The vestibular implant: quo vadis?

Raymond van de Berg, Nils Guinand, Robert J Stokroos, Jean-Philippe Guyot, Herman Kingma, Raymond van de Berg, Nils Guinand, Robert J Stokroos, Jean-Philippe Guyot, Herman Kingma

Abstract

Objective: To assess the progress of the development of the vestibular implant (VI) and its feasibility short-term.

Data sources: A search was performed in Pubmed, Medline, and Embase. Key words used were "vestibular prosth*" and "VI." The only search limit was language: English or Dutch. Additional sources were medical books, conference lectures and our personal experience with per-operative vestibular stimulation in patients selected for cochlear implantation.

Study selection: All studies about the VI and related topics were included and evaluated by two reviewers. No study was excluded since every study investigated different aspects of the VI.

Data extraction and synthesis: Data was extracted by the first author from selected reports, supplemented by additional information, medical books conference lectures. Since each study had its own point of interest with its own outcomes, it was not possible to compare data of different studies.

Conclusion: To use a basic VI in humans seems feasible in the very near future. Investigations show that electric stimulation of the canal nerves induces a nystagmus which corresponds to the plane of the canal which is innervated by the stimulated nerve branch. The brain is able to adapt to a higher baseline stimulation, while still reacting on a dynamic component. The best response will be achieved by a combination of the optimal stimulus (stimulus profile, stimulus location, precompensation), complemented by central vestibular adaptation. The degree of response will probably vary between individuals, depending on pathology and their ability to adapt.

Keywords: acclimation; adaptation; bilateral vestibular areflexia; bilateral vestibulopathy; neural prosthesis; vestibular implant; vestibular prosthesis.

Figures

Figure 1
Figure 1
Biphasic rectangular pulse. This means that there are two phases with charge delivery. The first phase is the cathodic (negative) one (A), after that there is a delay (B). The anodic (positive) phase follows (C), which has the same charge as the cathodic one, but with a positive charge instead of a negative. In this way the charge remains balanced. The last phase is the resting phase (D). The duration of it determines the frequency of the stimulus. A longer duration of phase D implies less pulses per second (pps) and thus a lower stimulus frequency. The shape of all the phases are rectangular and a current is delivered, instead of a voltage.
Figure 2
Figure 2
Monophasic pulse.
Figure 3
Figure 3
Pseudomonophasic pulse.
Figure 4
Figure 4
Delayed pseudomonophasic pulse.
Figure 5
Figure 5
Continuous 1-co-sinusoidal stimulation.

References

    1. Agrawal Y., Carey J. P., Della Santina C. C., Schubert M. C., Minor L. B. (2009). Disorders of balance and vestibular function in US adults: data from the National Health and Nutrition Examination Survey, 2001-2004. Arch. Intern. Med. 169, 938–94410.1001/archinternmed.2009.66
    1. Balter S. G., Stokroos R. J., De Jong I., Boumans R., Van de Laar M., Kingma H. (2004). Background on methods of stimulation in galvanic-induced body sway in young healthy adults. Acta Otolaryngol. 124, 262–27110.1080/00016480410017242
    1. Black F. O., Wade S. W., Nashner L. M. (1996). What is the minimal vestibular function required for compensation? Am. J. Otol. 17, 401–40910.1016/S0196-0709(96)90074-5
    1. Bonham B. H., Litvak L. M. (2008). Current focusing and steering: modeling, physiology, and psychophysics. Hear. Res. 242, 141–15310.1016/j.heares.2008.03.006
    1. Bronte-Stewart H. M., Lisberger S. G. (1994). Physiological properties of vestibular primary afferents that mediate motor learning and normal performance of the vestibulo-ocular reflex in monkeys. J. Neurosci. 14, 1290–1308
    1. Brummer S. B., Turner M. J. (1975). Electrical stimulation of the nervous system: The principle of safe charge injection with noble metal electrodes. Bioelectrochem. Bioenerg. 2, 13–2510.1016/0302-4598(75)80002-X
    1. Cass S. P., Davidson P., Goshgarian H. (1989). Survival of the vestibular nerve after labyrinthectomy in the cat. Otolaryngol. Head Neck Surg. 101, 459–465
    1. Cohen B., Suzuki J.-I., Bender M. B. (1965). Nystagmus induced by electrical stimulation of the ampullary nerves. Acta Otolaryngol. 422–43610.3109/00016486509127026
    1. Crago P. E., Peckham P. H., Mortimer J. T., Deeks J. M., Wouters J. (1974). The choice of pulse duration for chronic electrical stimulation via surface, nerve, and intramuscular electrodes. Ann. Biomed. Eng. 2, 252–26410.1007/BF02368496
    1. Curthoys I. S., Halmagyi G. M. (1995). Vestibular compensation: a review of the oculomotor, neural, and clinical consequences of unilateral vestibular loss. J. Vestib. Res. 5, 67–10710.1016/0957-4271(94)00026-X
    1. Dai C., Fridman G. Y., Chiang B., Davidovics N. S., Melvin T. A., Cullen K. E., Della Santina C. C. (2011a). Cross-axis adaptation improves 3D vestibulo-ocular reflex alignment during chronic stimulation via a head-mounted multichannel vestibular prosthesis. Exp. Brain Res. 210, 595–60610.1007/s00221-011-2591-5
    1. Dai C., Fridman G. Y., Della Santina C. C. (2011b). Effects of vestibular prosthesis electrode implantation and stimulation on hearing in rhesus monkeys. Hear. Res. 277, 204–21010.1016/j.heares.2010.12.021
    1. Davidovics N. S., Fridman G. Y., Chiang B., Della Santina C. C. (2011). Effects of biphasic current pulse frequency, amplitude, duration, and interphase gap on eye movement responses to prosthetic electrical stimulation of the vestibular nerve. IEEE Trans. Neural Syst. Rehabil. Eng. 19, 84–9410.1109/TNSRE.2010.2065241
    1. Della Santina C. C., Migliaccio A. A., Patel A. H. (2007). A multichannel semicircular canal neural prosthesis using electrical stimulation to restore 3-D vestibular sensation. IEEE Trans. Biomed. Eng. 54, 1016–103010.1109/TBME.2007.894629
    1. Dimitri P. S., Wall C., III, Oas J. G. (1996). Classification of human rotation test results using parametric modeling and multivariate statistics. Acta Otolaryngol. 116, 497–50610.3109/00016489609137880
    1. Epley J. M. (1980). Singular neurectomy: hypotympanotomy approach. Otolaryngol. Head Neck Surg. 88, 304–309
    1. Feigl G. C., Fasel J. H., Anderhuber F., Ulz H., Rienmüller R., Guyot J. P., Kos I. M. (2009). Superior vestibular neurectomy: a novel transmeatal approach for a denervation of the superior and lateral semicircular canals. Otol. Neurotol. 30, 586–59110.1097/MAO.0b013e3181ab9164
    1. Fridman G. Y., Davidovics N. S., Dai C., Migliaccio A. A., Della Santina C. C. (2010). Vestibulo-ocular reflex responses to a multichannel vestibular prosthesis incorporating a 3D coordinate transformation for correction of misalignment. J. Assoc. Res. Otolaryngol. 11, 367–38110.1007/s10162-010-0208-5
    1. Frijns J. H., de Snoo S. L., ten Kate J. H. (1996). Spatial selectivity in a rotationally symmetric model of the electrically stimulated cochlea. Hear. Res. 95, 33–4810.1016/0378-5955(96)00004-4
    1. Gacek R. R. (1974). Transection of the posterior ampullary nerve for the relief of benign paroxysmal positional vertigo. Ann. Otol. Rhinol. Laryngol. 83, 596–605
    1. Gacek R. R., Gacek M. R. (2002). Results of singular neurectomy in the posterior ampullary recess. ORL J. Otorhinolaryngol. Relat. Spec. 64, 397–40210.1159/000067572
    1. Goldberg J. M., Fernandez C. (1971). Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. I. Resting discharge and response to constant angular accelerations. J. Neurophysiol. 34, 635–660
    1. Gong W., Haburcakova C., Merfeld D. M. (2008). Vestibulo-ocular responses evoked via bilateral electrical stimulation of the lateral semicircular canals. IEEE Trans. Biomed. Eng. 55, 2608–261910.1109/TBME.2008.2001294
    1. Gong W., Merfeld D. M. (2000). Prototype neural semicircular canal prosthesis using patterned electrical stimulation. Ann. Biomed. Eng. 28, 572–58110.1114/1.293
    1. Gong W., Merfeld D. M. (2002). System design and performance of a unilateral horizontal semicircular canal prosthesis. IEEE Trans. Biomed. Eng. 49, 175–18110.1109/10.979358
    1. Gorman P. H., Mortimer J. T. (1983). The effect of stimulus parameters on the recruitment characteristics of direct nerve stimulation. IEEE Trans. Biomed. Eng. 30, 407–41410.1109/TBME.1983.325041
    1. Guyot J. P., Sigrist A., Pelizzone M., Feigl G. C., Kos M. I. (2011a). Eye movements in response to electrical stimulation of the lateral and superior ampullary nerves. Ann. Otol. Rhinol. Laryngol. 120, 81–87
    1. Guyot J. P., Sigrist A., Pelizzone M., Kos M. I. (2011b). Adaptation to steady-state electrical stimulation of the vestibular system in humans. Ann. Otol. Rhinol. Laryngol. 120, 143–149
    1. Kingma H. (2005). “Anatomie, fysiologie en onderzoek van het vestibulaire system,” in Leerboek keel-, neus- en oorheelkunde, ed. Huizing E. H. (Houten: Bohn Stafleu van Loghum; ), 115–150
    1. Kudo Y., Nomura Y. (1996). The vestibular nerve: its course to the anterior and lateral ampullae. ORL J. Otorhinolaryngol. Relat. Spec. 58, 208–21210.1159/000276838
    1. Lacour M., Dutheil S., Tighilet B., Lopez C., Borel L. (2009). Tell me your vestibular deficit, and i’ll tell you how you’ll compensate. Ann. N. Y. Acad. Sci. 1164, 268–27810.1111/j.1749-6632.2008.03731.x
    1. Leake P. A., Hradek G. T., Snyder R. L. (1999). Chronic electrical stimulation by a cochlear implant promotes survival of spiral ganglion neurons after neonatal deafness. J. Comp. Neurol. 412, 543–56210.1002/(SICI)1096-9861(19991004)412:4<543::AID-CNE1>;2-3
    1. Lewis R. F., Gong W., Ramsey M., Minor L., Boyle R., Merfeld D. M. (2002). Vestibular adaptation studied with a prosthetic semicircular canal. J. Vestib. Res. 12, 87–94
    1. Lewis R. F., Haburcakova C., Gong W., Makary C., Merfeld D. M. (2010). Vestibuloocular reflex adaptation investigated with chronic motion-modulated electrical stimulation of semicircular canal afferents. J. Neurophysiol. 103, 1066–107910.1152/jn.00241.2009
    1. Lysakowski A. (2005). “Anatomy of the vestibular end organs and neural pathways,” in Cummings Otolaryngology Head and Neck Surgery, ed. Cummings W. (Philadelphia: Elsevier; ), 3089–3114
    1. Macherey O., van Wieringen A., Carlyon R. P., Deeks J. M., Wouters J. (2006). Asymmetric pulses in cochlear implants: effects of pulse shape, polarity, and rate. J. Assoc. Res. Otolaryngol. 7, 253–26610.1007/s10162-006-0040-0
    1. Mallinson A. I., Longridge N. S. (2004). Caloric response does not decline with age. J. Vestib. Res. 14, 393–396
    1. McCall A. A., Ishiyama G. P., Lopez I. A., Bhuta S., Vetter S., Ishiyama A. (2009). Histopathological and ultrastructural analysis of vestibular end organs in Meniere’s disease reveals basement membrane pathology. BMC Ear Nose Throat Disord. 9, 4.10.1186/1472-6815-9-4
    1. Melvill Jones G., Guitton D., Berthoz A. (1988). Changing patterns of eye-head coordination during 6 h of optically reversed vision. Exp. Brain Res. 69, 531–54410.1007/BF00247307
    1. Merfeld D. M. (2004). “Vestibular prosthetics,” in Neuroprosthetics: Theory and Practice, eds Horch K. W., Dhillon G. (Singapore: World Scientific Publishing; ), 1115–1145
    1. Merfeld D. M., Gong W., Morrissey J., Saginaw M., Haburcakova C., Lewis R. F. (2006). Acclimation to chronic constant-rate peripheral stimulation provided by a vestibular prosthesis. IEEE Trans. Biomed. Eng. 53, 2362–237210.1109/TBME.2006.883645
    1. Merfeld D. M., Haburcakova C., Gong W., Lewis R. F. (2007). Chronic vestibulo-ocular reflexes evoked by a vestibular prosthesis. IEEE Trans. Biomed. Eng. 54, 1005–101510.1109/TBME.2007.891943
    1. Merrill D. R., Bikson M., Jefferys J. G. (2005). Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J. Neurosci. Methods 141, 171–19810.1016/j.jneumeth.2004.10.020
    1. Mortimer J. (1981). “Motor prostheses,” in Handbook of Physiology: The Nervous System, ed. Brooks V. B. (Bethesda, MD: American Physiological Society; ), 155–187
    1. Parnes L. S., McClure J. A. (1990). Posterior semicircular canal occlusion for intractable benign paroxysmal positional vertigo. Ann. Otol. Rhinol. Laryngol. 99, 330–334
    1. Parnes L. S., McClure J. A. (1991). Posterior semicircular canal occlusion in the normal hearing ear. Otolaryngol. Head Neck Surg. 104, 52–57
    1. Rattay F., Lutter P., Felix H. (2001). A model of the electrically excited human cochlear neuron. I. Contribution of neural substructures to the generation and propagation of spikes. Hear. Res. 153, 43–6310.1016/S0378-5955(00)00257-4
    1. Rauch S. D., Velazquez-Villasenor L., Dimitri P. S., Merchant S. N. (2001). Decreasing hair cell counts in aging humans. Ann. N. Y. Acad. Sci. 942, 220–22710.1111/j.1749-6632.2001.tb03748.x
    1. Robblee L. S. (1990). “Electrochemical guidelines for selection of protocols and electrode materials for neural stimulation,” in Neural Prostheses: Fundamental Studies, eds Agnew W. F., McCreery D. B. (Englewood Cliffs, NJ: Prentice Hall; ), 25–66
    1. Rubinstein J. T., Della Santina C. C. (2002). Development of a biophysical model for vestibular prosthesis research. J. Vestib. Res. 12, 69–76
    1. Rubinstein J. T., Spelman F. A. (1988). Analytical theory for extracellular electrical stimulation of nerve with focal electrodes. I. Passive unmyelinated axon. Biophys. J. 54, 975–98110.1016/S0006-3495(88)83035-2
    1. Sando I., Black F. O., Hemenway W. G. (1972). Spatial distribution of vestibular nerve in internal auditory canal. Ann. Otol. Rhinol. Laryngol. 81, 305–314
    1. Schuknecht H. F. (1982). Behavior of the vestibular nerve following labyrinthectomy. Ann. Otol. Rhinol. Laryngol. Suppl. 97, 16–32
    1. Shepherd R. K., Coco A., Epp S. B. (2008). Neurotrophins and electrical stimulation for protection and repair of spiral ganglion neurons following sensorineural hearing loss. Hear. Res. 242, 100–10910.1016/j.heares.2007.12.005
    1. Shepherd R. K., Javel E. (1999). Electrical stimulation of the auditory nerve: II. Effect of stimulus waveshape on single fibre response properties. Hear. Res. 130, 171–18810.1016/S0378-5955(99)00011-8
    1. Shepherd R. K., Matsushima J., Millard R. E., Clark G. M. (1991). Cochlear pathology following chronic electrical stimulation using non charge balanced stimuli. Acta Otolaryngol. 111, 848–86010.3109/00016489109138421
    1. Shkel A. M., Zeng F. G. (2006). An electronic prosthesis mimicking the dynamic vestibular function. Audiol. Neurootol. 11, 113–12210.1159/000090684
    1. Suzuki J. I., Goto K., Tokumasu K., Cohen B. (1969). Implantation of electrodes near individual vestibular nerve branches in mammals. Ann. Otol. Rhinol. Laryngol. 78, 815–826
    1. Tang S., Melvin T. A., Della Santina C. C. (2009). Effects of semicircular canal electrode implantation on hearing in chinchillas. Acta Otolaryngol. 129, 481–48610.1080/00016480802252243
    1. Tsuji K., Velazquez-Villasenor L., Rauch S. D., Glynn R. J., Wall C., III, Merchant S. N. (2000a). Temporal bone studies of the human peripheral vestibular system. Aminoglycoside ototoxicity. Ann. Otol. Rhinol. Laryngol. Suppl. 181, 20–25
    1. Tsuji K., Velazquez-Villasenor L., Rauch S. D., Glynn R. J., Wall C., III, Merchant S. N. (2000b). Temporal bone studies of the human peripheral vestibular system. Meniere’s disease. Ann. Otol. Rhinol. Laryngol. Suppl. 181, 26–31
    1. Velazquez-Villasenor L., Merchant S. N., Tsuji K Glynn R. J., Wall C., III, Rauch S. D. (2000). Temporal bone studies of the human peripheral vestibular system. Normative Scarpa’s ganglion cell data. Ann. Otol. Rhinol. Laryngol. Suppl. 181, 14–19
    1. Wall C., III, Kos M. I., Guyot J. P. (2007). Eye movements in response to electric stimulation of the human posterior ampullary nerve. Ann. Otol. Rhinol. Laryngol. 116, 369–374
    1. Wall C., III, Merfeld D. M., Rauch S. D., Black F. O. (2002). Vestibular prostheses: the engineering and biomedical issues. J. Vestib. Res. 12, 95–113
    1. Zheng C., Guyot J. P., Montandon P. (1996). Ossiculoplasty by interposition of a minor columella between the tympanic membrane and stapes head. Am. J. Otol. 17, 200–202

Source: PubMed

3
Předplatit