therapy, and VNC AU-011. With continued drug delivery research and optimization, coupled with customized drug formulations, suprachoroidal drug delivery may address large unmet therapeutic needs in ophthalmology, targeting affected tissues with novel therapies for efficacy benefits, compartmentalizing therapies away from unaffected tissues for safety benefits, and achieving durability to relieve the treatment burden noted with current agents.

Keywords: anti-VEGF; gene therapy; glaucoma; macular degeneration; microinjector; ocular drug delivery; suprachoroidal; suprachoroidal space (SCS).

Conflict of interest statement

C.W., L.M., V.K. and T.A.C. are all employees of Clearside Biomedical and own stocks from Clearside Biomedical.

Figures

Figure 1
Figure 1
Schematic of Microneedle Injection into the Suprachoroidal Space (SCS).
Figure 2
Figure 2
Modalities to Administer Therapeutic Agents into the Suprachoroidal Space (SCS).
Figure 3
Figure 3
Preclinical and Clinical Results of SC Administration of Small Molecule Suspensions. CLS-TA: investigational formulation of triamcinolone acetonide developed by Clearside Biomedical (Alpharetta, GA, USA); LPS: lipopolysaccharides.

References

    1. Patel A. Ocular drug delivery systems: An overview. World J. Pharmacol. 2013;2:47. doi: 10.5497/wjp.v2.i2.47.
    1. Edelhauser H.F., Rowe-Rendleman C.L., Robinson M.R., Dawson D.G., Chader G.J., Grossniklaus H.E., Rittenhouse K.D., Wilson C.G., Weber D.A., Kuppermann B.D., et al. Ophthalmic drug delivery systems for the treatment of retinal diseases: Basic research to clinical applications. Investig. Ophthalmol. Vis. Sci. 2010;51:5403–5420. doi: 10.1167/iovs.10-5392.
    1. Nayak K., Misra M. A review on recent drug delivery systems for posterior segment of eye. Biomed. Pharmacother. 2018;107:1564–1582. doi: 10.1016/j.biopha.2018.08.138.
    1. Varela-Fernández R., Díaz-Tomé V., Luaces-Rodríguez A., Conde-Penedo A., García-Otero X., Luzardo-álvarez A., Fernández-Ferreiro A., Otero-Espinar F.J. Drug delivery to the posterior segment of the eye: Biopharmaceutic and pharmacokinetic considerations. Pharmaceutics. 2020;12
    1. Puliafito C.A., Wykoff C.C. New Frontiers in Retina: Highlights of the 2020 angiogenesis, exudation and degeneration symposium. Int. J. Retin. Vitr. 2020:6. doi: 10.1186/s40942-020-00221-4.
    1. Korobelnik J.F., Holz F.G., Roider J., Ogura Y., Simader C., Schmidt-Erfurth U., Lorenz K., Honda M., Vitti R., Berliner A.J., et al. Intravitreal aflibercept injection for macular edema resulting from central retinal vein occlusion: One-year results of the phase 3 GALILEO study. Ophthalmology. 2014;121:202–208. doi: 10.1016/j.ophtha.2013.08.012.
    1. Heier J.S., Clark W.L., Boyer D.S., Brown D.M., Vitti R., Berliner A.J., Kazmi H., Ma Y., Stemper B., Zeitz O., et al. Intravitreal aflibercept injection for macular edema due to central retinal vein occlusion: Two-year results from the COPERNICUS study. Ophthalmology. 2014;121:1–2. doi: 10.1016/j.ophtha.2014.01.027.
    1. Clark W.L., Boyer D.S., Heier J.S., Brown D.M., Haller J.A., Vitti R., Kazmi H., Berliner A.J., Erickson K., Chu K.W., et al. Intravitreal Aflibercept for Macular Edema Following Branch Retinal Vein Occlusion 52-Week Results of the VIBRANT Study. Ophthalmology. 2016;123:330–336. doi: 10.1016/j.ophtha.2015.09.035.
    1. Campochiaro P.A., Brown D.M., Pearson A., Chen S., Boyer D., Ruiz-Moreno J., Garretson B., Gupta A., Hariprasad S.M., Bailey C., et al. Sustained delivery fluocinolone acetonide vitreous inserts provide benefit for at least 3 years in patients with diabetic macular edema. Ophthalmology. 2012;119:2125–2132. doi: 10.1016/j.ophtha.2012.04.030.
    1. Heier J.S., Korobelnik J.-F., Brown D.M., Schmidt-Erfurth U., Do D.V., Midena E., Boyer D.S., Terasaki H., Kaiser P.K., Marcus D.M., et al. Intravitreal Aflibercept for Diabetic Macular Edema: 148-Week Results from the VISTA and VIVID Studies. Ophthalmology. 2016;123:2376–2385. doi: 10.1016/j.ophtha.2016.07.032.
    1. Brown D.M., Kaiser P.K., Michels M., Soubrane G., Heier J.S., Kim R.Y., Sy J.P., Schneider S. Ranibizumab versus Verteporfin for Neovascular Age-Related Macular Degeneration. N. Engl. J. Med. 2006;355:1432–1444. doi: 10.1056/NEJMoa062655.
    1. Boyer D.S., Yoon Y.H., Belfort R., Bandello F., Maturi R.K., Augustin A.J., Li X.Y., Cui H., Hashad Y., Whitcup S.M. Three-year, randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with diabetic macular edema. Ophthalmology. 2014;121:1904–1914. doi: 10.1016/j.ophtha.2014.04.024.
    1. Nguyen Q.D., Brown D.M., Marcus D.M., Boyer D.S., Patel S., Feiner L., Gibson A., Sy J., Rundle A.C., Hopkins J.J., et al. Ranibizumab for diabetic macular edema: Results from 2 phase iii randomized trials: RISE and RIDE. Ophthalmology. 2012;119:789–801. doi: 10.1016/j.ophtha.2011.12.039.
    1. Martin D.F., Maguire M.G., Ying G.S., Grunwald J.E., Fine S.L., Jaffe G.J. Ranibizumab and bevacizumab for neovascular age-related macular degeneration. N. Engl. J. Med. 2011;364:1897–1908. doi: 10.1056/NEJMoa1102673.
    1. Varma R., Bressler N.M., Suñer I., Lee P., Dolan C.M., Ward J., Colman S., Rubio R.G. Improved vision-related function after ranibizumab for macular edema after retinal vein occlusion: Results from the BRAVO and CRUISE trials. Ophthalmology. 2012;119:2108–2118. doi: 10.1016/j.ophtha.2012.05.017.
    1. Rosenfeld P.J., Brown D.M., Heier J.S., Boyer D.S., Kaiser P.K., Chung C.Y., Kim R.Y. Ranibizumab for neovascular age-related macular degeneration. N. Engl. J. Med. 2006;355:1419–1431. doi: 10.1056/NEJMoa054481.
    1. Diabetic Retinopathy Clinical Research Network. Wells J., Glassman A.R., Ayala A.R., Jampol L.M., Aiello L., Antoszyk A.N., Arnold-Bush B., Baker C., Bressler N.M., et al. Aflibercept, Bevacizumab, or Ranibizumab for Diabetic Macular Edema. N. Engl. J. Med. 2015;372:1193–1203. doi: 10.1016/j.ophtha.2016.02.022.
    1. Ciulla T.A., Bracha P., Pollack J., Williams D.F. Real-world Outcomes of Anti-Vascular Endothelial Growth Factor Therapy in Diabetic Macular Edema in the United States. Ophthalmol. Retin. 2018;2:1179–1187. doi: 10.1016/j.oret.2018.06.004.
    1. Ciulla T.A., Hussain R.M., Pollack J.S., Williams D.F. Visual Acuity Outcomes and Anti–Vascular Endothelial Growth Factor Therapy Intensity in Neovascular Age-Related Macular Degeneration Patients: A Real-World Analysis of 49 485 Eyes. Ophthalmol. Retin. 2020;4:19–30. doi: 10.1016/j.oret.2019.05.017.
    1. Ciulla T.A., Huang F., Westby K., Williams D.F., Zaveri S., Patel S.C. Real-world Outcomes of Anti-Vascular Endothelial Growth Factor Therapy in Neovascular Age-Related Macular Degeneration in the United States. Ophthalmol. Retin. 2018;2:645–653. doi: 10.1016/j.oret.2018.01.006.
    1. Ciulla T., Pollack J.S., Williams D.F. Visual acuity outcomes and anti-VEGF therapy intensity in macular oedema due to retinal vein occlusion: A real-world analysis of 15 613 patient eyes. Br. J. Ophthalmol. 2020 doi: 10.1136/bjophthalmol-2020-317337.
    1. Ciulla T.A., Pollack J.S., Williams D.F. Visual acuity outcomes and anti-VEGF therapy intensity in diabetic macular oedema: A real-world analysis of 28 658 patient eyes. Br. J. Ophthalmol. 2020 doi: 10.1136/bjophthalmol-2020-315933.
    1. Amoaku W.M., Chakravarthy U., Gale R., Gavin M., Ghanchi F., Gibson J., Harding S., Johnston R.L., Kelly S., Lotery A., et al. Defining response to anti-VEGF therapies in neovascular AMD. Eye. 2015;29:721–731. doi: 10.1038/eye.2015.48.
    1. Kempen J.H., Altaweel M.M., Holbrook J.T., Jabs D.A., Louis T.A., Sugar E.A., Thorne J.E. Randomized comparison of systemic anti-inflammatory therapy versus fluocinolone acetonide implant for intermediate, posterior, and panuveitis: The multicenter uveitis steroid treatment trial. Ophthalmology. 2011;118:1916–1926. doi: 10.1016/j.ophtha.2011.07.027.
    1. Yap Y.C., Papathomas T., Kamal A. Results of intravitreal dexamethasone implant 0.7 mg (Ozurdex®) in non-infectious posterior uveitis. Int. J. Ophthalmol. 2015;8:835–838. doi: 10.3980/j.issn.2222-3959.2015.04.34.
    1. Kempen J.H., Jabs D.A. Benefits of systemic anti-inflammatory therapy versus fluocinolone acetonide intraocular implant for intermediate uveitis, posterior uveitis, and panuveitis: Fifty-four-month results of the Multicenter Uveitis Steroid Treatment (MUST) Trial and Follow-up Study. Ophthalmology. 2015;122:1967–1975. doi: 10.1016/j.ophtha.2015.06.042.
    1. Cho H.Y., Kang S.W., Kim Y.T., Chung S.E., Lee S.W. A three-year follow-up of intravitreal triamcinolone acetonide injection and macular laser photocoagulation for diffuse diabetic macular edema. Korean J. Ophthalmol. 2012;26:362–368. doi: 10.3341/kjo.2012.26.5.362.
    1. Yang Y., Bailey C., Loewenstein A., Massin P. Intravitreal corticosteroids in diabetic macular edema: Pharmacokinetic considerations. Retina. 2015;35:2440–2449. doi: 10.1097/IAE.0000000000000726.
    1. Sen H.N., Vitale S., Gangaputra S.S., Nussenblatt R.B., Liesegang T.L., Levy-Clarke G.A., Rosenbaum J.T., Suhler E.B., Thorne J.E., Foster C.S., et al. Periocular corticosteroid injections in uveitis: Effects and complications. Ophthalmology. 2014;121:2275–2286. doi: 10.1016/j.ophtha.2014.05.021.
    1. Kothari S., Foster C.S., Pistilli M., Liesegang T.L., Daniel E., Sen H.N., Suhler E.B., Thorne J.E., Jabs D.A., Levy-Clarke G.A., et al. The risk of intraocular pressure elevation in pediatric noninfectious uveitis. Ophthalmology. 2015;122:1987–2001. doi: 10.1016/j.ophtha.2015.06.041.
    1. James E.R. The etiology of steroid cataract. J. Ocul. Pharmacol. Ther. 2007;23:403–420. doi: 10.1089/jop.2006.0067.
    1. Weinreb R.N., Aung T., Medeiros F.A. The pathophysiology and treatment of glaucoma: A review. JAMA - J. Am. Med. Assoc. 2014;311:1901–1911. doi: 10.1001/jama.2014.3192.
    1. Burns E., Mulley G.P. Practical problems with eye-drops among elderly ophthalmology outpatients. Age Ageing. 1992;21:168–170. doi: 10.1093/ageing/21.3.168.
    1. Gurwitz J.H., Glynn R.J., Monane M., Everitt D.E., Gilden D., Smith N., Avorn J. Treatment for glaucoma: Adherence by the elderly. Am. J. Public Health. 1993;83:711–716. doi: 10.2105/AJPH.83.5.711.
    1. Djebli N., Khier S., Griguer F., Coutant A.L., Tavernier A., Fabre G., Leriche C., Fabre D. Ocular Drug Distribution After Topical Administration: Population Pharmacokinetic Model in Rabbits. Eur. J. Drug Metab. Pharmacokinet. 2017;42:59–68. doi: 10.1007/s13318-016-0319-4.
    1. Sakanaka K., Kawazu K., Tomonari M., Kitahara T., Nakashima M., Nishida K., Nakamura J., Sasaki H., Higuchi S. Ocular pharmacokinetic/pharmacodynamic modeling for multiple anti-glaucoma drugs. Biol. Pharm. Bull. 2008;31:1590–1595. doi: 10.1248/bpb.31.1590.
    1. Goldstein D.A., Ciulla T.A. Suprachoroidal Delivery of Suspensions of Tyrosine Kinase Inhibitor, Complement Inhibitor, and Corticosteroid: Preclinical and Clinical Correlates | IOVS | ARVO Journals. Invest. Ophthalmol. Vis. Sci. 2020;61:2898.
    1. Habot-Wilner Z., Noronha G., Wykoff C.C. Suprachoroidally injected pharmacological agents for the treatment of chorio-retinal diseases: A targeted approach. Acta Ophthalmol. 2019;97:460–472. doi: 10.1111/aos.14042.
    1. Yeh S., Khurana R.N., Shah M., Henry C.R., Wang R.C., Kissner J.M., Ciulla T.A., Noronha G. Efficacy and Safety of Suprachoroidal CLS-TA for Macular Edema Secondary to Noninfectious Uveitis: Phase 3 Randomized Trial. Ophthalmology. 2020;127:948–955. doi: 10.1016/j.ophtha.2020.01.006.
    1. Yeh S., Kurup S.K., Wang R.C., Foster C.S., Noronha G., Nguyen Q.D., Do D.V. Suprachoroidal Injection of Triamcinolone Acetonide, Cls-Ta, for Macular Edema due to Noninfectious Uveitis: A Randomized, Phase 2 Study (DOGWOOD) Retina. 2019;39:1880–1888. doi: 10.1097/IAE.0000000000002279.
    1. Campochiaro P.A., Wykoff C.C., Brown D.M., Boyer D.S., Barakat M., Taraborelli D., Noronha G. Suprachoroidal Triamcinolone Acetonide for Retinal Vein Occlusion: Results of the Tanzanite Study. Ophthalmol. Retin. 2018;2:320–328. doi: 10.1016/j.oret.2017.07.013.
    1. Barakat M.R., Wykoff C.C., Gonzalez V., Hu A., Marcus D., Zavaleta E., Ciulla T.A. Suprachoroidal CLS-TA plus Intravitreal Aflibercept for Diabetic Macular Edema: A Randomized, Double-Masked, Parallel-Design, Controlled Study. Ophthalmol. Retin. 2021;5:60–70. doi: 10.1016/j.oret.2020.08.007.
    1. Henry C.R., Shah M., Barakat M.R., Dayani P., Wang R.C., Khurana R.N., Rifkin L., Yeh S., Hall C., Ciulla T. Suprachoroidal CLS-TA for non-infectious uveitis: An open-label, safety trial (AZALEA) Br. J. Ophthalmol. 2021 doi: 10.1136/bjophthalmol-2020-318019.
    1. Block L.H., Patel R.N. Solubility and Dissolution of Triamcinolone Acetonide. J. Pharm. Sci. 1973;62:617–621. doi: 10.1002/jps.2600620416.
    1. Edelhauser H.F., Patel S.R., Meschter C., Dean R., Powell K., Verhoeven R. Suprachoroidal Microinjection Delivers Triamcinolone Acetonide to Therapeutically-Relevant Posterior Ocular Structures and Limits Exposure in the Anterior Segment. Invest. Ophthalmol. Vis. Sci. 2013;54:5063.
    1. Edelhauser H.F., Verhoeven R.S., Burke B., Struble C.B., Patel S.R. Intraocular Distribution and Targeting of Triamcinolone Acetonide Suspension Administered Into the Suprachoroidal Space. Invest. Ophthalmol. Vis. Sci. 2014;55:5259.
    1. Gilger B.C., Abarca E.M., Salmon J.H., Patel S. Treatment of acute posterior uveitis in a porcine model by injection of triamcinolone acetonide into the suprachoroidal space using microneedles. Invest. Ophthalmol. Vis. Sci. 2013;54:2483–2492. doi: 10.1167/iovs.13-11747.
    1. Chen M., Li X., Liu J., Han Y., Cheng L. Safety and pharmacodynamics of suprachoroidal injection of triamcinolone acetonide as a controlled ocular drug release model. J. Control. Release. 2015;203:109–117. doi: 10.1016/j.jconrel.2015.02.021.
    1. Patel S., Carvalho R., Mundwiler K., Meschter C., Verhoeven R. Evaluation of Suprachoroidal Microinjection of Triamcinolone Acetonide in a Model of Panuveitis in Albino Rabbits. Invest. Ophthalmol. Vis. Sci. 2013;54:2927.
    1. Noronha G., Blackwell K., Gilger B.C., Kissner J., Patel S.R., Walsh K.T. Evaluation of suprachoroidal CLS-TA and oral prednisone in a porcine model of uveitis. Invest. Ophthalmol. Vis. Sci. 2015;56:3110.
    1. Lledó Riquelme M., Campos-Mollo E., Fernández-Sánchez L. Topical axitinib is a potent inhibitor of corneal neovascularization. Clin. Experiment. Ophthalmol. 2018;46:1063–1074. doi: 10.1111/ceo.13333.
    1. Lieu C.H., Tran H., Jiang Z.-Q., Mao M., Overman M.J., Lin E., Eng C., Morris J., Ellis L., Heymach J.V., et al. The Association of Alternate VEGF Ligands with Resistance to Anti-VEGF Therapy in Metastatic Colorectal Cancer. PLoS ONE. 2013;8:e77117. doi: 10.1371/journal.pone.0077117.
    1. Cabral T., Lima L.H., Luiz L.G., Polido J., Correa É.P., Oshima A., Duong J., Serracarbassa P., Regatieri C.V., Mahajan V.B., et al. Bevacizumab Injection in Patients with Neovascular Age-Related Macular Degeneration Increases Angiogenic Biomarkers. Ophthalmol. Retin. 2018;2:31–37. doi: 10.1016/j.oret.2017.04.004.
    1. Giddabasappa A., Lalwani K., Norberg R., Gukasyan H.J., Paterson D., Schachar R.A., Rittenhouse K., Klamerus K., Mosyak L., Eswaraka J. Axitinib inhibits retinal and choroidal neovascularization in in vitro and in vivo models. Exp. Eye Res. 2016;145:373–379. doi: 10.1016/j.exer.2016.02.010.
    1. Jackson T. OPT-302 Phase 2b in Wet AMD A Multicenter, Randomized, Double-Masked, Sham Controlled Study of Intravitreal OPT-302 in Combination with Ranibizumab, in Participants with Wet AMD. [(accessed on 1 February 2021)]; Available online: .
    1. Bhargava P., Robinson M.O. Development of Second-Generation VEGFR Tyrosine Kinase Inhibitors: Current Status. Curr. Oncol. Rep. 2011;13:103–111. doi: 10.1007/s11912-011-0154-3.
    1. Yuan X., Marcano D.C., Shin C.S., Hua X., Isenhart L.C., Pflugfelder S.C., Acharya G. Ocular Drug Delivery Nanowafer with Enhanced Therapeutic Efficacy. ACS Nano. 2015;9:1749–1758. doi: 10.1021/nn506599f.
    1. Kang S., Roh C.R., Cho W.-K., Park K.C., Yang K.-J., Choi H.-S., Kim S.-H., Roh Y.-J. Antiangiogenic Effects of Axitinib, an Inhibitor of Vascular Endothelial Growth Factor Receptor Tyrosine Kinase, on Laser-Induced Choroidal Neovascularization in Mice. Curr. Eye Res. 2013;38:119–127. doi: 10.3109/02713683.2012.727520.
    1. Thiele S., Liegl R.G., König S., Siedlecki J., Langer J., Eibl K., Haritoglou C., Kampik A., Kernt M. Multikinase inhibitors as a new approach in neovascular age-related macular degeneration (AMD) treatment: In vitro safety evaluations of axitinib, pazopanib and sorafenib for intraocular use. Klin. Monbl. Augenheilkd. 2013;230:247–254. doi: 10.1055/s-0032-1328161.
    1. Research, C. for D.E. and Clinical Pharmacology and Biopharmaceutics Review(s) Application Number: 202324Orig1s000. [(accessed on 15 February 2021)]; Available online: .
    1. Muya L., Kansara V., Ciulla T. Pharmacokinetics and Ocular Tolerability of Suprachoroidal CLS-AX (axitinib injectable suspension) in rabbits. Invest. Ophthalmol. Vis. Sci. 2020;61:4925.
    1. Biomedical C. Clearside Biomedical Announces First Patients Enrolled in Phase 1/2a Clinical Trial of CLS-AX (axitinib injectable suspension) for the Treatment of Wet AMD. [(accessed on 1 February 2021)]; Available online: .
    1. Hancock S., Phadke A., Kansara V., Boyer D., Rivera J., Marlor C., Prodos S., Wiles J., McElheny R., Ciulla T.A., et al. Ocular Pharmacokinetics and Safety of Suprachoroidal A01017, Small Molecule Complement Inhibitor, Injectable Suspension in Rabbits. Invest. Ophthalmol. Vis. Sci. 2020;61:3694.
    1. Muya L. Pharmacokinetics and Ocular Tolerability of suprachoroidal BCX4161 suspension, a selective plasma kallikrein inhibitor, in rabbits. Invest. Ophthalmol. Vis. Sci. 2021;61:4925.
    1. Prieto E., Cardiel M.J., Vispe E., Idoipe M., Garcia-Martin E., Fraile J.M., Polo V., Mayoral J.A., Pablo L.E., Rodrigo M.J. Dexamethasone delivery to the ocular posterior segment by sustained-release Laponite formulation. Biomed. Mater. 2020 doi: 10.1088/1748-605X/aba445.
    1. Prieto E., Vispe E., De Martino A., Idoipe M., Rodrigo M.J., Garcia-Martin E., Fraile J.M., Polo-Llorens V., Mayoral J.A. Safety study of intravitreal and suprachoroidal Laponite clay in rabbit eyes. Graefe’s Arch. Clin. Exp. Ophthalmol. 2018;256:535–546. doi: 10.1007/s00417-017-3893-5.
    1. Das S.S., Neelam, Hussain K., Singh S., Hussain A., Faruk A., Tebyetekerwa M. Laponite-based Nanomaterials for Biomedical Applications: A Review. Curr. Pharm. Des. 2019;25:424–443. doi: 10.2174/1381612825666190402165845.
    1. Saliba J.B., Vieira L., Fernandes-Cunha G.M., Da Silva G.R., Fialho S.L., Silva-Cunha A., Bousquet E., Naud M.C., Ayres E., Oréfice R.L., et al. Anti-inflammatory effect of dexamethasone controlled released from anterior suprachoroidal polyurethane implants on endotoxin-induced uveitis in rats. Investig. Ophthalmol. Vis. Sci. 2016;57:1671–1679. doi: 10.1167/iovs.15-18127.
    1. Alhasani R.H., Almarhoun M., Zhou X., Reilly J., Patterson S., Zeng Z., Shu X. Tauroursodeoxycholic acid protects retinal pigment epithelial cells from oxidative injury and endoplasmic reticulum stress in vitro. Biomedicines. 2020;8:367. doi: 10.3390/biomedicines8090367.
    1. Mantopoulos D., Murakami Y., Comander J., Thanos A., Roh M., Miller J.W., Vavvas D.G. Tauroursodeoxycholic acid (TUDCA) protects photoreceptors from cell death after experimental retinal detachment. PLoS ONE. 2011;6 doi: 10.1371/journal.pone.0024245.
    1. Olsen T.W., Dyer R.B., Mano F., Boatright J.H., Chrenek M.A., Paley D., Wabner K., Schmit J., Chae J.B., Sellers J.T., et al. Drug Tissue Distribution of TUDCA From a Biodegradable Suprachoroidal Implant versus Intravitreal or Systemic Delivery in the Pig Model. Transl. Vis. Sci. Technol. 2020;9:11. doi: 10.1167/tvst.9.6.11.
    1. PubChem—Acriflavine. [(accessed on 1 February 2021)]; Available online: .
    1. Hackett S.F., Fu J., Kim Y.C., Tsujinaka H., Shen J., Lima e Silva R., Khan M., Hafiz Z., Wang T., Shin M., et al. Sustained delivery of acriflavine from the suprachoroidal space provides long term suppression of choroidal neovascularization. Biomaterials. 2020;243:119935. doi: 10.1016/j.biomaterials.2020.119935.
    1. Zeng M., Shen J., Liu Y., Lu L.Y., Ding K., Fortmann S.D., Khan M., Wang J., Hackett S.F., Semenza G.L., et al. The HIF-1 antagonist acriflavine: Visualization in retina and suppression of ocular neovascularization. J. Mol. Med. 2017;95:417–429. doi: 10.1007/s00109-016-1498-9.
    1. Shen J., Zeng M., Ding K., Lu L., Formica R., Liu Y., Hackett S., Campochiaro P.A. The HIF-1 inhibitor acriflavine is visualized in retina after multiple modes of administration/doses that suppress ocular neovascularization. Invest. Ophthalmol. Vis. Sci. 2016;57:4537.
    1. Chiang B., Kim Y.C., Doty A.C., Grossniklaus H.E., Schwendeman S.P., Prausnitz M.R. Sustained reduction of intraocular pressure by supraciliary delivery of brimonidine-loaded poly(lactic acid) microspheres for the treatment of glaucoma. J. Control. Release. 2016;228:48–57. doi: 10.1016/j.jconrel.2016.02.041.
    1. Chae J.J., Jung J.H., Zhu W., Gerberich B.G., Bahrani Fard M.R., Grossniklaus H.E., Ethier C.R., Prausnitz M.R. Drug-Free, Nonsurgical Reduction of Intraocular Pressure for Four Months after Suprachoroidal Injection of Hyaluronic Acid Hydrogel. Adv. Sci. 2020:2001908. doi: 10.1002/advs.202001908.
    1. Ochakovski G.A., Ulrich Bartz-Schmidt K., Fischer M.D. Retinal gene therapy: Surgical vector delivery in the translation to clinical trials. Front. Neurosci. 2017;11:174. doi: 10.3389/fnins.2017.00174.
    1. Peng Y., Tang L., Zhou Y. Subretinal Injection: A Review on the Novel Route of Therapeutic Delivery for Vitreoretinal Diseases. Ophthalmic Res. 2017;58:217–226. doi: 10.1159/000479157.
    1. Kansara V., Muya L., Wan C., Ciulla T.A. Suprachoroidal Delivery of Viral and Nonviral Gene Therapy for Retinal Diseases. J. Ocul. Pharmacol. Ther. 2020;36:384–392. doi: 10.1089/jop.2019.0126.
    1. Kansara V., Yoo J., Cooper M.J., Laird O.S., Taraborelli D., Moen R., Noronha G. Suprachoroidally delivered non-viral DNA nanoparticles transfect chorioretinal cells in non-human primates and rabbits. Invest. Ophthalmol. Vis. Sci. 2019;60:2909.
    1. Taraborelli D., Noronha G., Yoo J., Laird O., Cooper M. A One-week Study to Evaluate Safety, Tolerability, and Retinal Cell Transfection of Non-viral DNA Nanoparticles Administered by Suprachoroidal Injection. [(accessed on 2 December 2020)]; Available online: .
    1. Chung S.H., Mollhoff I.N., Mishra A., Sin T.-N., Ngo T., Ciulla T., Sieving P., Thomasy S.M., Yiu G. Host immune responses after suprachoroidal delivery of AAV8 in nonhuman primate eyes. bioRxiv. 2020 doi: 10.1101/2020.09.25.313676.
    1. Yiu G., Mollhoff I., Chung S.H., Nguyen T., Thomasy S., Yoo J., Taraborelli D., Noronha G. Suprachoroidal Injection of AAV8 for Ocular Gene Delivery in the Nonhuman Primate. Invest. Ophthalmol. Vis. Sci. 2019;60:2904.
    1. Han I.C., Cheng J.L., Burnight E.R., Ralston C.L., Fick J.L., Thomsen G.J., Tovar E.F., Russell S.R., Sohn E.H., Mullins R.F., et al. Retinal Tropism and Transduction of Adeno-Associated Virus Varies by Serotype and Route of Delivery (Intravitreal, Subretinal, or Suprachoroidal) in Rats. Hum. Gene Ther. 2020 doi: 10.1089/hum.2020.043.
    1. Ding K., Shen J., Hafiz Z., Hackett S.F., Lima e Silva R., Khan M., Lorenc V.E., Chen D., Chadha R., Zhang M., et al. AAV8-vectored suprachoroidal gene transfer produces widespread ocular transgene expression. J. Clin. Invest. 2019 doi: 10.1172/JCI129085.
    1. Shen J., Kim J., Tzeng S.Y., Ding K., Hafiz Z., Long D., Wang J., Green J.J., Campochiaro P.A. Suprachoroidal gene transfer with nonviral nanoparticles. Sci. Adv. 2020;6:eaba1606. doi: 10.1126/sciadv.aba1606.
    1. Woodard K.T., Vance M., Gilger B., Samulski R.J., Hirsch M. 544. Comparison of AAV Serotype2 Transduction by Various Delivery Routes to the Mouse Eye. Mol. Ther. 2016;24:S217–S218. doi: 10.1016/S1525-0016(16)33352-4.
    1. Martorana G., Levine M., Peden M.C., Boye S., Lukowski Z., Min J., Meyers C., Boye S.L., Sherwood M.B. Comparison of Suprachoroidal delivery via an Ab-Externo approach with the iTrack Microcatheter versus Vitrectomy and subretinal delivery for 3 different AAV Serotypes for Gene Transfer to the Retina. Invest. Ophthalmol. Vis. Sci. 2012;53:1931.
    1. Peden M.C., Min J., Meyers C., Lukowski Z., Li Q., Boye S.L., Levine M., Hauswirth W.W., Ratnakaram R., Dawson W., et al. Ab-externo AAV-mediated gene delivery to the suprachoroidal space using a 250 micron flexible microcatheter. PLoS ONE. 2011 doi: 10.1371/journal.pone.0017140.
    1. Kompella U.B., Amrite A.C., Pacha Ravi R., Durazo S.A. Nanomedicines for back of the eye drug delivery, gene delivery, and imaging. Prog. Retin. Eye Res. 2013;36:172–198. doi: 10.1016/j.preteyeres.2013.04.001.
    1. Hancock S.E., Wan C.-R., Fisher N.E., Andino R.V., Ciulla T.A. Biomechanics of suprachoroidal drug delivery: From benchtop to clinical investigation in ocular therapies. Expert Opin. Drug Deliv. 2021:1–12. doi: 10.1080/17425247.2021.1867532.
    1. REGENXBIO Announces Dosing of First Patient in Phase II AAVIATETM Trial of RGX-314 for the Treatment of Wet AMD Using Suprachoroidal Delivery | REGENXBIO Inc. [(accessed on 2 October 2020)]; Available online: .
    1. REGENXBIO Reports Third Quarter 2020 Financial Results and Operational Highlights|REGENXBIO Inc. [(accessed on 2 December 2020)]; Available online: .
    1. Kansara V.S., Cooper M., Sesenoglu-Laird O., Muya L., Moen R., Ciulla T.A. Suprachoroidally Delivered DNA Nanoparticles Transfect Retina and Retinal Pigment Epithelium/Choroid in Rabbits. Transl. Vis. Sci. Technol. 2020;9:21. doi: 10.1167/tvst.9.13.21.
    1. Chiang B., Venugopal N., Edelhauser H.F., Prausnitz M.R. Distribution of particles, small molecules and polymeric formulation excipients in the suprachoroidal space after microneedle injection. Exp. Eye Res. 2016;153:101–109. doi: 10.1016/j.exer.2016.10.011.
    1. Chiang B., Wang K., Ross Ethier C., Prausnitz M.R. Clearance kinetics and clearance routes of molecules from the suprachoroidal space after microneedle injection. Investig. Ophthalmol. Vis. Sci. 2017;58:545–554. doi: 10.1167/iovs.16-20679.
    1. Savinainen A., Grossniklaus H., Kang S., Rasmussen C., Bentley E., Krakova Y., Struble C.B., Rich C. Ocular distribution and efficacy after suprachoroidal injection of AU-011 for treatment of ocular melanoma. Invest. Ophthalmol. Vis. Sci. 2020;61:3615.
    1. Aura Biosciences Announces Dosing of First Patient in Phase 2 Study Evaluating Suprachoroidal Administration of AU-011 in Patients with Choroidal Melanoma | Aura Biosciences. [(accessed on 2 December 2020)]; Available online: .
    1. Tzameret A., Ketter-Katz H., Edelshtain V., Sher I., Corem-Salkmon E., Levy I., Last D., Guez D., Mardor Y., Margel S., et al. In vivo MRI assessment of bioactive magnetic iron oxide/human serum albumin nanoparticle delivery into the posterior segment of the eye in a rat model of retinal degeneration. J. Nanobiotechnology. 2019;17:3. doi: 10.1186/s12951-018-0438-y.
    1. Chiang B., Kim Y.C., Edelhauser H.F., Prausnitz M.R. Circumferential flow of particles in the suprachoroidal space is impeded by the posterior ciliary arteries. Exp. Eye Res. 2016;145:424–431. doi: 10.1016/j.exer.2016.03.008.
    1. Jung J.H., Chiang B., Grossniklaus H.E., Prausnitz M.R. Ocular drug delivery targeted by iontophoresis in the suprachoroidal space using a microneedle. J. Control. Release. 2018;277:14–22. doi: 10.1016/j.jconrel.2018.03.001.
    1. Kim Y.C., Hee Oh K., Edelhauser H.F., Prausnitz M.R., Oh K.H., Edelhauser H.F., Prausnitz M.R. Formulation to target delivery to the ciliary body and choroid via the suprachoroidal space of the eye using microneedles. Eur J Pharm Biopharm. 2015;95:398–406. doi: 10.1016/j.ejpb.2015.05.020.
    1. Olsen T.W., Feng X., Wabner K., Csaky K., Pambuccian S., Douglas Cameron J., Cameron J.D. Pharmacokinetics of Pars Plana Intravitreal Injections versus Microcannula Suprachoroidal Injections of Bevacizumab in a Porcine Model. Investig. Opthalmology Vis. Sci. 2011;52:4749. doi: 10.1167/iovs.10-6291.
    1. Valamanesh F., Jeanny J.-C., Savoldelli M., Naud M.C., Behar-Cohen F. Effects Of Suprachoroidal Bevacizumab (Avastin®) On The Posterior Segment Of The Eye. Invest. Ophthalmol. Vis. Sci. 2011;52:3119.
    1. Patel S.R., Kissner J., Farjo R., Zarnitsyn V., Noronha G. Efficacy of Suprachoroidal Aflibercept in a Laser Induced Choroidal Neovascularization Model. Invest. Ophthalmol. Vis. Sci. 2016;57:286.
    1. Orgül S., Cioffi G.A., Bacon D.R., Van Buskirk E.M. An endothelin-1-induced model of chronic optic nerve ischemia in rhesus monkeys. J. Glaucoma. 1996;5:135–138.
    1. MacCumber M.W. Ocular Effects of the Endothelins. Arch. Ophthalmol. 1991;109:705. doi: 10.1001/archopht.1991.01080050121041.
    1. MacCumber M.W., Ross C.A., Snyder S.H. Endothelin in brain: Receptors, mitogenesis, and biosynthesis in glial cells. Proc. Natl. Acad. Sci. USA. 1990;87:2359–2363. doi: 10.1073/pnas.87.6.2359.
    1. Nork T.M., Katz A.W., Hennes-Beean E.A., Kim C.B.Y. Suprachoroidal (SC) injection of endothelin-1 (ET-1) in rabbits: A new model of outer retinal ischemia. Invest. Ophthalmol. Vis. Sci. 2019;60:1637.
    1. CIULLA T.A., PAWLYK B.S., HARRIS A., OBEROI A., MILLER J.W., SANDBERG M.A. Endothelin-1-Mediated Retinal Artery Vasospasm and the Rabbit Electroretinogram. J. Ocul. Pharmacol. Ther. 2000;16:393–398. doi: 10.1089/jop.2000.16.393.
    1. OTX-IVT (anti-VEGF antibody implant) – Ocular Therapeutix. [(accessed on 2 December 2020)]; Available online:
    1. del Pozo-Rodríguez A., Delgado D., Gascón A.R., Solinís M.Á. Lipid Nanoparticles as Drug/Gene Delivery Systems to the Retina. J. Ocul. Pharmacol. Ther. 2013;29:173–188. doi: 10.1089/jop.2012.0128.
    1. Wang Y., Rajala A., Rajala R. Lipid Nanoparticles for Ocular Gene Delivery. J. Funct. Biomater. 2015;6:379–394. doi: 10.3390/jfb6020379.
    1. Tavakoli S., Peynshaert K., Lajunen T., Devoldere J., del Amo E.M., Ruponen M., De Smedt S.C., Remaut K., Urtti A. Ocular barriers to retinal delivery of intravitreal liposomes: Impact of vitreoretinal interface. J. Control. Release. 2020;328:952–961. doi: 10.1016/j.jconrel.2020.10.028.
    1. Limoli P.G., Vingolo E.M., Morales M.U., Nebbioso M., Limoli C. Preliminary study on electrophysiological changes after cellular autograft in age-related macular degeneration. Medicine (Baltimore). 2014;93:e355. doi: 10.1097/MD.0000000000000355.
    1. Tobita M., Tajima S., Mizuno H. Adipose tissue-derived mesenchymal stem cells and platelet-rich plasma: Stem cell transplantation methods that enhance stemness. Stem Cell Res. Ther. 2015;6:215. doi: 10.1186/s13287-015-0217-8.
    1. Ramakrishnan V.M., Boyd N.L. The Adipose Stromal Vascular Fraction as a Complex Cellular Source for Tissue Engineering Applications. Tissue Eng. Part B. Rev. 2018;24:289–299. doi: 10.1089/ten.teb.2017.0061.
    1. Dykstra J.A., Facile T., Patrick R.J., Francis K.R., Milanovich S., Weimer J.M., Kota D.J. Concise Review: Fat and Furious: Harnessing the Full Potential of Adipose-Derived Stromal Vascular Fraction. Stem Cells Transl. Med. 2017;6:1096–1108. doi: 10.1002/sctm.16-0337.
    1. Limoli P.G., Limoli C., Vingolo E.M., Scalinci S.Z., Nebbioso M. Cell surgery and growth factors in dry age-related macular degeneration: Visual prognosis and morphological study. Oncotarget. 2016;7:46913–46923. doi: 10.18632/oncotarget.10442.
    1. Limoli P.G., Vingolo E.M., Limoli C., Scalinci S.Z., Nebbioso M. Regenerative Therapy by Suprachoroidal Cell Autograft in Dry Age-related Macular Degeneration: Preliminary In Vivo Report. J. Vis. Exp. 2018 doi: 10.3791/56469.
    1. Limoli P.G., Vingolo E.M., Limoli C., Nebbioso M. Stem Cell Surgery and Growth Factors in Retinitis Pigmentosa Patients: Pilot Study after Literature Review. Biomedicines. 2019;7:94. doi: 10.3390/biomedicines7040094.
    1. Limoli P.G., Limoli C.S.S., Morales M.U., Vingolo E.M. Mesenchymal stem cell surgery, rescue and regeneration in retinitis pigmentosa: Clinical and rehabilitative prognostic aspects. Restor. Neurol. Neurosci. 2020;38:223–237. doi: 10.3233/RNN-190970.
    1. Kahraman N.S., Öner A. Umbilical cord-derived mesenchymal stem cell implantation in patients with optic atrophy. Eur. J. Ophthalmol. 2020:112067212097782. doi: 10.1177/1120672120977824.
    1. Oner A., Gonen Z.B., Sevim D.G., Smim Kahraman N., Unlu M. Suprachoroidal Adipose Tissue-Derived Mesenchymal Stem Cell Implantation in Patients with Dry-Type Age-Related Macular Degeneration and Stargardt’s Macular Dystrophy: 6-Month Follow-Up Results of a Phase 2 Study. Cell. Reprogram. 2018;20:329–336. doi: 10.1089/cell.2018.0045.
    1. Oner A., Gonen Z.B., Sevim D.G., Sinim Kahraman N., Unlu M. Six-month results of suprachoroidal adipose tissue-derived mesenchymal stem cell implantation in patients with optic atrophy: A phase 1/2 study. Int. Ophthalmol. 2019;39:2913–2922. doi: 10.1007/s10792-019-01141-5.
    1. Oner A., Sevim D. Complications of stem cell based therapies in retinal diseases. Stem Cell Res. Open Libr. 2017;1:1–7.
    1. Kuriyan A.E., Albini T.A., Townsend J.H., Rodriguez M., Pandya H.K., Leonard R.E., Parrott M.B., Rosenfeld P.J., Flynn H.W., Goldberg J.L. Vision loss after intravitreal injection of autologous “stem Cells” for AMD. N. Engl. J. Med. 2017;376:1047–1053. doi: 10.1056/NEJMoa1609583.

Source: PubMed

3
Předplatit