The effect of focus size and intensity on stone fragmentation in SWL on a piezoelectric lithotripter

Julian Veser, Victoria Jahrreiss, Christian Seitz, Mehmet Özsoy, Julian Veser, Victoria Jahrreiss, Christian Seitz, Mehmet Özsoy

Abstract

Purpose: We aim to analyze the efficacy of different focus sizes and the influence of pulse pressure (intensity) during shock wave lithotripsy (SWL) in terms of stone fragmentation.

Methods: Combination of three focal sizes (F1 = 2 mm, F2 = 4 mm, F3 = 8 mm) and 11 output pressure settings (intensity 10-20) of a piezoelectric lithotripter (Wolf PiezoLith 3000) were tested on artificial stones (n = 99). The stones were placed within a 2 mm mesh cage. The needed number of shockwaves (SW) to first visible crack, 50% and 100% stone disintegration were recorded.

Results: Similar number of SW's were observed until the first crack 10, 11 and 11 SW's for F1, F2, and F3, respectively (p > 0,05). The median number of SW needed for 50% stone disintegration was 245 for F1 group, 242 for F2 group and 656 for F3 group. F1 vs F2 p = 0.7, F1 vs F3 and F2 vs F3 p < 0.05. Similarly, with larger focus size a higher number of shockwaves were necessary for 100% stone disintegration. 894, 877 and 1708 SW's for F1, F2 and F3, respectively. Only for F1 vs F3 and F2 vs F3 (all p < 0.05) a statistical difference was observed. These findings were consistent in all different power settings, with an increased difference in lower power levels (≤ 14).

Conclusions: A smaller focus size, as well as a higher peak pressure results in a more effective stone fragmentation. However, these results need to be confirmed in an in vivo setting with multiple parameters interfering the efficacy, like BMI, respiration or stone migration.

Keywords: Focus size; Fragmentation; SWL; Shock wave therapy; Urolithiasis.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Figures

Fig. 1
Fig. 1
a SWL-therapy head with mounted test device. b Artificial stone and mesh holder
Fig. 2
Fig. 2
Mean number of shock waves (y-axis) for each focus group (F1–F3, color coded) in correlation to the intensity level (10–20, x-axis)

References

    1. Chaussy C, Schuller J, Schmiedt E, Brandl H, Jocham D, Liedl B. Extracorporeal shock-wave lithotripsy (ESWL) for treatment of urolithiasis. Urology. 1984;23((5 Spec No)):59–66. doi: 10.1016/0090-4295(84)90243-7.
    1. Putman SS, Hamilton BD, Johnson DB. The use of shock wave lithotripsy for renal calculi. Curr Opin Urol. 2004;14(2):117–121. doi: 10.1097/00042307-200403000-00012.
    1. Rassweiler J, Rassweiler MC, Frede T, Alken P. Extracorporeal shock wave lithotripsy: an opinion on its future. Indian J Urol. 2014;30(1):73–79. doi: 10.4103/0970-1591.124211.
    1. Pietropaolo A, Proietti S, Geraghty R, Skolarikos A, Papatsoris A, Liatsikos E, Somani BK. Trends of 'urolithiasis: interventions, simulation, and laser technology' over the last 16 years (2000–2015) as published in the literature (PubMed): a systematic review from European section of Uro-technology (ESUT) World J Urol. 2017;35(11):1651–1658. doi: 10.1007/s00345-017-2055-z.
    1. Zumstein V, Betschart P, Abt D, Schmid HP, Panje CM, Putora PM. Surgical management of urolithiasis—a systematic analysis of available guidelines. BMC Urol. 2018;18(1):25. doi: 10.1186/s12894-018-0332-9.
    1. Lokhandwalla M, Sturtevant B. Fracture mechanics model of stone comminution in ESWL and implications for tissue damage. Phys Med Biol. 2000;45(7):1923–1940. doi: 10.1088/0031-9155/45/7/316.
    1. Eisenmenger W. The mechanisms of stone fragmentation in ESWL. Ultrasound Med Biol. 2001;27(5):683–693. doi: 10.1016/S0301-5629(01)00345-3.
    1. Cleveland RO, Sapozhnikov OA. Modeling elastic wave propagation in kidney stones with application to shock wave lithotripsy. J Acoust Soc Am. 2005;118(4):2667–2676. doi: 10.1121/1.2032187.
    1. Pishchalnikov YA, Sapozhnikov OA, Bailey MR, Williams JC, Jr, Cleveland RO, Colonius T, Crum LA, Evan AP, McAteer JA. Cavitation bubble cluster activity in the breakage of kidney stones by lithotripter shockwaves. J Endourol. 2003;17(7):435–446. doi: 10.1089/089277903769013568.
    1. Li K, Lin T, Zhang C, Fan X, Xu K, Bi L, Han J, Huang H, Liu H, Dong W, Duan Y, Yu M, Huang J. Optimal frequency of shock wave lithotripsy in urolithiasis treatment: a systematic review and meta-analysis of randomized controlled trials. J Urol. 2013;190(4):1260–1267. doi: 10.1016/j.juro.2013.03.075.
    1. Neisius A, Lipkin ME, Rassweiler JJ, Zhong P, Preminger GM, Knoll T. Shock wave lithotripsy: the new phoenix? World J Urol. 2015;33(2):213–221. doi: 10.1007/s00345-014-1369-3.
    1. McClain PD, Lange JN, Assimos DG. Optimizing shock wave lithotripsy: a comprehensive review. Rev Urol. 2013;15(2):49–60.
    1. Eisenmenger W, Du XX, Tang C, Zhao S, Wang Y, Rong F, Dai D, Guan M, Qi A. The first clinical results of "wide-focus and low-pressure" ESWL. Ultrasound Med Biol. 2002;28(6):769–774. doi: 10.1016/S0301-5629(02)00507-0.
    1. Granz B, Kohler G. What makes a shock wave efficient in lithotripsy? J Stone Dis. 1992;4(2):123–128.
    1. Qin J, Simmons WN, Sankin G, Zhong P. Effect of lithotripter focal width on stone comminution in shock wave lithotripsy. J Acoust Soc Am. 2010;127(4):2635–2645. doi: 10.1121/1.3308409.
    1. Faragher SR, Cleveland RO, Kumar S, Wiseman OJ, Turney BW. In Vitro assessment of three clinical lithotripters employing different shock wave generators. J Endourol. 2016;30(5):560–565. doi: 10.1089/end.2015.0662.
    1. Rassweiler JJ, Knoll T, Kohrmann KU, McAteer JA, Lingeman JE, Cleveland RO, Bailey MR, Chaussy C. Shock wave technology and application: an update. Eur Urol. 2011;59(5):784–796. doi: 10.1016/j.eururo.2011.02.033.
    1. Chuong CJ, Zhong P, Preminger GM. Acoustic and mechanical properties of renal calculi: implications in shock wave lithotripsy. J Endourol. 1993;7(6):437–444. doi: 10.1089/end.1993.7.437.

Source: PubMed

3
Předplatit