Pharmacokinetics and Pharmacodynamics of Key Components of a Standardized Centella asiatica Product in Cognitively Impaired Older Adults: A Phase 1, Double-Blind, Randomized Clinical Trial

Kirsten M Wright, Melissa Bollen, Jason David, Alex B Speers, Mikah S Brandes, Nora E Gray, Armando Alcázar Magaña, Christine McClure, Jan F Stevens, Claudia S Maier, Joseph F Quinn, Amala Soumyanath, Kirsten M Wright, Melissa Bollen, Jason David, Alex B Speers, Mikah S Brandes, Nora E Gray, Armando Alcázar Magaña, Christine McClure, Jan F Stevens, Claudia S Maier, Joseph F Quinn, Amala Soumyanath

Abstract

Centella asiatica is reputed in Eastern medicine to improve cognitive function in humans. Preclinical studies have demonstrated that aqueous extracts of C. asiatica improve cognition in mouse models of aging and Alzheimer's disease (AD) through the modulation of mitochondrial biogenesis and nuclear factor-erythroid-2-related factor 2 (Nrf2)-dependent antioxidant response genes. This randomized, double-blind, crossover Phase I trial explored the oral bioavailability and pharmacokinetics of key compounds from two doses (2 g and 4 g) of a standardized C. asiatica aqueous extract product (CAP), over 10 h, in four mildly demented older adults on cholinesterase inhibitor therapy. The analysis focused on triterpenes (TTs) and caffeoylquinic acids (CQAs), which are known to contribute to C. asiatica's neurological activity. The acute safety of CAP and the effects on NRF2 gene expression in peripheral blood mononuclear cells were evaluated. Single administration of 2 g or 4 g of CAP was safe and well-tolerated. The TT aglycones, asiatic acid and madecassic acid, were identified in plasma and urine, while the parent glycosides, asiaticoside and madecassoside, although abundant in CAP, were absent in plasma and had limited renal excretion. Similarly, mono- and di-CQAs showed delayed absorption and limited presence in plasma or urine, while the putative metabolites of these compounds showed detectable plasma pharmacokinetic profiles and urinary excretion. CAP elicited a temporal change in NRF2 gene expression, mirroring the TT aglycone's pharmacokinetic curve in a paradoxical dose-dependent manner. The oral bioavailability of active compounds or their metabolites, NRF2 target engagement, and the acute safety and tolerability of CAP support the validity of using CAP in future clinical studies.

Keywords: Alzheimer’s disease; Centella asiatica; NRF2; antioxidant; pharmacodynamics; pharmacokinetics; tolerability.

Conflict of interest statement

A.S. is an ad hoc consultant for Oregon’s Wild Harvest. Services for clinical trial product manufacture provided by Ashland Laboratories and Oregon’s Wild Harvest were financed by the NIH grant R61AT009628 awarded to Oregon Health & Science University. The CAP products described in this study were made for research purposes only and not for commercial use.

Figures

Figure 1
Figure 1
Structures of the triterpenoid saponins, aglycones, monocaffeoylquinic acids, and dicaffeoylquinic acids identified in Centella asiatica water extract.
Figure 2
Figure 2
Total ion chromatogram (TIC) of Centella asiatica water extract product (CAP) showing peaks corresponding to the triterpene and caffeoylquinic acid components of interest. The total ion chromatogram in negative ion mode corresponds to 2 g (blue) and 4 g (pink) of the Centella asiatica water extract present in each sachet (~20 g). The major compounds are indicated in the chromatogram. Extracted ion chromatograms (XIC) are shown for the monocaffeoylquinic acids (mono-CQAs; m/z 353.08, [M-H]−), the dicaffeoylquinic acids (Di-CQA, m/z 515.12, [M-H]−), madecassic acid (m/z 503.3, [M-H]−), and asiatic acid (m/z 487.3, [M-H]−).
Figure 3
Figure 3
Consort flow diagram.
Figure 4
Figure 4
Mean plasma concentration-time profiles of the triterpene aglycones derived from Centella asiatica water extract product (CAP); (a) asiatic acid; (b) madecassic acid, after single oral administration of 2 g or 4 g doses in cognitively impaired older adults on cholinesterase inhibitor therapy. Data are presented as mean ± SEM (n = 4).
Figure 5
Figure 5
Mean plasma concentration-time profiles of the caffeoylquinic acids (CQAs) and related compounds from Centella asiatica water extract product (CAP) after a single oral administration of 2 g or 4 g doses in cognitively impaired older adults on cholinesterase inhibitor therapy. (a) Caffeic acid; (b) dicaffeoylquinic acids; (c) dihydrocaffeic acid; (d) dihydroferulic acid; (e) ferulic acid; (f) 3-(3-hydroxyphenyl)propionic acid; (g) isoferulic acid; (h) monocaffeoylquinic acids. Data are presented as means ± SEM (n = 4).
Figure 6
Figure 6
Mean urinary excretion (over 10 h) of free (unconjugated) and total (unconjugated and conjugated) forms of compounds from Centella asiatica water extract product (CAP) after a single oral administration of a 2 g or 4 g dose in cognitively impaired older adults on cholinesterase inhibitor therapy. AA = asiatic acid; DHCA = dihydrocaffeic acid; DHFA = dihydroferulic acid; FA = ferulic acid; HPP = 3-(3-hydroxyphenyl)propionic acid; IFA = isoferulic acid; MA = madecassic acid; Monos = monocaffeoylquinic acids; MS = madecassoside. Data are presented as means (n = 4).
Figure 7
Figure 7
Temporal profile of induction of NRF2 gene expression in peripheral blood mononuclear cells following oral administration of 2 g and 4 g of Centella asiatica water extract product (CAP) in two cognitively impaired older adults on cholinesterase inhibitor therapy. Cells were isolated using a BD Vacutainer™ CPT™ Mononuclear Cell Preparation Tube and RNA was reverse transcribed with the Superscript III First Strand Synthesis kit to generate cDNA. Relative mRNA expression was determined using TaqMan Gene Expression Master Mix and commercially available TaqMan primers for NRF2 (NFE2L2) and GAPDH. Quantitative PCR was performed on a QuantStudio3 Machine and analyzed using the delta-delta Ct method normalizing to GAPDH expression.

References

    1. National Institutes of Health, National Institute on Aging The Alzheimer’s Disease Education and Referral Center Alzheimer’s Disease Fact Sheet. [(accessed on 1 November 2016)];2016 August 18; Available online: .
    1. Alzheimer’s Association 2021 Alzheimer’s Disease Facts and Figures; Special Report Race, Ethnicity and Alzheimer’s in America. 2021. [(accessed on 1 November 2021)]. Available online: .
    1. World Health Organization Dementia. Sep 2, 2021. [(accessed on 13 December 2021)]. Available online: .
    1. Jack C.R., Knopman D.S., Jagust W.J., Petersen R.C., Weiner M.W., Aisen P.S., Shaw L.M., Vemuri P., Wiste H.J., Weigand S.D., et al. Tracking pathophysiological processes in Alzheimer’s disease: An updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12:207–216. doi: 10.1016/S1474-4422(12)70291-0.
    1. National Institute on Aging What Happens to the Brain in Alzheimer’s Disease? [(accessed on 3 November 2020)];2017 May 16; Available online: .
    1. Yao J., Irwin R.W., Zhao L., Nilsen J., Hamilton R.T., Brinton R.D. Mitochondrial bioenergetic deficit precedes Alzheimer’s pathology in female mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA. 2009;106:14670–14675. doi: 10.1073/pnas.0903563106.
    1. Manczak M., Park B.S., Jung Y., Reddy P.H. Differential expression of oxidative phosphorylation genes in patients with Alzheimer’s disease: Implications for early mitochondrial dysfunction and oxidative damage. Neuromol. Med. 2004;5:147–162. doi: 10.1385/NMM:5:2:147.
    1. Baloyannis S.J. Mitochondria are related to synaptic pathology in Alzheimer’s disease. Int. J. Alzheimers Dis. 2011;2011:305395. doi: 10.4061/2011/305395.
    1. Baloyannis S.J. Mitochondrial alterations in Alzheimer’s disease. J. Alzheimers Dis. 2006;9:119–126. doi: 10.3233/JAD-2006-9204.
    1. Gray N.E., Zweig J.A., Matthews D.G., Caruso M., Quinn J.F., Soumyanath A. Centella asiatica Attenuates Mitochondrial Dysfunction and Oxidative Stress in Aβ-Exposed Hippocampal Neurons. Oxidative Med. Cell. Longev. 2017;2017:7023091. doi: 10.1155/2017/7023091.
    1. Tariot P.N., Federoff H.J. Current treatment for Alzheimer disease and future prospects. Alzheimer Dis. Assoc. Disord. 2003;17((Suppl. 4)):S105–S113. doi: 10.1097/00002093-200307004-00005.
    1. Tariot P.N., Farlow M.R., Grossberg G.T., Graham S.M., McDonald S., Gergel I., Group M.S. Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: A randomized controlled trial. JAMA. 2004;291:317–324. doi: 10.1001/jama.291.3.317.
    1. Reisberg B., Doody R., Stöffler A., Schmitt F., Ferris S., Möbius H.J., Group M.S. Memantine in moderate-to-severe Alzheimer’s disease. N. Engl. J. Med. 2003;348:1333–1341. doi: 10.1056/NEJMoa013128.
    1. Walsh S., Merrick R., Milne R., Brayne C. Aducanumab for Alzheimer’s disease? BMJ. 2021;374:n1682. doi: 10.1136/bmj.n1682.
    1. Eli Lilly Company A Study of Semagacestat for Alzheimer’s Patients (Identity XT) [(accessed on 15 November 2016)];2014 September 22; Available online: .
    1. Panza F., Frisardi V., Imbimbo B.P., D’Onofrio G., Pietrarossa G., Seripa D., Pilotto A., Solfrizzi V. Bapineuzumab: Anti-β-amyloid monoclonal antibodies for the treatment of Alzheimer’s disease. Immunotherapy. 2010;2:767–782. doi: 10.2217/imt.10.80.
    1. Wasilewski A. Johnson & Johnson Announces Discontinuation of Phase 3 Development of Bapineuzumab Intravenous (IV) in Mild to Moderate Alzheimer’s Disease. [(accessed on 22 October 2012)]. Available online: .
    1. Eli Lilly Announcement Eli Lilly and Company Announces TopLine Results on Solanezumab Phase 3 Clinical Trials in Patients with Alzheimer’s Disease. [(accessed on 22 October 2012)]. Available online: .
    1. Migliorelli R., Tesón A., Sabe L., Petracchi M., Leiguarda R., Starkstein S.E. Prevalence and correlates of dysthymia and major depression among patients with Alzheimer’s disease. Am. J. Psychiatry. 1995;152:37–44. doi: 10.1176/ajp.152.1.37.
    1. Ferretti L., McCurry S.M., Logsdon R., Gibbons L., Teri L. Anxiety and Alzheimer’s disease. J. Geriatr. Psychiatry Neurol. 2001;14:52–58. doi: 10.1177/089198870101400111.
    1. Cummings J., Aisen P.S., DuBois B., Frölich L., Jack C.R., Jones R.W., Morris J.C., Raskin J., Dowsett S.A., Scheltens P. Drug development in Alzheimer’s disease: The path to 2025. Alzheimers Res. Ther. 2016;8:39. doi: 10.1186/s13195-016-0207-9.
    1. Newall C., Anderson L., Phillipson J. Herbal Medicines: A Guide for Healthcare Professionals. Pharmaceutical Press; London, UK: 1996.
    1. Gray N.E., Magana A.A., Lak P., Wright K.M., Quinn J., Stevens J.F., Maier C.S., Soumyanath A. Centella asiatica: Phytochemistry and mechanisms of neuroprotection and cognitive enhancement. Phytochem. Rev. 2018;17:161–194. doi: 10.1007/s11101-017-9528-y.
    1. Puttarak P., Dilokthornsakul P., Saokaew S., Dhippayom T., Kongkaew C., Sruamsiri R., Chuthaputti A., Chaiyakunapruk N. Effects of Centella asiatica (L.) Urb. on cognitive function and mood related outcomes: A Systematic Review and Meta-analysis. Sci. Rep. 2017;7:10646. doi: 10.1038/s41598-017-09823-9.
    1. Rao S.B., Chetana M., Uma Devi P. Centella asiatica treatment during postnatal period enhances learning and memory in mice. Physiol. Behav. 2005;86:449–457. doi: 10.1016/j.physbeh.2005.07.019.
    1. Gupta Y.K., Veerendra Kumar M.H., Srivastava A.K. Effect of Centella asiatica on pentylenetetrazole-induced kindling, cognition and oxidative stress in rats. Pharmacol. Biochem. Behav. 2003;74:579–585. doi: 10.1016/S0091-3057(02)01044-4.
    1. Matthews D.G., Caruso M., Murchison C.F., Zhu J.Y., Wright K.M., Harris C.J., Gray N.E., Quinn J.F., Soumyanath A. Centella asiatica Improves Memory and Promotes Antioxidative Signaling in 5XFAD Mice. Antioxidants. 2019;8:630. doi: 10.3390/antiox8120630.
    1. Gadahad M.R., Rao M., Rao G. Enhancement of hippocampal CA3 neuronal dendritic arborization by Centella asiatica (Linn) fresh leaf extract treatment in adult rats. J. Chin. Med. Assoc. 2008;71:6–13. doi: 10.1016/S1726-4901(08)70066-2.
    1. Gray N.E., Harris C.J., Quinn J.F., Soumyanath A. Centella asiatica modulates antioxidant and mitochondrial pathways and improves cognitive function in mice. J. Ethnopharmacol. 2016;180:78–86. doi: 10.1016/j.jep.2016.01.013.
    1. Zweig J.A., Brandes M.S., Brumbach B.H., Caruso M., Wright K.M., Quinn J.F., Soumyanath A., Gray N.E. Prolonged Treatment with Centella asiatica Improves Memory, Reduces Amyloid-β Pathology, and Activates NRF2-Regulated Antioxidant Response Pathway in 5xFAD Mice. J. Alzheimers Dis. 2021;81:1453–1468. doi: 10.3233/JAD-210271.
    1. Zweig J.A., Brandes M.S., Brumbach B.H., Caruso M., Wright K.M., Quinn J.F., Soumyanath A., Gray N.E. Loss of NRF2 accelerates cognitive decline, exacerbates mitochondrial dysfunction, and is required for the cognitive enhancing effects of Centella asiatica during aging. Neurobiol. Aging. 2021;100:48–58. doi: 10.1016/j.neurobiolaging.2020.11.019.
    1. Brinkhaus B., Lindner M., Hentschel C., Rauwald H., Bilow F., Stockhammer K., Kruger S., Von Massow F., Hutarjadi H., Hahn E. Centella asiatica in traditional and modern phytomedicine—A pharmacological and clinical profile—Part I.; Botany, chemistry, preparations. Perfusion. 1998;11:466–474.
    1. James J.T., Dubery I.A. Pentacyclic triterpenoids from the medicinal herb, Centella asiatica (L.) Urban. Molecules. 2009;14:3922–3941. doi: 10.3390/molecules14103922.
    1. Soumyanath A., Zhong Y.P., Gold S.A., Yu X., Koop D.R., Bourdette D., Gold B.G. Centella asiatica accelerates nerve regeneration upon oral administration and contains multiple active fractions increasing neurite elongation in-vitro. J. Pharm. Pharmacol. 2005;57:1221–1229. doi: 10.1211/jpp.57.9.0018.
    1. Lee M.K., Kim S.R., Sung S.H., Lim D., Kim H., Choi H., Park H.K., Je S., Ki Y.C. Asiatic acid derivatives protect cultured cortical neurons from glutamate-induced excitotoxicity. Res. Commun. Mol. Pathol. Pharm. 2000;108:75–86.
    1. Jew S.S., Yoo C.H., Lim D.Y., Kim H., Mook-Jung I., Jung M.W., Choi H., Jung Y.H., Park H.G. Structure-activity relationship study of asiatic acid derivatives against beta amyloid (A beta)-induced neurotoxicity. Bioorg. Med. Chem. Lett. 2000;10:119–121. doi: 10.1016/S0960-894X(99)00658-7.
    1. Mook-Jung I., Shin J.E., Yun S.H., Huh K., Koh J.Y., Park H.K., Jew S.S., Jung M.W. Protective effects of asiaticoside derivatives against beta-amyloid neurotoxicity. J. Neurosci. Res. 1999;58:417–425. doi: 10.1002/(SICI)1097-4547(19991101)58:3<417::AID-JNR7>;2-G.
    1. Soumyanath A., Zhang Y., Henson E., Wadsworth T., Bishop J., Gold B., Quinn J. Centella asiatica Extract Improves Behavioral Deficits in a Mouse Model of Alzheimer’s Disease: Investigation of a Possible Mechanism of Action. Int. J. Alzheimers Dis. 2012;2012:381974.
    1. Gray N.E., Morre J., Kelley J., Maier C.S., Stevens J.F., Quinn J.F., Soumyanath A. Caffeoylquinic acids in Centella asiatica protect against amyloid-beta toxicity. J. Alzheimers Dis. 2014;40:359–373. doi: 10.3233/JAD-131913.
    1. Mikami Y., Yamazawa T. Chlorogenic acid, a polyphenol in coffee, protects neurons against glutamate neurotoxicity. Life Sci. 2015;139:69–74. doi: 10.1016/j.lfs.2015.08.005.
    1. Kim J., Lee H., Hwang B., Kim S., Yoo J., Seong Y. Neuroprotection of Ilex latifolia and caffeoylquinic acid derivatives against excitotoxic ad hypoxic damage of cultured rat cortical neurons. Arch. Pharm. Res. 2012;35:1115–1122. doi: 10.1007/s12272-012-0620-y.
    1. Grimaldi R., De Ponti F., D’Angelo L., Caravaggi M., Guidi G., Lecchini S., Frigo G.M., Crema A. Pharmacokinetics of the total triterpenic fraction of Centella asiatica after single and multiple administrations to healthy volunteers. A new assay for asiatic acid. J. Ethnopharmacol. 1990;28:235–241. doi: 10.1016/0378-8741(90)90033-P.
    1. Thongnopnua P. High-performance liquid chromatographic determination of asiatic acid in human plasma. Thai J. Pharm. Sci. 2008;32:10–16.
    1. Yuan Y., Zhang H., Sun F., Sun S., Zhu Z., Chai Y. Biopharmaceutical and pharmacokinetic characterization of asiatic acid in Centella asiatica as determined by a sensitive and robust HPLC-MS method. J. Ethnopharmacol. 2015;163:31–38. doi: 10.1016/j.jep.2015.01.006.
    1. Zheng X.C., Wang S.H. Determination of asiatic acid in beagle dog plasma after oral administration of Centella asiatica extract by precolumn derivatization RP-HPLC. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2009;877:477–481. doi: 10.1016/j.jchromb.2008.11.045.
    1. Wright K.M., McFerrin J., Alcazar Magana A., Roberts J., Caruso M., Kretzschmar D., Stevens J.F., Maier C.M., Quinn J.F., Soumyanath A. Developing a rational, optimized product of Centella asiatica for examination in clinical trials: Real world challenges. Front. Nutr. Nutr. Methodol. 2021 doi: 10.3389/fnut.2021.799137.
    1. Nair A.B., Jacob S. A simple practice guide for dose conversion between animals and human. J. Basic Clin. Pharm. 2016;7:27–31. doi: 10.4103/0976-0105.177703.
    1. Gray N.E., Sampath H., Zweig J.A., Quinn J.F., Soumyanath A. Centella asiatica Attenuates Amyloid-beta-Induced Oxidative Stress and Mitochondrial Dysfunction. J. Alzheimers Dis. 2015;45:933–946. doi: 10.3233/JAD-142217.
    1. Gray N.E., Zweig J.A., Caruso M., Martin M.D., Zhu J.Y., Quinn J.F., Soumyanath A. Centella asiatica increases hippocampal synaptic density and improves memory and executive function in aged mice. Brain. Behav. 2018;8:e01024. doi: 10.1002/brb3.1024.
    1. Gray N.E., Zweig J.A., Caruso M., Zhu J.Y., Wright K.M., Quinn J.F., Soumyanath A. Centella asiatica attenuates hippocampal mitochondrial dysfunction and improves memory and executive function in β-amyloid overexpressing mice. Mol. Cell. Neurosci. 2018;93:1–9. doi: 10.1016/j.mcn.2018.09.002.
    1. Gray N.E., Zweig J.A., Murchison C., Caruso M., Matthews D.G., Kawamoto C., Harris C.J., Quinn J.F., Soumyanath A. Centella asiatica attenuates Aβ-induced neurodegenerative spine loss and dendritic simplification. Neurosci. Lett. 2017;646:24–29. doi: 10.1016/j.neulet.2017.02.072.
    1. Alcázar Magaña A., Kamimura N., Soumyanath A., Stevens J.F., Maier C.S. Caffeoylquinic acids: Chemistry, biosynthesis, occurrence, analytical challenges, and bioactivity. Plant. J. 2021;107:1299–1319. doi: 10.1111/tpj.15390.
    1. Adamczyk-Sowa M., Pierzchala K., Sowa P., Mucha S., Sadowska-Bartosz I., Adamczyk J., Hartel M. Melatonin acts as antioxidant and improves sleep in MS patients. Neurochem. Res. 2014;39:1585–1593. doi: 10.1007/s11064-014-1347-6.
    1. Alcazar Magana A., Wright K., Vaswani A., Caruso M., Reed R.L., Bailey C.F., Nguyen T., Gray N.E., Soumyanath A., Quinn J., et al. Integration of mass spectral fingerprinting analysis with precursor ion (MS1) quantification for the characterisation of botanical extracts: Application to extracts of Centella asiatica (L.) Urban. Phytochem. Anal. 2020;31:722–738. doi: 10.1002/pca.2936.
    1. Cheng X., Shin Y.G., Levine B.S., Smith A.C., Tomaszewski J.E., van Breemen R.B. Quantitative analysis of betulinic acid in mouse, rat and dog plasma using electrospray liquid chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 2003;17:2089–2092. doi: 10.1002/rcm.1155.
    1. Nair S.N., Menon S., Shailajan S. A liquid chromatography/electrospray ionization tandem mass spectrometric method for quantification of asiatic acid from plasma: Application to pharmacokinetic study in rats. Rapid Commun. Mass Spectrom. 2012;26:1899–1908. doi: 10.1002/rcm.6291.
    1. Xue M., Shi H., Zhang J., Liu Q.Q., Guan J., Zhang J.Y., Ma Q. Stability and Degradation of Caffeoylquinic Acids under Different Storage Conditions Studied by High-Performance Liquid Chromatography with Photo Diode Array Detection and High-Performance Liquid Chromatography with Electrospray Ionization Collision-Induced Dissociation Tandem Mass Spectrometry. Molecules. 2016;21:948. doi: 10.3390/molecules21070948.
    1. Dawidowicz A.L., Typek R. Transformation of chlorogenic acids during the coffee beans roasting process. Eur. Food Res. Technol. 2017;243:379–390. doi: 10.1007/s00217-016-2751-8.
    1. Songvut P., Anukunwithaya T., Chariyavilaskul P., Tantisira M.H., Khemawoot P. Interspecies differences in pharmacokinetic and metabolic profiles of triterpenoid glycosides in standardized extract of Centella asiatica, ECa 233; Proceedings of the 41st Pharmacological and Therapeutic Society of Thailand Meeting; Chiang Mai, Thailand. 14–15 February 2019.
    1. Sorkin B.C., Kuszak A.J., Bloss G., Fukagawa N.K., Hoffman F.A., Jafari M., Barrett B., Brown P.N., Bushman F.D., Casper S.J., et al. Improving natural product research translation: From source to clinical trial. FASEB J. 2020;34:41–65. doi: 10.1096/fj.201902143R.
    1. Sorkin B.C., Kuszak A.J., Williamson J.S., Hopp D.C., Betz J.M. The Challenge of Reproducibility and Accuracy in Nutrition Research: Resources and Pitfalls. Adv. Nutr. 2016;7:383–389. doi: 10.3945/an.115.010595.
    1. Lou J.S., Dimitrova D.M., Murchison C., Arnold G.C., Belding H., Seifer N., Le N., Andrea S.B., Gray N.E., Wright K.M., et al. triterpenes for diabetic neuropathy: A randomized, double-blind, placebo-controlled, pilot clinical study. Esper. Dermatol. 2018;20:12–22. doi: 10.23736/S1128-9155.18.00455-7.
    1. Rush W.R., Murray G.R., Graham D.J. The comparative steady-state bioavailability of the active ingredients of Madecassol. Eur. J. Drug Metab. Pharm. 1993;18:323–326. doi: 10.1007/BF03190180.
    1. Songvut P., Chariyavilaskul P., Tantisira M.H., Khemawoot P. Safety and Pharmacokinetics of Standardized Extract of Centella asiatica (ECa 233) Capsules in Healthy Thai Volunteers: A Phase 1 Clinical Study. Planta Med. 2019;85:483–490. doi: 10.1055/a-0835-6671.
    1. Songvut P., Chariyavilaskul P., Khemawoot P., Tansawat R. Pharmacokinetics and metabolomics investigation of an orally modified formula of standardized Centella asiatica extract in healthy volunteers. Sci. Rep. 2021;11:6850. doi: 10.1038/s41598-021-86267-2.
    1. Chassaud L.F., Fry B.J., Hawkins D.R., Lewis J.D., Sword I.P., Taylor T., Hathway D.E. The metabolism of asiatic acid,-madecassic acid and asiaticoside in the rat. Arzneimittelforschung. 1971;21:1379–1384.
    1. Leng D.D., Han W.J., Rui Y., Dai Y., Xia Y.F. In vivo disposition and metabolism of madecassoside, a major bioactive constituent in Centella asiatica (L.) Urb. J. Ethnopharmacol. 2013;150:601–608. doi: 10.1016/j.jep.2013.09.004.
    1. Kobashi K., Akao T. Relation of Intestinal Bacteria to Pharmacological Effects of Glycosides. Biosci. Microflora. 1997;16:1–7. doi: 10.12938/bifidus1996.16.1.
    1. Han W.J., Xia Y.F., Dai Y. Development and validation of high-performance liquid chromatography/electrospray ionization mass spectrometry for assay of madecassoside in rat plasma and its application to pharmacokinetic study. Biomed. Chromatogr. 2012;26:26–32. doi: 10.1002/bmc.1620.
    1. Wang T., Leng D.D., Gao F.F., Jiang C.J., Xia Y.F., Dai Y. A LC-ESI-MS method for the simultaneous determination of madecassoside and its metabolite madecassic acid in rat plasma: Comparison pharmacokinetics in normal and collagen-induced arthritic rats. Chin. J. Nat. Med. 2014;12:943–951. doi: 10.1016/S1875-5364(14)60138-2.
    1. Sun B., Wu L., Wu Y., Zhang C., Qin L., Hayashi M., Kudo M., Gao M., Liu T. Therapeutic Potential of. Front. Pharmacol. 2020;11:568032. doi: 10.3389/fphar.2020.568032.
    1. Clifford M.N. Chlorogenic acids and other cinnamates—Nature, occurrence, dietary burden, absorption and metabolism. J. Sci. Food Agric. 2000;80:1033–1043. doi: 10.1002/(SICI)1097-0010(20000515)80:7<1033::AID-JSFA595>;2-T.
    1. Clifford M.N., Wu W., Kirkpatrick J., Kuhnert N. Profiling the chlorogenic acids and other caffeic acid derivatives of herbal chrysanthemum by LC-MSn. J. Agric. Food Chem. 2007;55:929–936. doi: 10.1021/jf062314x.
    1. Williamson G., Dionisi F., Renouf M. Flavanols from green tea and phenolic acids from coffee: Critical quantitative evaluation of the pharmacokinetic data in humans after consumption of single doses of beverages. Mol. Nutr. Food Res. 2011;55:864–873. doi: 10.1002/mnfr.201000631.
    1. Erk T., Williamson G., Renouf M., Marmet C., Steiling H., Dionisi F., Barron D., Melcher R., Richling E. Dose-dependent absorption of chlorogenic acids in the small intestine assessed by coffee consumption in ileostomists. Mol. Nutr. Food Res. 2012;56:1488–1500. doi: 10.1002/mnfr.201200222.
    1. Stalmach A., Mullen W., Barron D., Uchida K., Yokota T., Cavin C., Steiling H., Williamson G., Crozier A. Metabolite profiling of hydroxycinnamate derivatives in plasma and urine after the ingestion of coffee by humans: Identification of biomarkers of coffee consumption. Drug Metab. Dispos. 2009;37:1749–1758. doi: 10.1124/dmd.109.028019.
    1. Wong C.C., Meinl W., Glatt H.R., Barron D., Stalmach A., Steiling H., Crozier A., Williamson G. In vitro and in vivo conjugation of dietary hydroxycinnamic acids by UDP-glucuronosyltransferases and sulfotransferases in humans. J. Nutr. Biochem. 2010;21:1060–1068. doi: 10.1016/j.jnutbio.2009.09.001.
    1. Senger D.R., Li D., Jaminet S.C., Cao S. Activation of the Nrf2 Cell Defense Pathway by Ancient Foods: Disease Prevention by Important Molecules and Microbes Lost from the Modern Western Diet. PLoS ONE. 2016;11:e0148042. doi: 10.1371/journal.pone.0148042.
    1. Wittemer S.M., Veit M. Validated method for the determination of six metabolites derived from artichoke leaf extract in human plasma by high-performance liquid chromatography-coulometric-array detection. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2003;793:367–375. doi: 10.1016/S1570-0232(03)00352-0.
    1. Scherbl D., Renouf M., Marmet C., Poquet L., Cristiani I., Dahbane S., Emady-Azar S., Sauser J., Galan J., Dionisi F., et al. Breakfast consumption induces retarded release of chlorogenic acid metabolites in humans. Eur. Food Res. Technol. 2016;243:791–806. doi: 10.1007/s00217-016-2793-y.
    1. Su D., Huang J., Song Y., Feng Y. Comparative pharmacokinetics and tissue distribution study of mono-, and di-caffeoylquinic acids isomers of Ainsliaea fragrans Champ by a fast UHPLC-MS/MS method. Fitoterapia. 2014;99:139–152. doi: 10.1016/j.fitote.2014.09.011.
    1. Farah A., Monteiro M., Donangelo C.M., Lafay S. Chlorogenic acids from green coffee extract are highly bioavailable in humans. J. Nutr. 2008;138:2309–2315. doi: 10.3945/jn.108.095554.
    1. Monteiro M., Farah A., Perrone D., Trugo L.C., Donangelo C. Chlorogenic acid compounds from coffee are differentially absorbed and metabolized in humans. J. Nutr. 2007;137:2196–2201. doi: 10.1093/jn/137.10.2196.
    1. Liu J., Dou G., Dong X., Yuan D., Ji X., Wu Z., Meng Z. An improved LC-MS/MS method for simultaneous determination of 1,5-dicaffeoylquinic acid and its active metabolites in human plasma and its application to a pharmacokinetic study in patients. Biomed. Chromatogr. 2010;24:935–940. doi: 10.1002/bmc.1388.
    1. Wittemer S.M., Ploch M., Windeck T., Muller S.C., Drewelow B., Derendorf H., Veit M. Bioavailability and pharmacokinetics of caffeoylquinic acids and flavonoids after oral administration of Artichoke leaf extracts in humans. Phytomedicine. 2005;12:28–38. doi: 10.1016/j.phymed.2003.11.002.
    1. McGuffin M., editor. American Herbal Products Association’s Botanical Safety Handbook. CRC Press; Boca Raton, FL, USA: 1997.
    1. Wattanathorn J., Mator L., Muchimapura S., Tongun T., Pasuriwong O., Piyawatkul N., Yimtae K., Sripanidkulchai B., Singkhoraard J. Positive modulation of cognition and mood in the healthy elderly volunteer following the administration of Centella asiatica. J. Ethnopharmacol. 2008;116:325–332. doi: 10.1016/j.jep.2007.11.038.
    1. Dev R.D.O., Mohamed S., Hambali Z., Samah B.A. Comparison on cognitive effects of Centella asiatica in healthy middle age female and male volunteers. Eur. J. Sci. Res. 2009;31:553–656.
    1. Tiwari S., Singh S., Patwardhan K., Ghlot S., Gambhir I. Effect of Centella asiatica on mild cognitive impairment (MCI) and other common age-related clinical problems. Digst J. Nanomater. Biostruct. 2008;3:215–220.

Source: PubMed

3
Předplatit