Head circumferences of children born to HIV-infected and HIV-uninfected mothers in Zimbabwe during the preantiretroviral therapy era

Ceri Evans, Bernard Chasekwa, Robert Ntozini, Jean H Humphrey, Andrew J Prendergast, Ceri Evans, Bernard Chasekwa, Robert Ntozini, Jean H Humphrey, Andrew J Prendergast

Abstract

Objectives: To describe the head growth of children according to maternal and child HIV infection status.

Design: Longitudinal analysis of head circumference data from 13 647 children followed from birth in the ZVITAMBO trial, undertaken in Harare, Zimbabwe, between 1997 and 2001, prior to availability of antiretroviral therapy (ART) or cotrimoxazole prophylaxis.

Methods: Head circumference was measured at birth, then at regular intervals through 24 months of age. Mean head circumference-for-age Z-scores (HCZ) and prevalence of microcephaly (HCZ < -2) were compared between HIV-unexposed children, HIV-exposed uninfected (HEU) children and children infected with HIV in utero (IU), intrapartum (IP) and postnatally (PN).

Results: Children infected with HIV in utero had head growth restriction at birth. Head circumference Z-scores remained low throughout follow-up in IP children, whereas they progressively declined in IU children. During the second year of life, HCZ in the PN group declined, reaching a similar mean as IP-infected children by 21 months of age. Microcephaly was more common among IU and IP children than HIV-uninfected children through 24 months. HEU children had significantly lower head circumferences than HIV-unexposed children through 12 months.

Conclusion: HIV-infected children had lower head circumferences and more microcephaly than HIV-uninfected children. Timing of HIV acquisition; influenced HCZ, with those infected before birth having particularly poor head growth. HEU children had poorer head growth until 12 months of age. Correlations between head growth and neurodevelopment in the context of maternal/infant HIV infection, and further studies from the current ART era, will help determine the predictive value of routine head circumference measurement.

Figures

Fig. 1
Fig. 1
Mean head circumference-for-age Z-scores according to child HIV infection/exposure status.

References

    1. Marinda E, Humphrey JH, Iliff PJ, Mutasa K, Nathoo KJ, Piwoz EG, et al. Child mortality according to maternal and infant HIV status in Zimbabwe. Pediatr Infect Dis J 2007; 26:519–526.
    1. Evans C, Jones CE, Prendergast AJ. HIV-exposed, uninfected infants: new challenges in the era of paediatric HIV elimination. Lancet Infect Dis 2016; 16:e92–e107.
    1. Koyanagi A, Humphrey JH, Ntozini R, Nathoo K, Moulton LH, Iliff P, et al. Morbidity among human immunodeficiency virus-exposed but uninfected, human immunodeficiency virus-infected, and human immunodeficiency virus-unexposed infants in Zimbabwe before availability of highly active antiretroviral therapy. Pediatr Infect Dis J 2011; 30:45–51.
    1. Le Doaré K, Bland R, Newell ML. Neurodevelopment in children born to HIV-infected mothers by infection and treatment status. Pediatrics 2012; 130:e1326–e1344.
    1. Cheong JL, Hunt RW, Anderson PJ, Howard K, Thompson DK, Wang HX, et al. Head growth in preterm infants: correlation with magnetic resonance imaging and neurodevelopmental outcome. Pediatrics 2008; 121:e1534–e1540.
    1. Kandawasvika GQ, Ogundipe E, Gumbo FZ, Kurewa EN, Mapingure MP, Stray-Pedersen B. Neurodevelopmental impairment among infants born to mothers infected with human immunodeficiency virus and uninfected mothers from three peri-urban primary care clinics in Harare, Zimbabwe. Dev Med Child Neurol 2011; 53:1046–1052.
    1. Epstein LG, Gelbard HA. HIV-1-induced neuronal injury in the developing brain. J Leukoc Biol 1999; 65:453–457.
    1. Humphrey JH, Iliff PJ, Marinda ET, Mutasa K, Moulton LH, Chidawanyika H, et al. Effects of a single large dose of vitamin A, given during the postpartum period to HIV-positive women and their infants, on child HIV infection, HIV-free survival, and mortality. J Infect Dis 2006; 193:860–871.
    1. Malaba LC, Iliff PJ, Nathoo KJ, Marinda E, Moulton LH, Zijenah LS, et al. Effect of postpartum maternal or neonatal vitamin A supplementation on infant mortality among infants born to HIV-negative mothers in Zimbabwe. Am J Clin Nutr 2005; 81:454–460.
    1. Gibson RS. Principles of nutritional assessment. New York: Oxford University Press; 1990.
    1. WHO. WHO child growth standards: methods and development. 2006; [accessed 15th September 2015].
    1. Lepage P, Msellati P, Hitimana DG, Bazubagira A, Van Goethem C, Simonon A, et al. Growth of human immunodeficiency type 1-infected and uninfected children: a prospective cohort study in Kigali, Rwanda, 1988 to 1993. Pediatr Infect Dis J 1996; 15:479–485.
    1. Moye J, Jr, Rich KC, Kalish LA, Sheon AR, Diaz C, Cooper ER, et al. Natural history of somatic growth in infants born to women infected by human immunodeficiency virus. Women and Infants Transmission Study Group. J Pediatr 1996; 128:58–69.
    1. Neubauer V, Griesmaier E, Pehböck-Walser N, Pupp-Peglow U, Kiechl-Kohlendorfer U. Poor postnatal head growth in very preterm infants is associated with impaired neurodevelopment outcome. Acta Paediatr 2013; 102:883–888.
    1. Macmillan C, Magder LS, Brouwers P, Chase C, Hittelman J, Lasky T, et al. Head growth and neurodevelopment of infants born to HIV-1-infected drug-using women. Neurology 2001; 57:1402–1411.
    1. Becquet R, Marston M, Dabis F, Moulton LH, Gray G, Coovadia HM, et al. Children who acquire HIV infection perinatally are at higher risk of early death than those acquiring infection through breastmilk: a meta-analysis. PLoS One 2012; 7:e28510.
    1. Smith R, Malee K, Charurat M, Magder L, Mellins C, Macmillan C, et al. Timing of perinatal human immunodeficiency virus type 1 infection and rate of neurodevelopment. The Women and Infant Transmission Study Group. Pediatr Infect Dis J 2000; 19:862–871.
    1. Gómez C, Archila ME, Rugeles C, Carrizosa J, Rugeles MT, Cornejo JW. A prospective study of neurodevelopment of uninfected children born to human immunodeficiency virus type 1 positive mothers. Rev Neurol 2009; 48:287–291.
    1. Neri D, Somarriba GA, Schaefer NN, Chaparro AI, Scott GB, Lopez Mitnik G, et al. Growth and body composition of uninfected children exposed to human immunodeficiency virus: comparison with a contemporary cohort and United States national standards. J Pediatr 2013; 163:249–254.
    1. Jahanshad N, Couture MC, Prasitsuebsai W, Nir TM, Aurpibul L, Thompson PM, et al. Brain imaging and neurodevelopment in HIV-uninfected Thai children born to HIV-infected mothers. Pediatr Infect Dis J 2015; 34:e211–e216.
    1. Kerr SJ, Puthanakit T, Vibol U, Aurpibul L, Vonthanak S, Kosalaraksa P, et al. Neurodevelopmental outcomes in HIV-exposed-uninfected children versus those not exposed to HIV. AIDS Care 2014; 26:1327–1335.
    1. Shiau S, Arpadi S, Strehlau R, Martens L, Patel F, Coovadia A, et al. Initiation of antiretroviral therapy before 6 months of age is associated with faster growth recovery in South African children perinatally infected with human immunodeficiency virus. J Pediatr 2013; 162:1138–1145.
    1. Siberry GK, Williams PL, Mendez H, Seage GR, 3rd, Jacobson DL, Hazra R, et al. Safety of tenofovir use during pregnancy: early growth outcomes in HIV-exposed uninfected infants. AIDS 2012; 26:1151–1159.
    1. Jones AD, Rukobo S, Chasekwa B, Mutasa K, Ntozini R, Mbuya MN, et al. Acute illness is associated with suppression of the growth hormone axis in Zimbabwean infants. Am J Trop Med Hyg 2015; 92:463–470.doi:10.4269/ajtmh.14-0448.
    1. Gompels UA, Larke N, Sanz-Ramos M, Bates M, Musonda K, Manno D, et al. Human cytomegalovirus infant infection adversely affects growth and development in maternally HIV-exposed and unexposed infants in Zambia. Clin Infect Dis 2012; 54:434–442.

Source: PubMed

3
Předplatit