Insufficient Nutrition and Mortality Risk in Septic Patients Admitted to ICU with a Focus on Immune Dysfunction

Kai-Yin Hung, Yu-Mu Chen, Chin-Chou Wang, Yi-Hsi Wang, Chiung-Yu Lin, Ya-Ting Chang, Kuo-Tung Huang, Meng-Chih Lin, Wen-Feng Fang, Kai-Yin Hung, Yu-Mu Chen, Chin-Chou Wang, Yi-Hsi Wang, Chiung-Yu Lin, Ya-Ting Chang, Kuo-Tung Huang, Meng-Chih Lin, Wen-Feng Fang

Abstract

Immune dysfunction is seen both in sepsis patients and in those with malnutrition. This study aimed to determine whether insufficient nutrition and immune dysfunction have a synergistic effect on mortality in critically ill septic patients. We conducted a prospective observational study from adult sepsis patients admitted to intensive care units (ICUs) between August 2013 and June 2016. Baseline characteristics including age, gender, body mass index, NUTRIC, Acute Physiology and Chronic Health Evaluation (APACHE) II and Sequential Organ Failure Assessment (SOFA) scores were recorded. Immune dysfunction, defined by human leukocyte antigen DR (HLA-DR) expression, was tested at days 1, 3, and 7 of ICU admission. The study included 151 patients with sepsis who were admitted to the ICU. The 28-day survivors had higher day 7 caloric intakes (89% vs 73%, p = 0.042) and higher day 1-HLA-DR expression (88.4 vs. 79.1, p = 0.045). The cut-off points of day 7 caloric intake and day 1-HLA-DR determined by operating characteristic curves were 65.1% and 87.2%, respectively. Immune dysfunction was defined as patients with day 1-HLA-DR < 87.2%. Insufficient nutrition had no influence on survival outcomes in patients with immune dysfunction. However, patients with insufficient nutrition had poor prognosis when they were immune competent. Insufficient nutrition and immune dysfunction did not have a synergistic effect on mortality in critically ill septic patients.

Keywords: HLA-DR; ICU; nutrition; sepsis.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Patient recruitment and assignment.
Figure 2
Figure 2
(A) The ROC curve of day 1-HLA-DR for 28-day mortality prediction. The best cut-off point for day 1-HLA-DR determined using the ROC curve and Youden index was 87.2%. (B) The ROC curve of day 7 caloric meet for 28-day mortality prediction. The best cut-off point for day 7 caloric meets determined using the ROC curve and Youden index was 65.1%. PV: predictive value.
Figure 3
Figure 3
Impact of day 7 caloric meet on survival outcome in patients with or without immune dysfunction. Patients with higher day 7 caloric meet and normal immune status had the best prognosis. Patients with lower day 7 caloric meet and normal immune status had a worse prognosis.
Figure 4
Figure 4
Impact of day 7 caloric meet on survival outcome in patients with high or low NUTRIC score. Patients with a lower day 7 caloric meet had a poor prognosis both in those with (A) low nutritional risk (NUTRIC score 0–5) and (B) high nutritional risk (NUTRIC score 6–10).

References

    1. Reintam Blaser A., Berger M.M. Early or Late Feeding after ICU Admission? Nutrients. 2017;9:1278. doi: 10.3390/nu9121278.
    1. Martin C.M., Doig G.S., Heyland D.K., Morrison T., Sibbald W.J., Southwestern Ontario Critical Care Research Network Multicentre, cluster-randomized clinical trial of algorithms for critical-care enteral and parenteral therapy (ACCEPT) CMAJ. 2004;170:197–204. doi: 10.1177/0115426504019003309.
    1. Doig G.S., Simpson F., Finfer S., Delaney A., Davies A.R., Mitchell I., Dobb G., Nutrition Guidelines Investigators of the ANZICS Clinical Trials Group Effect of evidence-based feeding guidelines on mortality of critically ill adults: A cluster randomized controlled trial. JAMA. 2008;300:2731–2741. doi: 10.1001/jama.2008.826.
    1. Doig G.S., Simpson F., Sweetman E.A., Finfer S.R., Cooper D.J., Heighes P.T., Davies A.R., O’Leary M., Solano T., Peake S., et al. Early parenteral nutrition in critically ill patients with short-term relative contraindications to early enteral nutrition: A randomized controlled trial. JAMA. 2013;309:2130–2138. doi: 10.1001/jama.2013.5124.
    1. Casaer M.P., Mesotten D., Hermans G., Wouters P.J., Schetz M., Meyfroidt G., Van Cromphaut S., Ingels C., Meersseman P., Muller J., et al. Early versus late parenteral nutrition in critically ill adults. N. Engl. J. Med. 2011;365:506–517. doi: 10.1056/NEJMoa1102662.
    1. Rubinson L., Diette G.B., Song X., Brower R.G., Krishnan J.A. Low caloric intake is associated with nosocomial bloodstream infections in patients in the medical intensive care unit. Crit. Care Med. 2004;32:350–357. doi: 10.1097/01.CCM.0000089641.06306.68.
    1. Krishnan J.A., Parce P.B., Martinez A., Diette G.B., Brower R.G. Caloric intake in medical ICU patients: Consistency of care with guidelines and relationship to clinical outcomes. Chest. 2003;124:297–305. doi: 10.1378/chest.124.1.297.
    1. Marik P.E., Hooper M.H. Normocaloric versus hypocaloric feeding on the outcomes of ICU patients: A systematic review and meta-analysis. Intensive Care Med. 2016;42:316–323. doi: 10.1007/s00134-015-4131-4.
    1. Petros S., Horbach M., Seidel F., Weidhase L. Hypocaloric vs Normocaloric Nutrition in Critically Ill Patients: A Prospective Randomized Pilot Trial. JPEN J. Parenter Enteral Nutr. 2016;40:242–249. doi: 10.1177/0148607114528980.
    1. Arabi Y.M., Aldawood A.S., Haddad S.H., Al-Dorzi H.M., Tamim H.M., Jones G., Mehta S., McIntyre L., Solaiman O., Sakkijha M.H., et al. Permissive Underfeeding or Standard Enteral Feeding in Critically Ill Adults. N. Engl. J. Med. 2015;372:2398–2408. doi: 10.1056/NEJMoa1502826.
    1. Target Investigators for the ANZICS Clinical Trials Group. Chapman M., Peake S.L., Bellomo R., Davies A., Deane A., Horowitz M., Hurford S., Lange K., Little L., et al. Energy-Dense versus Routine Enteral Nutrition in the Critically III. N. Engl. J. Med. 2018;379:1823–1834. doi: 10.1056/NEJMoa1811687.
    1. Hernandez-Socorro C.R., Saavedra P., Lopez-Fernandez J.C., Ruiz-Santana S. Assessment of Muscle Wasting in Long-Stay ICU Patients Using a New Ultrasound Protocol. Nutrients. 2018;10:1849. doi: 10.3390/nu10121849.
    1. Thiessen S.E., Derde S., Derese I., Dufour T., Vega C.A., Langouche L., Goossens C., Peersman N., Vermeersch P., Vander Perre S., et al. Role of Glucagon in Catabolism and Muscle Wasting of Critical Illness and Modulation by Nutrition. Am. J. Respir. Crit. Care Med. 2017;196:1131–1143. doi: 10.1164/rccm.201702-0354OC.
    1. Vincent J.L., Rello J., Marshall J., Silva E., Anzueto A., Martin C.D., Moreno R., Lipman J., Gomersall C., Sakr Y., et al. International study of the prevalence and outcomes of infection in intensive care units. JAMA. 2009;302:2323–2329. doi: 10.1001/jama.2009.1754.
    1. Boomer J.S., To K., Chang K.C., Takasu O., Osborne D.F., Walton A.H., Bricker T.L., Jarman S.D., 2nd, Kreisel D., Krupnick A.S., et al. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA. 2011;306:2594–2605. doi: 10.1001/jama.2011.1829.
    1. Hotchkiss R.S., Monneret G., Payen D. Immunosuppression in sepsis: A novel understanding of the disorder and a new therapeutic approach. Lancet Infect. Dis. 2013;13:260–268. doi: 10.1016/S1473-3099(13)70001-X.
    1. Alcock J. The Emperor Has No Clothes? Searching for Dysregulation in Sepsis. J. Clin. Med. 2018;7:247. doi: 10.3390/jcm7090247.
    1. Martin L., Koczera P., Simons N., Zechendorf E., Hoeger J., Marx G., Schuerholz T. The Human Host Defense Ribonucleases 1, 3 and 7 Are Elevated in Patients with Sepsis after Major Surgery–A Pilot Study. Int. J. Mol. Sci. 2016;17:294. doi: 10.3390/ijms17030294.
    1. Decker S.O., Sigl A., Grumaz C., Stevens P., Vainshtein Y., Zimmermann S., Weigand M.A., Hofer S., Sohn K., Brenner T. Immune-Response Patterns and Next Generation Sequencing Diagnostics for the Detection of Mycoses in Patients with Septic Shock-Results of a Combined Clinical and Experimental Investigation. Int. J. Mol. Sci. 2017;18:1796. doi: 10.3390/ijms18081796.
    1. Fleischmann C., Scherag A., Adhikari N.K., Hartog C.S., Tsaganos T., Schlattmann P., Angus D.C., Reinhart K., International Forum of Acute Care Trialists Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations. Am. J. Respir. Crit. Care Med. 2016;193:259–272. doi: 10.1164/rccm.201504-0781OC.
    1. Bermejo-Martin J.F., Martin-Fernandez M., Lopez-Mestanza C., Duque P., Almansa R. Shared Features of Endothelial Dysfunction between Sepsis and Its Preceding Risk Factors (Aging and Chronic Disease) J. Clin. Med. 2018;7:400. doi: 10.3390/jcm7110400.
    1. Bermejo-Martin J.F., Tamayo E., Andaluz-Ojeda D., Martin-Fernandez M., Almansa R. Characterizing Systemic Immune Dysfunction Syndrome to Fill in the Gaps of SEPSIS-2 and SEPSIS-3 Definitions. Chest. 2017;151:518–519. doi: 10.1016/j.chest.2016.11.047.
    1. Hamers L., Kox M., Pickkers P. Sepsis-induced immunoparalysis: Mechanisms, markers, and treatment options. Minerva Anestesiol. 2015;81:426–439.
    1. Bourke C.D., Berkley J.A., Prendergast A.J. Immune Dysfunction as a Cause and Consequence of Malnutrition. Trends Immunol. 2016;37:386–398. doi: 10.1016/j.it.2016.04.003.
    1. Heyland D.K., Dhaliwal R., Jiang X., Day A.G. Identifying critically ill patients who benefit the most from nutrition therapy: The development and initial validation of a novel risk assessment tool. Crit. Care. 2011;15:R268. doi: 10.1186/cc10546.
    1. Levy M.M., Fink M.P., Marshall J.C., Abraham E., Angus D., Cook D., Cohen J., Opal S.M., Vincent J.L., Ramsay G. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit. Care Med. 2003;31:1250–1256. doi: 10.1097/01.CCM.0000050454.01978.3B.
    1. Shankar-Hari M., Phillips G.S., Levy M.L., Seymour C.W., Liu V.X., Deutschman C.S., Angus D.C., Rubenfeld G.D., Singer M. Developing a New Definition and Assessing New Clinical Criteria for Septic Shock: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) JAMA. 2016;315:775–787. doi: 10.1001/jama.2016.0289.
    1. Monneret G., Venet F. Monocyte HLA-DR in sepsis: Shall we stop following the flow? Crit. Care. 2014;18:102. doi: 10.1186/cc13179.
    1. Fang W.F., Douglas I.S., Chen Y.M., Lin C.Y., Kao H.C., Fang Y.T., Huang C.H., Chang Y.T., Huang K.T., Wang Y.H., et al. Development and validation of immune dysfunction score to predict 28-day mortality of sepsis patients. PLoS ONE. 2017;12:e0187088. doi: 10.1371/journal.pone.0187088.
    1. Fang W.F., Chen Y.M., Lin C.Y., Huang K.T., Kao H.C., Fang Y.T., Huang C.H., Chang Y.T., Wang Y.H., Wang C.C., et al. Immune profiles and clinical outcomes between sepsis patients with or without active cancer requiring admission to intensive care units. PLoS ONE. 2017;12:e0179749. doi: 10.1371/journal.pone.0179749.
    1. National Heart L. Blood Institute Acute Respiratory Distress Syndrome Clinical Trials, N.; Rice, T.W.; Wheeler, A.P.; Thompson, B.T.; Steingrub, J.; Hite, R.D.; Moss, M.; Morris, A.; Dong, N.; et al. Initial trophic vs full enteral feeding in patients with acute lung injury: The EDEN randomized trial. JAMA. 2012;307:795–803. doi: 10.1001/jama.2012.137.
    1. Arabi Y.M., Tamim H.M., Dhar G.S., Al-Dawood A., Al-Sultan M., Sakkijha M.H., Kahoul S.H., Brits R. Permissive underfeeding and intensive insulin therapy in critically ill patients: A randomized controlled trial. Am. J. Clin. Nutr. 2011;93:569–577. doi: 10.3945/ajcn.110.005074.
    1. Jafar N., Edriss H., Nugent K. The Effect of Short-Term Hyperglycemia on the Innate Immune System. Am. J. Med. Sci. 2016;351:201–211. doi: 10.1016/j.amjms.2015.11.011.
    1. Waitzberg D.L., Caiaffa W.T., Correia M.I. Hospital malnutrition: The Brazilian national survey (IBRANUTRI): A study of 4000 patients. Nutrition. 2001;17:573–580. doi: 10.1016/S0899-9007(01)00573-1.
    1. Correia M.I., Campos A.C., Study E.C. Prevalence of hospital malnutrition in Latin America: The multicenter ELAN study. Nutrition. 2003;19:823–825. doi: 10.1016/S0899-9007(03)00168-0.
    1. Kamath S.K., Lawler M., Smith A.E., Kalat T., Olson R. Hospital malnutrition: A 33-hospital screening study. J. Am. Diet. Assoc. 1986;86:203–206.
    1. O’Flynn J., Peake H., Hickson M., Foster D., Frost G. The prevalence of malnutrition in hospitals can be reduced: Results from three consecutive cross-sectional studies. Clin. Nutr. 2005;24:1078–1088. doi: 10.1016/j.clnu.2005.08.012.
    1. Fowler R.A., Adhikari N.K., Bhagwanjee S. Clinical review: Critical care in the global context--disparities in burden of illness, access, and economics. Crit. Care. 2008;12:225. doi: 10.1186/cc6984.
    1. Nguyen Y.L., Angus D.C., Boumendil A., Guidet B. The challenge of admitting the very elderly to intensive care. Ann. Intensive Care. 2011;1:29. doi: 10.1186/2110-5820-1-29.
    1. Pirlich M., Schutz T., Kemps M., Luhman N., Burmester G.R., Baumann G., Plauth M., Lubke H.J., Lochs H. Prevalence of malnutrition in hospitalized medical patients: Impact of underlying disease. Dig. Dis. 2003;21:245–251. doi: 10.1159/000073342.
    1. Gellrich N.C., Handschel J., Holtmann H., Kruskemper G. Oral cancer malnutrition impacts weight and quality of life. Nutrients. 2015;7:2145–2160. doi: 10.3390/nu7042145.
    1. Barr J., Hecht M., Flavin K.E., Khorana A., Gould M.K. Outcomes in critically ill patients before and after the implementation of an evidence-based nutritional management protocol. Chest. 2004;125:1446–1457. doi: 10.1378/chest.125.4.1446.
    1. Villet S., Chiolero R.L., Bollmann M.D., Revelly J.P., Cayeux R.N.M., Delarue J., Berger M.M. Negative impact of hypocaloric feeding and energy balance on clinical outcome in ICU patients. Clin. Nutr. 2005;24:502–509. doi: 10.1016/j.clnu.2005.03.006.
    1. Artinian V., Krayem H., DiGiovine B. Effects of early enteral feeding on the outcome of critically ill mechanically ventilated medical patients. Chest. 2006;129:960–967. doi: 10.1378/chest.129.4.960.
    1. Norman K., Pichard C., Lochs H., Pirlich M. Prognostic impact of disease-related malnutrition. Clin. Nutr. 2008;27:5–15. doi: 10.1016/j.clnu.2007.10.007.
    1. van den Berk J.M., Oldenburger R.H., van den Berg A.P., Klompmaker I.J., Mesander G., van Son W.J., van der Bij W., Sloof M.J., The T.H. Low HLA-DR expression on monocytes as a prognostic marker for bacterial sepsis after liver transplantation. Transplantation. 1997;63:1846–1848. doi: 10.1097/00007890-199706270-00026.

Source: PubMed

3
Předplatit