Troponin I levels in permanent atrial fibrillation-impact of rate control and exercise testing

Anja Wiedswang Horjen, Sara Reinvik Ulimoen, Steve Enger, Jon Norseth, Ingebjørg Seljeflot, Harald Arnesen, Arnljot Tveit, Anja Wiedswang Horjen, Sara Reinvik Ulimoen, Steve Enger, Jon Norseth, Ingebjørg Seljeflot, Harald Arnesen, Arnljot Tveit

Abstract

Background: High-sensitivity troponin I (hs-TnI) and troponin T (hs-TnT) are moderately correlated and independently related to outcome in atrial fibrillation (AF). Rate controlling therapy has been shown to reduce hs-TnT, however the potential impact on hs-TnI levels, and whether this differs from the effects on hs-TnT, has not been investigated previously.

Methods: Sixty patients with stable, permanent AF without heart failure or known ischemic heart disease were included in a randomised crossover study (mean age 71 ± 9 years, 18 women). Diltiazem 360 mg, verapamil 240 mg, metoprolol 100 mg, and carvedilol 25 mg were administered once daily for three weeks, in a randomised sequence. At baseline and on the last day of each treatment period, hs-TnI was measured at rest and after a maximal exercise test and compared to hs-TnT.

Results: Hs-TnI and hs-TnT correlated moderately at baseline (rs = 0.582, p < 0.001). All drugs reduced both the resting and the peak exercise levels of hs-TnI compared with baseline (p < 0.001 for all). The decline in resting hs-TnI and hs-TnT values relative to baseline levels was similar for all drugs except for verapamil, which reduced hs-TnI more than hs-TnT (p = 0.017). Levels of hs-TnI increased significantly in response to exercise testing at baseline and at all treatment regimens (p < 0.001 for all). The relative exercise-induced increase in hs-TnI was significantly larger compared to hs-TnT at baseline (p < 0.001), on diltiazem (p < 0.001) and on verapamil (p = 0.001).

Conclusions: In our population of stable, permanent AF patients, all four rate control drug regimens reduced hs-TnI significantly, both at rest and during exercise. The decline in hs-TnI and hs-TnT levels associated with beta-blocker and calcium channel blocker treatment was similar, except for a larger relative decrease in hs-TnI levels following verapamil treatment.

Trial registration: www.clinicaltrials.gov ( NCT00313157 ).

Keywords: Atrial fibrillation; Biomarkers; Exercise testing; High-sensitivity cardiac troponin I; High-sensitivity cardiac troponin T; Rate control.

Figures

Fig. 1
Fig. 1
Flow chart of the study. HR, heart rate; n, number of patients; SR, sinus rhythm
Fig. 2
Fig. 2
Resting hs-TnI levels at baseline and during treatments. All drug regimens reduced the resting levels of high-sensitivity troponin I compared to baseline (p < 0.001 for all, p-values derived from the Wilcoxon signed-rank test). Center lines show the medians; box limits indicate the 25th and 75th percentiles; whiskers extend 1.5 times the interquartile range from the 25th and 75th percentiles. Abbreviations: hs-TnI, high-sensitivity troponin I
Fig. 3
Fig. 3
Relative decrease in hs-TnI and hs-TnT levels following treatment. The decline in hs-TnI and hs-TnT levels associated with beta-blocker and calcium channel blocker treatment was similar, except for a larger relative decrease in hs-TnI levels following verapamil treatment (p = 0.017) (p-values derived from the Mann–Whitney U-test). Center lines show the medians; box limits indicate the 25th and 75th percentiles; whiskers extend 1.5 times the interquartile range from the 25th and 75th percentiles. Abbreviations: hs-TnI, high-sensitivity troponin I; hs-TnT, high-sensitivity troponin T
Fig. 4
Fig. 4
Relative exercise-induced increase in hs-TnI and hs-TnT levels. The relative exercise-induced increase in hs-TnI was significantly larger compared to hs-TnT at baseline (p < 0.001) and at treatment with diltiazem (p < 0.001) and verapamil (p = 0.001) (p-values derived from the Mann–Whitney U-test). Center lines show the medians; box limits indicate the 25th and 75th percentiles; whiskers extend 1.5 times the interquartile range from the 25th and 75th percentiles. Abbreviations: hs-TnI, high-sensitivity troponin I; hs-TnT, high-sensitivity troponin T
Fig. 5
Fig. 5
Scatterplot showing the association between baseline levels of logarithmically transformed hs-TnI and hs-TnT. Scatterplot with fitted linear regression line and 95 % confidence interval curves. Regression coefficient was 0.35, 95 % CI (0.28, 0.42), p < 0.001, adjusted R2 0.24. Abbreviations: hs-TnI, high-sensitivity troponin I; hs-TnT, high-sensitivity troponin T

References

    1. Wolf PA, Dawber TR, Thomas HE, Jr, Kannel WB. Epidemiologic assessment of chronic atrial fibrillation and risk of stroke: the Framingham study. Neurology. 1978;28:973–977. doi: 10.1212/WNL.28.10.973.
    1. Benjamin EJ, Wolf PA, D’Agostino RB, Silbershatz H, Kannel WB, Levy D. Impact of atrial fibrillation on the risk of death: the Framingham Heart Study. Circulation. 1998;98:946–952. doi: 10.1161/01.CIR.98.10.946.
    1. Horjen AW, Ulimoen SR, Enger S, Berge T, Ihle-Hansen H, Norseth J et al. Impact of atrial fibrillation on levels of high-sensitivity troponin I in a 75-year-old population. Scand J Clin Lab Invest.2015;75:308-13.
    1. Webb IG, Yam ST, Cooke R, Aitken A, Larsen PD, Harding SA. Elevated baseline cardiac troponin levels in the elderly - another variable to consider? Heart Lung Circ. 2015;24:142–148. doi: 10.1016/j.hlc.2014.07.071.
    1. Hussein AA, Bartz TM, Gottdiener JS, Sotoodehnia N, Heckbert SR, Lloyd-Jones D, et al. Serial measures of cardiac troponin T levels by a highly sensitive assay and incident atrial fibrillation in a prospective cohort of ambulatory older adults. Heart Rhythm. 2015;12:879–885. doi: 10.1016/j.hrthm.2015.01.020.
    1. Roldan V, Marin F, Diaz J, Gallego P, Jover E, Romera M, et al. High sensitivity cardiac troponin T and interleukin-6 predict adverse cardiovascular events and mortality in anticoagulated patients with atrial fibrillation. J Thromb Haemost. 2012;10:1500–1507. doi: 10.1111/j.1538-7836.2012.04812.x.
    1. van den Bos EJ, Constantinescu AA, van Domburg RT, Akin S, Jordaens LJ, Kofflard MJ. Minor elevations in troponin I are associated with mortality and adverse cardiac events in patients with atrial fibrillation. Eur Heart J. 2011;32:611–617. doi: 10.1093/eurheartj/ehq491.
    1. Hijazi Z, Oldgren J, Andersson U, Connolly SJ, Ezekowitz MD, Hohnloser SH, et al. Cardiac biomarkers are associated with an increased risk of stroke and death in patients with atrial fibrillation: a Randomized Evaluation of Long-term Anticoagulation Therapy (RE-LY) substudy. Circulation. 2012;125:1605–1616. doi: 10.1161/CIRCULATIONAHA.111.038729.
    1. Hijazi Z, Siegbahn A, Andersson U, Granger CB, Alexander JH, Atar D, et al. High-sensitivity troponin I for risk assessment in patients with atrial fibrillation: insights from the Apixaban for Reduction in Stroke and other Thromboembolic Events in Atrial Fibrillation (ARISTOTLE) trial. Circulation. 2014;129:625–634. doi: 10.1161/CIRCULATIONAHA.113.006286.
    1. Hijazi Z, Oldgren J, Andersson U, Connolly SJ, Ezekowitz MD, Hohnloser SH, et al. Importance of persistent elevation of cardiac biomarkers in atrial fibrillation: a RE-LY substudy. Heart. 2014;100:1193–1200. doi: 10.1136/heartjnl-2013-304872.
    1. Ulimoen SR, Enger S, Norseth J, Pripp AH, Abdelnoor M, Arnesen H, et al. Improved rate control reduces cardiac troponin T levels in permanent atrial fibrillation. Clin Cardiol. 2014;37:422–427. doi: 10.1002/clc.22281.
    1. Parwani AS, Boldt LH, Huemer M, Wutzler A, Blaschke D, Rolf S, et al. Atrial fibrillation-induced cardiac troponin I release. Int J Cardiol. 2013;168:2734–2737. doi: 10.1016/j.ijcard.2013.03.087.
    1. Røsjø H, Kravdal G, Høiseth AD, Jørgensen M, Badr P, Røysland R, et al. Troponin I measured by a high-sensitivity assay in patients with suspected reversible myocardial ischemia: data from the Akershus Cardiac Examination (ACE) 1 study. Clin Chem. 2012;58:1565–1573. doi: 10.1373/clinchem.2012.190868.
    1. Røysland R, Kravdal G, Høiseth AD, Nygård S, Badr P, Hagve TA, et al. Cardiac troponin T levels and exercise stress testing in patients with suspected coronary artery disease: the Akershus Cardiac Examination (ACE) 1 study. Clin Sci (Lond) 2012;122:599–606. doi: 10.1042/CS20110557.
    1. Omland T, Pfeffer MA, Solomon SD, de Lemos JA, Røsjø H, Saltyte Benth J, et al. Prognostic value of cardiac troponin I measured with a highly sensitive assay in patients with stable coronary artery disease. J Am Coll Cardiol. 2013;61:1240–1249. doi: 10.1016/j.jacc.2012.12.026.
    1. Rubini Gimenez M, Twerenbold R, Reichlin T, Wildi K, Haaf P, Schaefer M, et al. Direct comparison of high-sensitivity-cardiac troponin I vs. T for the early diagnosis of acute myocardial infarction. Eur Heart J. 2014;35:2303–2311. doi: 10.1093/eurheartj/ehu188.
    1. Hijazi Z, Siegbahn A, Andersson U, Lindahl B, Granger CB, Alexander JH, et al. Comparison of cardiac troponins I and T measured with high-sensitivity methods for evaluation of prognosis in atrial fibrillation: an ARISTOTLE substudy. Clin Chem. 2015;61:368–378. doi: 10.1373/clinchem.2014.226936.
    1. Ulimoen SR, Enger S, Carlson J, Platonov PG, Pripp AH, Abdelnoor M, et al. Comparison of four single-drug regimens on ventricular rate and arrhythmia-related symptoms in patients with permanent atrial fibrillation. Am J Cardiol. 2013;111:225–230. doi: 10.1016/j.amjcard.2012.09.020.
    1. Gibbons RJ, Balady GJ, Beasley JW, Bricker JT, Duvernoy WF, Froelicher VF, et al. ACC/AHA Guidelines for Exercise Testing. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Exercise Testing) J Am Coll Cardiol. 1997;30:260–311. doi: 10.1016/S0735-1097(97)00150-2.
    1. Ulimoen SR, Enger S, Pripp AH, Abdelnoor M, Arnesen H, Gjesdal K, et al. Calcium channel blockers improve exercise capacity and reduce N-terminal Pro-B-type natriuretic peptide levels compared with beta-blockers in patients with permanent atrial fibrillation. Eur Hear J. 2014;35:517–524. doi: 10.1093/eurheartj/eht429.
    1. Bubien RS, Knotts-Dolson SM, Plumb VJ, Kay GN. Effect of radiofrequency catheter ablation on health-related quality of life and activities of daily living in patients with recurrent arrhythmias. Circulation. 1996;94:1585–1591. doi: 10.1161/01.CIR.94.7.1585.
    1. Jenkins LS, Brodsky M, Schron E, Chung M, Rocco T, Jr, Lader E, et al. Quality of life in atrial fibrillation: the Atrial Fibrillation Follow-up Investigation of Rhythm Management (AFFIRM) study. Am Heart J. 2005;149:112–120. doi: 10.1016/j.ahj.2004.03.065.
    1. Apple FS, Collinson PO. Analytical characteristics of high-sensitivity cardiac troponin assays. Clin Chem. 2012;58:54–61. doi: 10.1373/clinchem.2011.165795.
    1. Eggers KM, Lagerqvist B, Venge P, Wallentin L, Lindahl B. Persistent cardiac troponin I elevation in stabilized patients after an episode of acute coronary syndrome predicts long-term mortality. Circulation. 2007;116:1907–1914. doi: 10.1161/CIRCULATIONAHA.107.708529.
    1. Agarwal SK, Avery CL, Ballantyne CM, Catellier D, Nambi V, Saunders J, et al. Sources of variability in measurements of cardiac troponin T in a community-based sample: the atherosclerosis risk in communities study. Clin Chem. 2011;57:891–897. doi: 10.1373/clinchem.2010.159350.
    1. Apple FS, Ler R, Murakami MM. Determination of 19 cardiac troponin I and T assay 99th percentile values from a common presumably healthy population. Clin Chem. 2012;58:1574–1581. doi: 10.1373/clinchem.2012.192716.
    1. Giannitsis E, Kurz K, Hallermayer K, Jarausch J, Jaffe AS, Katus HA. Analytical validation of a high-sensitivity cardiac troponin T assay. Clin Chem. 2010;56:254–261. doi: 10.1373/clinchem.2009.132654.
    1. Hoshide S, Fukutomi M, Eguchi K, Watanabe T, Kabutoya T, Kario K. Change in high-sensitive cardiac troponin T on hypertensive treatment. Clin Exp Hypertens. 2013;35:40–44. doi: 10.3109/10641963.2012.689044.
    1. Shave R, Baggish A, George K, Wood M, Scharhag J, Whyte G, et al. Exercise-induced cardiac troponin elevation: evidence, mechanisms, and implications. J Am Coll Cardiol. 2010;56:169–176. doi: 10.1016/j.jacc.2010.03.037.
    1. Schulz O, Kromer A. Cardiac troponin I: a potential marker of exercise intolerance in patients with moderate heart failure. Am Heart J. 2002;144:351–358. doi: 10.1067/mhj.2002.123313.
    1. Axelsson A, Ruwald MH, Dalsgaard M, Rossing K, Steffensen R, Iversen K. Serial measurements of high-sensitivity cardiac troponin T after exercise stress test in stable coronary artery disease. Biomarkers. 2013;18:304–309. doi: 10.3109/1354750X.2013.776635.
    1. Sabatine MS, Morrow DA, de Lemos JA, Jarolim P, Braunwald E. Detection of acute changes in circulating troponin in the setting of transient stress test-induced myocardial ischaemia using an ultrasensitive assay: results from TIMI 35. Eur Heart J. 2009;30:162–169. doi: 10.1093/eurheartj/ehn504.
    1. Collinson PO, Heung YM, Gaze D, Boa F, Senior R, Christenson R, et al. Influence of population selection on the 99th percentile reference value for cardiac troponin assays. Clin Chem. 2012;58:219–225. doi: 10.1373/clinchem.2011.171082.
    1. Shelton RJ, Clark AL, Goode K, Rigby AS, Cleland JG. The diagnostic utility of N-terminal pro-B-type natriuretic peptide for the detection of major structural heart disease in patients with atrial fibrillation. Eur Heart J. 2006;27:2353–2361. doi: 10.1093/eurheartj/ehl233.
    1. Kosiuk J, Buchta P, Gaspar T, Arya A, Piorkowski C, Rolf S, et al. Prevalence and predictors of worsened left ventricular diastolic dysfunction after catheter ablation of atrial fibrillation. Int J Cardiol. 2013;168:3613–3615. doi: 10.1016/j.ijcard.2013.05.047.
    1. Kumar P, Patel A, Mounsey JP, Chung EH, Schwartz JD, Pursell IW, et al. Effect of left ventricular diastolic dysfunction on outcomes of atrial fibrillation ablation. Am J Cardiol. 2014;114:407–411. doi: 10.1016/j.amjcard.2014.05.012.
    1. Bakowski D, Wozakowska-Kaplon B, Opolski G. The influence of left ventricle diastolic function on natriuretic peptides levels in patients with atrial fibrillation. Pacing Clin Electrophysiol. 2009;32:745–752. doi: 10.1111/j.1540-8159.2009.02360.x.

Source: PubMed

3
Předplatit