The physiological basis and clinical significance of lung volume measurements

Mohamed Faisal Lutfi, Mohamed Faisal Lutfi

Abstract

From a physiological standpoint, the lung volumes are either dynamic or static. Both subclasses are measured at different degrees of inspiration or expiration; however, dynamic lung volumes are characteristically dependent on the rate of air flow. The static lung volumes/capacities are further subdivided into four standard volumes (tidal, inspiratory reserve, expiratory reserve, and residual volumes) and four standard capacities (inspiratory, functional residual, vital and total lung capacities). The dynamic lung volumes are mostly derived from vital capacity. While dynamic lung volumes are essential for diagnosis and follow up of obstructive lung diseases, static lung volumes are equally important for evaluation of obstructive as well as restrictive ventilatory defects. This review intends to update the reader with the physiological basis, clinical significance and interpretative approaches of the standard static lung volumes and capacities.

Keywords: Lung capacities; Lung volumes; Obstructive; Restrictive; Spirometry.

Figures

Fig. 1
Fig. 1
Standard lung volumes and capacities from a spirometer trace. The solid black and gray arrows indicate lung volumes and capacities respectively
Fig. 2
Fig. 2
Intrapleural and alveolar pressures towards the end of inspiration (a), expiration (b), and forceful expiration (c). The dotted line indicates the change in thoracic dimensions during a, b and c compared with the previous phase of the respiratory cycle
Fig. 3
Fig. 3
Static PVC of the lungs and chest wall. The lung and chest wall curve was plotted by the addition of the individual lung and chest wall curves
Fig. 4
Fig. 4
a Dynamic PVC of the lungs. b Work of breathing
Fig. 5
Fig. 5
Work of breathing in  normal subjects (a) and patients with RLD (b) and OLD (c)
Fig. 6
Fig. 6
Changes in static lung volume and capacities with age
Fig. 7
Fig. 7
Typical changes in the static lung volumes and capacities in RLD and OLD

References

    1. Barr RG, Stemple KJ, Mesia-Vela S, Basner RC, Derk SJ, Henneberger PK, et al. Reproducibility and validity of a handheld spirometer. Respir Care. 2008;53(4):433–41. .
    1. Gerbase MW, Dupuis-Lozeron E, Schindler C, Keidel D, Bridevaux PO, Kriemler S, et al. Agreement between spirometers: a challenge in the follow-up of patients and populations? Respiration. 2013;85(6):505–14. doi: 10.1159/000346649.
    1. Liistro G, Vanwelde C, Vincken W, Vandevoorde J, Verleden G, Buffels J, et al. Technical and functional assessment of 10 office spirometers: A multicenter comparative study. Chest. 2006;130(3):657–65. doi: 10.1378/chest.130.3.657.
    1. Ruppel GL. What is the clinical value of lung volumes? Respir Care. 2012;57(1):26. doi: 10.4187/respcare.01374.
    1. Sue DY. Measurement of lung volumes in patients with obstructive lung disease. A matter of time (constants) Ann Am Thorac Soc. 2013;10(5):525–30. doi: 10.1513/AnnalsATS.201307-236OC.
    1. Swanney MP, Beckert LE, Frampton CM, Wallace LA, Jensen RL, Crapo RO. Validity of the American Thoracic Society and other spirometric algorithms using FVC and forced expiratory volume at 6s for predicting a reduced total lung capacity. Chest. 2004;126(6):1861–6. doi: 10.1378/chest.126.6.1861.
    1. Dawson SV, Elliott EA. Wave-speed limitation on expiratory flow-a unifying concept. J Appl Physiol. 1977;43(3):498–515.
    1. Elliott EA, Dawson SV. Test of wave-speed theory of flow limitation in elastic tubes. J Appl Physiol. 1977;43(3):516–522.
    1. Krowka MJ, Enright PL, Rodarte JR, Hyatt RE. Effect of Effort on Measurement of Forced Expiratory Volume in One Second. Am Rev Respir Dis. 1987;136(4):829–33. doi: 10.1164/ajrccm/136.4.829.
    1. Sharafkhaneh A, Goodnight-White S, Officer TM, Rodarte JR, Boriek AM. Altered thoracic gas compression contributes to improvement in spirometry with lung volume reduction surgery. Thorax. 2005;60(4):288–92. doi: 10.1136/thx.2004.033589.
    1. Sharafkhaneh A, Babb TG, Officer TM, Hanania NA, Sharafkhaneh H, Boriek AM. The Confounding Effects of Thoracic Gas Compression on Measurement of Acute Bronchodilator Response. Am J Respir Crit Care Med. 2007;175(4):330–5. doi: 10.1164/rccm.200602-255OC.
    1. Milic-Emili J, Torchio R, D’Angelo E. Closing volume: a reappraisal (1967–2007) Eur J Appl Physiol. 2007;99(6):567–83. doi: 10.1007/s00421-006-0389-0.
    1. Leblanc P, Ruff F, Milic-Emili J. Effects of age and body position on "airway closure" in man. J Appl Physiol. 1970;28(4):448–51. . Accessed 24 Dec 2016.
    1. Mannino DM, Ford ES, Redd SC. Obstructive and restrictive lung disease and functional limitation: data from the Third National Health and Nutrition Examination. J Intern Med. 2003;254(6):540–547. doi: 10.1111/j.1365-2796.2003.01211.x.
    1. Arabalibeik H, Khomami MH, Agin K, Setayeshi S. Classification of restrictive and obstructive pulmonary diseases using spirometry data. Stud Health Technol Inform. 2009;142:25–27.
    1. Javaheri S, Sicilian L. Lung function, breathing pattern, and gas exchange in interstitial lung disease. Thorax. 1992;47(2):93–97. doi: 10.1136/thx.47.2.93.
    1. Sharma G, Goodwin J. Effect of aging on respiratory system physiology and immunology. Clin Interv Aging. 2006;1(3):253–260. doi: 10.2147/ciia.2006.1.3.253.
    1. Zeleznik J. Normative aging of the respiratory system. Clin Geriatr Med. 2003;19(1):1–18. doi: 10.1016/S0749-0690(02)00063-0.
    1. Mittman C, Edelman NH, Norris AH, Shock NW. Relationship between chest wall and pulmonary compliance and age. J Appl Physiol. 1965;20(6):1211–1216.
    1. Janssens JP, Pache JC, Nicod LP. Physiological changes in respiratory function associated with ageing. Eur Respir J. 1999;13(1):197–205. doi: 10.1183/09031936.99.14614549.
    1. Martin TR, Castile RG, Fredberg JJ, Wohl ME, Mead J. Airway size is related to sex but not lung size in normal adults. J Appl Physiol. 1987;63(5):2042–2047.
    1. Thurlbeck WM. Postnatal human lung growth. Thorax. 1982;37(8):564–571. doi: 10.1136/thx.37.8.564.
    1. Carey MA, Card JW, Voltz JW, Germolec DR, Korach KS, Zeldin DC. The impact of sex and sex hormones on lung physiology and disease: lessons from animal studies. Am J Physiol Lung Cell Mol Physiol. 2007;293(2):L272–8.
    1. Bhatti U, Rani K, Memon MQ. Variation in lung volumes and capacities among young males in relation to height. J Ayub Med Coll Abbottabad. 26(2):200–2. . Accessed 16 Oct 2016.
    1. Littleton SW. Impact of obesity on respiratory function. Respirology. 2012;17(1):43–9. doi: 10.1111/j.1440-1843.2011.02096.x.
    1. Jones RL, Nzekwu M-MU. The effects of body mass index on lung volumes. Chest. 2006;130(3):827–33. doi: 10.1378/chest.130.3.827.
    1. Zavorsky GS, Murias JM, Kim DJ, Gow J, Sylvestre J-L, Christou NV. Waist-to-Hip Ratio Is Associated With Pulmonary Gas Exchange in the Morbidly Obese. Chest. 2007;131(2):362–7.
    1. Mehari A, Afreen S, Ngwa J, Setse R, Thomas AN, Poddar V, et al. Obesity and Pulmonary Function in African Americans. PLoS One. 2015;10(10) doi: 10.1371/journal.pone.0140610.
    1. Myrianthefs P, Grammatopoulou I, Katsoulas T, Baltopoulos G. Spirometry may underestimate airway obstruction in professional Greek athletes. Clin Respir J. 2014;8(2):240–7. doi: 10.1111/crj.12066.
    1. Myrianthefs P, Baltopoulos G. A higher tidal volume may be used for athletes according to measured FVC. Scientific World Journal. 2013;2013:526138. doi:10.1155/2013/526138.
    1. Lemaitre F, Coquart JB, Chavallard F, Castres I, Mucci P, Costalat G, et al. Effect of additional respiratory muscle endurance training in young well-trained swimmers. J Sports Sci Med. 2013;12(4):630–8. . Accessed 16 Oct 2016.
    1. Rong C, Bei H, Yun M, Yuzhu W, Mingwu Z. Lung function and cytokine levels in professional athletes. J Asthma. 2008;45(4):343–8. doi: 10.1080/02770900801956371.
    1. Kamal R, Kesavachandran CN, Bihari V, Sathian B, Srivastava AK. Alterations in Lung Functions Based on BMI and Body Fat % Among Obese Indian Population at National Capital Region. Nepal J Epidemiol. 2015;5(2):470–9.
    1. Piirilä P, Seikkula T, Välimäki P. Differences between Finnish and European reference values for pulmonary diffusing capacity. Int J Circumpolar Health. 2007;66(5):449–457. doi: 10.3402/ijch.v66i5.18316.
    1. Korotzer B, Ong S, Hansen JE. Ethnic differences in pulmonary function in healthy nonsmoking Asian-Americans and European-Americans. Am J Respir Crit Care Med. 2000;161(4 Pt 1):1101–8. doi: 10.1164/ajrccm.161.4.9902063.
    1. Rossiter CE, Weill H. Ethnic differences in lung function: evidence for proportional differences. Int J Epidemiol. 1974;3(1):55–61. doi: 10.1093/ije/3.1.55.
    1. Whittaker AL, Sutton AJ, Beardsmore CS. Are ethnic differences in lung function explained by chest size? Arch Dis Child Fetal Neonatal Ed. 2005;90(5):F423–8. doi: 10.1136/adc.2004.062497.
    1. Quanjer PH, Stanojevic S, Cole TJ, Baur X, Hall GL, Culver BH, et al. Multi-ethnic reference values for spirometry for the 3–95-yr age range: the global lung function 2012 equations. Eur Respir J. 2012;40(6):1324–43.
    1. Nystad W, Samuelsen SO, Nafstad P, Langhammer A. Association between level of physical activity and lung function among Norwegian men and women: the HUNT study. Int J Tuberc Lung Dis. 2006;10(12):1399–1405.
    1. Pollard AJ, Mason NP, Barry PW, Pollard RC, Collier DJ, Fraser RS, et al. Effect of altitude on spirometric parameters and the performance of peak flow meters. Thorax. 1996;51(2):175–8. . Accessed 16 Oct 2016.
    1. Cogo A, Legnani D, Allegra L. Respiratory function at different altitudes. Respiration. 1997;64(6):416–421. doi: 10.1159/000196717.
    1. Melam GR, Buragadda S, Alhusaini A, Alghamdi MA, Alghamdi MS, Kaushal P. Effect of Different Positions on FVC and FEV1 Measurements of Asthmatic Patients. J Phys Ther Sci. 2014;26(4):591–3. doi: 10.1589/jpts.26.591.
    1. Kera T, Maruyama H. The effect of posture on respiratory activity of the abdominal muscles. J Physiol Anthropol Appl Human Sci. 2005;24(4):259–265. doi: 10.2114/jpa.24.259.
    1. Nielsen KG, Holte K, Kehlet H. Effects of posture on postoperative pulmonary function. Acta Anaesthesiol Scand. 2003;47(10):1270–1275. doi: 10.1046/j.1399-6576.2003.00240.x.
    1. LoMauro A, Aliverti A. Respiratory physiology of pregnancy: Physiology masterclass. Breathe (Sheff). 2015;11(4):297–301.
    1. Pellegrino R, Viegi G, Brusasco V, Crapo RO, Burgos F, Casaburi R, et al. Interpretative strategies for lung function tests. Eur Respir J. 2005;26(5):948–68.
    1. Degens P, Merget R. Reference values for spirometry of the European Coal and Steel Community: time for change. Eur Respir J. 2008;31(3):687. doi: 10.1183/09031936.00145507.
    1. Miller MR, Quanjer PH, Swanney MP, Ruppel G, Enright PL. Interpreting lung function data using 80% predicted and fixed thresholds misclassifies more than 20% of patients. Chest. 2011;139(1):52–9. doi: 10.1378/chest.10-0189.
    1. Mannino DM, Diaz-Guzman E. Interpreting lung function data using 80% predicted and fixed thresholds identifies patients at increased risk of mortality. Chest. 2012;141(1):73–80.
    1. Lutfi MF. Review Article Vital capacity derived spirometric measurements. Sudan Med J. 2012;48(1):86–100.
    1. Venkateshiah SB, Ioachimescu OC, McCarthy K, Stoller JK. The utility of spirometry in diagnosing pulmonary restriction. Lung. 186(1):19–25.
    1. Mehrparvar AH, Sakhvidi MJZ, Mostaghaci M, Davari MH, Hashemi SH, Zare Z. Spirometry values for detecting a restrictive pattern in occupational health settings. Tanaffos. 2014;13(2):27–34.
    1. Dykstra BJ, Scanlon PD, Kester MM, Beck KC, Enright PL. Lung volumes in 4,774 patients with obstructive lung disease. Chest. 1999;115(1):68–74. doi: 10.1378/chest.115.1.68.
    1. Quadrelli S, Bosio M, Salvado A, Chertcoff J. [Accuracy of spirometry in the diagnosis of pulmonary restriction] Medicina (B Aires) 2007;67(6 Pt 2):685–690.
    1. Aaron SD, Dales RE, Cardinal P. How accurate is spirometry at predicting restrictive pulmonary impairment? Chest. 1999;115(3):869–873. doi: 10.1378/chest.115.3.869.
    1. Vandevoorde J, Verbanck S, Schuermans D, Broekaert L, Devroey D, Kartounian J, et al. Forced vital capacity and forced expiratory volume in six seconds as predictors of reduced total lung capacity. Eur Respir J. 2008;31(2):391-5.
    1. Lin C-K, Lin C-C. Work of breathing and respiratory drive in obesity. Respirology. 2012;17(3):402–11.
    1. Pelosi P, Croci M, Ravagnan I, Tredici S, Pedoto A, Lissoni A, et al. The effects of body mass on lung volumes, respiratory mechanics, and gas exchange during general anesthesia. Anesth Analg. 1998;87(3):654–60. . Accessed 20 Oct 2016.
    1. Zerah F, Harf A, Perlemuter L, Lorino H, Lorino AM, Atlan G. Effects of obesity on respiratory resistance. Chest. 1993;103(5):1470–1476. doi: 10.1378/chest.103.5.1470.
    1. Pellegrino R, Gobbi A, Antonelli A, Torchio R, Gulotta C, Pellegrino GM, et al. Ventilation heterogeneity in obesity. J Appl Physiol. 2014;116(9):1175–81. doi:10.1152/japplphysiol.01339.2013.
    1. Bencowitz HZ. Inspiratory and expiratory vital capacity. Chest. 1984;85(6):834–835. doi: 10.1378/chest.85.6.834.
    1. Brusasco V, Pellegrino R, Rodarte JR. Vital capacities in acute and chronic airway obstruction: dependence on flow and volume histories. Eur Respir J. 1997;10(6):1316–1320. doi: 10.1183/09031936.97.10061316.
    1. Chhabra SK. Forced vital capacity, slow vital capacity, or inspiratory vital capacity: which is the best measure of vital capacity? J Asthma. 1998;35(4):361–365. doi: 10.3109/02770909809075669.
    1. Ranu H, Wilde M, Madden B. Pulmonary function tests. Ulster Med J. 2011;80(2):84–90.
    1. Shin TR, Oh Y-M, Park JH, et al. The Prognostic Value of Residual Volume/Total Lung Capacity in Patients with Chronic Obstructive Pulmonary Disease. J Korean Med Sci. 2015;30(10):1459–65. doi: 10.3346/jkms.2015.30.10.1459.
    1. Celli BR, Decramer M, Lystig T, Kesten S, Tashkin DP. Longitudinal inspiratory capacity changes in chronic obstructive pulmonary disease. Respir Res. 2012;13:66. doi: 10.1186/1465-9921-13-66.
    1. French A, Balfe D, Mirocha JM, Falk JA, Mosenifar Z. The inspiratory capacity/total lung capacity ratio as a predictor of survival in an emphysematous phenotype of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2015;10:1305–12.
    1. Yetkin O, Gunen H. Inspiratory capacity and forced expiratory volume in the first second in exacerbation of chronic obstructive pulmonary disease. Clin Respir J. 2008;2(1):36–40. doi: 10.1111/j.1752-699X.2007.00040.x.
    1. Zaman M, Mahmood S, Altayeh A. Low inspiratory capacity to total lung capacity ratio is a risk factor for chronic obstructive pulmonary disease exacerbation. Am J Med Sci. 2010;339(5):411–4. doi: 10.1097/MAJ.0b013e3181d6578c.
    1. Engel T, Heinig JH, Madsen F, Nikander K. Peak inspiratory flow and inspiratory vital capacity of patients with asthma measured with and without a new dry-powder inhaler device (Turbuhaler) Eur Respir J. 1990;3(9):1037–1041.
    1. Yuan W, He X, Xu Q-F, Wang H-Y, Casaburi R. Increased difference between slow and forced vital capacity is associated with reduced exercise tolerance in COPD patients. BMC Pulm Med. 2014;14:16. doi: 10.1186/1471-2466-14-16.
    1. Tantucci C, Guerini M, Boni E, Corda L, Pini L. Tidal airway closure during bronchoconstriction in asthma: usefulness of lung volume measurements. J Asthma. 2011;48(1):33–40. doi: 10.3109/02770903.2010.528499.
    1. Pellegrino R, Antonelli A, Crimi E, Gulotta C, Torchio R, Dutto L, et al. Dependence of bronchoconstrictor and bronchodilator responses on thoracic gas compression volume. Respirology. 2014;19(7):1040–5.
    1. Pellegrino R, Crimi E, Gobbi A, Torchio R, Antonelli A, Gulotta C, et al. Severity grading of chronic obstructive pulmonary disease: the confounding effect of phenotype and thoracic gas compression. J Appl Physiol. 2015;118(7):796–802. doi: 10.1152/japplphysiol.00801.2014.
    1. Wesołowski S, Boros P. Restrictive pattern in spirometry: does FEV(1)/FVC need to be increased? Pneumonol Alergol Pol. 2011;79(6):382–387.
    1. Balfe DL, Lewis M, Mohsenifar Z. Grading the severity of obstruction in the presence of a restrictive ventilatory defect. Chest. 2002;122(4):1365–1369. doi: 10.1378/chest.122.4.1365.
    1. Boros P, Franczuk M, Wesołowski S. ["Mixed" changes in spirometry--verification of the pattern of lung function impairment] Pneumonol Alergol Pol. 2003;71(11–12):527–532.
    1. Gardner ZS, Ruppel GL, Kaminsky DA. Grading the severity of obstruction in mixed obstructive-restrictive lung disease. Chest. 2011;140(3):598–603.
    1. Chevalier-Bidaud B, Gillet-Juvin K, Callens E, Chenu R, Graba S, Essalhi M, et al. Non specific pattern of lung function in a respiratory physiology unit: causes and prevalence: results of an observational cross-sectional and longitudinal study. BMC Pulm Med. 2014;14:148.
    1. Hyatt RE, Cowl CT, Bjoraker JA, Scanlon PD. Conditions associated with an abnormal nonspecific pattern of pulmonary function tests. Chest. 2009;135(2):419–24.
    1. Iyer VN, Schroeder DR, Parker KO, Hyatt RE, Scanlon PD. The nonspecific pulmonary function test: longitudinal follow-up and outcomes. Chest. 2011;139(4):878–86.

Source: PubMed

3
Předplatit