The human serum metabolome

Nikolaos Psychogios, David D Hau, Jun Peng, An Chi Guo, Rupasri Mandal, Souhaila Bouatra, Igor Sinelnikov, Ramanarayan Krishnamurthy, Roman Eisner, Bijaya Gautam, Nelson Young, Jianguo Xia, Craig Knox, Edison Dong, Paul Huang, Zsuzsanna Hollander, Theresa L Pedersen, Steven R Smith, Fiona Bamforth, Russ Greiner, Bruce McManus, John W Newman, Theodore Goodfriend, David S Wishart, Nikolaos Psychogios, David D Hau, Jun Peng, An Chi Guo, Rupasri Mandal, Souhaila Bouatra, Igor Sinelnikov, Ramanarayan Krishnamurthy, Roman Eisner, Bijaya Gautam, Nelson Young, Jianguo Xia, Craig Knox, Edison Dong, Paul Huang, Zsuzsanna Hollander, Theresa L Pedersen, Steven R Smith, Fiona Bamforth, Russ Greiner, Bruce McManus, John W Newman, Theodore Goodfriend, David S Wishart

Abstract

Continuing improvements in analytical technology along with an increased interest in performing comprehensive, quantitative metabolic profiling, is leading to increased interest pressures within the metabolomics community to develop centralized metabolite reference resources for certain clinically important biofluids, such as cerebrospinal fluid, urine and blood. As part of an ongoing effort to systematically characterize the human metabolome through the Human Metabolome Project, we have undertaken the task of characterizing the human serum metabolome. In doing so, we have combined targeted and non-targeted NMR, GC-MS and LC-MS methods with computer-aided literature mining to identify and quantify a comprehensive, if not absolutely complete, set of metabolites commonly detected and quantified (with today's technology) in the human serum metabolome. Our use of multiple metabolomics platforms and technologies allowed us to substantially enhance the level of metabolome coverage while critically assessing the relative strengths and weaknesses of these platforms or technologies. Tables containing the complete set of 4229 confirmed and highly probable human serum compounds, their concentrations, related literature references and links to their known disease associations are freely available at http://www.serummetabolome.ca.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Typical 500 MHz 1 H-NMR…
Figure 1. Typical 500 MHz 1H-NMR spectrum of healthy human serum.
Numbers indicate the following metabolites: 1, imidazole; 2, urea; 3, D-glucose; 4, L-lactic acid; 5, glycerol; 6, L-glutamine; 7, L-alanine; 8, DSS; 9, glycine; 10, L-glutamic acid; 11, L-valine; 12, L-proline; 13, L-lysine; 14, L-histidine; 15, L-threonine; 16, propylene glycol; 17, L-leucine; 18, L-tyrosine; 19, L-phenylalanine; 20, methanol; 21,creatinine; 22, 3-hydroxybutyric acid; 23, ornithine; 24, L-isoleucine; 25, citric acid; 26, acetic acid; 27, carnitine; 28, 2-hydroxybutyric acid; 29, creatine; 30, betaine; 31, formic acid; 32, isopropyl alcohol; 33, pyruvic acid; 34, choline; 35, acetone; 36, glycerol.
Figure 2. Typical total ion chromatogram of…
Figure 2. Typical total ion chromatogram of serum from a healthy subject.
Numbers indicate the following metabolites: 1, L-lactic acid; 2, L-alanine; 3, oxalic acid; 4, L-valine; 5, urea; 6, L- L- L-leucine; 7, glycerol; 8, phosphoric acid; 9, L-isoleucine; 10, L-proline; 11, glycine; 12, L- L- L-serine; 13, L-threonine; 14, L-methionine/L-aspartic acid; 15, aminomalonic acid; 16, pyroglutamic acid/L-glutamine; 17, L-glutamic acid; 18, L-phenylalanine; 19, L-ornithine; 20, citric acid; 21,d-erythrofuranose; 22, D-fructose; 23, D-glucose; 24, D-galactose; 25, L-histidine; 26, L-lysine; 27, L-tyrosine; 28, gulonic acid/mannonic acid; 29, D-glucopyranose; 30, 6-deoxy mannose; 31, palmitelaidic acid; 32, palmitic acid; 33, myo-inositol; 34, uric acid; 35, L-tryptophan; 36, linoleic acid; 37, oleic acid; 38, stearic acid.
Figure 3. Venn diagram showing the overlap…
Figure 3. Venn diagram showing the overlap of serum metabolites detected by global NMR, GC–MS, LC/GC-FID, LC-ESI-MS/MS and MS/MS methods compared to the detectable serum metabolome.
Figure 4. Graphical representation of serum concentrations…
Figure 4. Graphical representation of serum concentrations of amino acids by NMR, GC/MS and MS/MS (Biocrates kit).
The error bars reflect 1 standard deviation.

References

    1. Hollywood K, Brison DR, Goodacre R. Metabolomics: Current technologies and future trends. Proteomics. 2006;6:4716–4723.
    1. Wishart DS. Current Progress in computational metabolomics. Briefings in Bioinformatics. 2007;8:279–293.
    1. Wishart DS. Quantitative metabolomics using NMR. Trac-Trends in Analytical Chemistry. 2008;27:228–237.
    1. Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, et al. HMDB: the Human Metabolome Database. Nucleic Acids Res. 2007;35:D521–526.
    1. Wishart DS, Knox C, Guo AC, Eisner R, Young N, et al. HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res. 2009;37:D603–610.
    1. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, et al. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 2006;34:D354–357.
    1. Fahy E, Sud M, Cotter D, Subramaniam S. LIPID MAPS online tools for lipid research. Nucleic Acids Res. 2007;35:W606–612.
    1. Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2007;35:D5–12.
    1. Degtyarenko K, de Matos P, Ennis M, Hastings J, Zbinden M, et al. ChEBI: a database and ontology for chemical entities of biological interest. Nucleic Acids Res. 2008;36:D344–350.
    1. Cui Q, Lewis IA, Hegeman AD, Anderson ME, Li J, et al. Metabolite identification via the Madison Metabolomics Consortium Database. Nat Biotechnol. 2008;26:162–164.
    1. Smith CA, O'Maille G, Want EJ, Qin C, Trauger SA, et al. METLIN: a metabolite mass spectral database. Ther Drug Monit. 2005;27:747–751.
    1. Taguchi R, Nishijima M, Shimizu T. Basic analytical systems for lipidomics by mass spectrometry in Japan. Methods Enzymol. 2007;432:185–211.
    1. Lawton KA, Berger A, Mitchell M, Milgram KE, Evans AM, et al. Analysis of the adult human plasma metabolome. Pharmacogenomics. 2008;9:383–397.
    1. Ninonuevo MR, Park Y, Yin HF, Zhang JH, Ward RE, et al. A strategy for annotating the human milk glycome. Journal of Agricultural and Food Chemistry. 2006;54:7471–7480.
    1. Wishart DS, Lewis MJ, Morrissey JA, Flegel MD, Jeroncic K, et al. The human cerebrospinal fluid metabolome. J Chromatogr B Analyt Technol Biomed Life Sci. 2008;871:164–173.
    1. Fox SI. Human physiology. Boston, Mass.: WCB/McGraw-Hill; 1999. pp. 364–367.
    1. West JB, editor. Best and Taylor's Physiological Basis of Medical Practice. 11th ed. Baltimore MD, USA: Waverly Press, Inc; 1985. pp. 334–336.
    1. Beheshti I, Wessels LM, Eckfeldt JH. EDTA-plasma vs serum differences in cholesterol, high-density-lipoprotein cholesterol, and triglyceride as measured by several methods. Clin Chem. 1994;40:2088–2092.
    1. Fischer S. Analysis Of Cardiovascular Eicosanoids In Man With Special Reference To Hplc. Chromatographia. 1986;22:416–420.
    1. Martini F, Ober WC. Fundamentals of anatomy & physiology. San Francisco, CA: Pearson Benjamin Cummings; 2006. pp. 640–643.
    1. Grant GH, Butt WR. Immunochemical methods in clinical chemistry. Adv Clin Chem. 1970;13:383–466.
    1. Lentner C. Physical Chemistry, Composition of Blood, Hematology, Somatometric Data. In: Lentner C, editor. Geigy Scientific Tables. 8th ed. West Caldwell, NJ: 1981. pp. 165–177.
    1. Kekwick RA. The electrophoretic analysis of normal human serum. Biochem J. 1939;33:1122–1129.
    1. Burtis C, Ashwood E. Tietz Texbook of Clinical Chemistry. Philidelphia PA, USA: WB Saunders; 1998.
    1. Burtis CA, Ashwood ER, Bruns DE, Tietz NW. Tietz fundamentals of clinical chemistry. St. Louis, Mo.: Saunders Elsevier; 2008. p. xx, 952.
    1. Grasbeck R, Alstrom T, Solberg HE. Reference values in laboratory medicine: the current state of the art. Chichester; New York: Wiley; 1981. p. xiv, 413.
    1. Solberg HE, Grasbeck R. Reference values. Adv Clin Chem. 1989;27:1–79.
    1. Foxall PJ, Spraul M, Farrant RD, Lindon LC, Neild GH, et al. 750 MHz 1H-NMR spectroscopy of human blood plasma. J Pharm Biomed Anal. 1993;11:267–276.
    1. Lindon JC, Holmes E, Nicholson JK. Metabonomics in pharmaceutical R & D. Febs Journal. 2007;274:1140–1151.
    1. Shurubor YI, Matson WR, Willett WC, Hankinson SE, Kristal BS. Biological variability dominates and influences analytical variance in HPLC-ECD studies of the human plasma metabolome. BMC Clin Pathol. 2007;7:9.
    1. Bjerkenstedt L, Edman G, Hagenfeldt L, Sedvall G, Wiesel FA. Plasma amino acids in relation to cerebrospinal fluid monoamine metabolites in schizophrenic patients and healthy controls. Br J Psychiatry. 1985;147:276–282.
    1. Hagenfeldt L, Bjerkenstedt L, Edman G, Sedvall G, Wiesel FA. Amino acids in plasma and CSF and monoamine metabolites in CSF: interrelationship in healthy subjects. J Neurochem. 1984;42:833–837.
    1. Perwaiz S, Tuchweber B, Mignault D, Gilat T, Yousef IM. Determination of bile acids in biological fluids by liquid chromatography-electrospray tandem mass spectrometry. Journal of Lipid Research. 2001;42:114–119.
    1. Wang W, Zhou H, Lin H, Roy S, Shaler TA, et al. Quantification of proteins and metabolites by mass spectrometry without isotopic labeling or spiked standards. Anal Chem. 2003;75:4818–4826.
    1. Ye X, Tao LJ, Needham LL, Calafat AM. Automated on-line column-switching HPLC-MS/MS method for measuring environmental phenols and parabens in serum. Talanta. 2008;76:865–871.
    1. Akoto L, Vreuls RJJ, Irth H, Pel R, Stellaard F. Fatty acid profiling of raw human plasma and whole blood using direct thermal desorption combined with gas chromatography-mass spectrometry. Journal of Chromatography A. 2008;1186:365–371.
    1. Zlatkis A, Bertsch W, Bafus DA, Liebich HM. Analysis of trace volatile metabolites in serum and plasma. J Chromatogr. 1974;91:379–383.
    1. Bicalho B, David F, Rumplel K, Kindt E, Sandra P. Creating a fatty acid methyl ester database for lipid profiling in a single drop of human blood using high resolution capillary gas chromatography and mass spectrometry. J Chromatogr A. 2008;1211:120–128.
    1. O'Hagan S, Dunn WB, Knowles JD, Broadhurst D, Williams R, et al. Closed-loop, multiobjective optimization of two-dimensional gas chromatography/mass spectrometry for serum metabolomics. Anal Chem. 2007;79:464–476.
    1. Zelena E, Dunn WB, Broadhurst D, Francis-McIntyre S, Carroll KM, et al. Development of a robust and repeatable UPLC-MS method for the long-term metabolomic study of human serum. Anal Chem. 2009;81:1357–1364.
    1. Sandra K, Pereira Ados S, Vanhoenacker G, David F, Sandra P. Comprehensive blood plasma lipidomics by liquid chromatography/quadrupole time-of-flight mass spectrometry. J Chromatogr A. 2010;1217:4087–4099.
    1. Jiye A, Trygg J, Gullberg J, Johansson AI, Jonsson P, et al. Extraction and GC/MS analysis of the human blood plasma metabolome. Analytical Chemistry. 2005;77:8086–8094.
    1. Cottingham K. HUSERMET researchers look to the metabolome for answers. J Proteome Res. 2008;7:4213.
    1. Daykin CA, Foxall PJ, Connor SC, Lindon JC, Nicholson JK. The comparison of plasma deproteinization methods for the detection of low-molecular-weight metabolites by (1)H nuclear magnetic resonance spectroscopy. Anal Biochem. 2002;304:220–230.
    1. de Graaf RA, Behar KL. Quantitative 1H NMR spectroscopy of blood plasma metabolites. Anal Chem. 2003;75:2100–2104.
    1. Tiziani S, Emwas AH, Lodi A, Ludwig C, Bunce CM, et al. Optimized metabolite extraction from blood serum for 1H nuclear magnetic resonance spectroscopy. Anal Biochem. 2008;377:16–23.
    1. Weljie AM, Newton J, Mercier P, Carlson E, Slupsky CM. Targeted profiling: Quantitative analysis of H-1 NMR metabolomics data. Analytical Chemistry. 2006;78:4430–4442.
    1. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226:497–509.
    1. Pace-Asciak CR. One-step rapid extractive methylation of plasma nonesterified fatty acids for gas chromatographic analysis. J Lipid Res. 1989;30:451–454.
    1. Spector AA. Arachidonic acid cytochrome P450 epoxygenase pathway. J Lipid Res. 2009;50(Suppl):S52–56.
    1. Pratico D, Dogne JM. Vascular biology of eicosanoids and atherogenesis. Expert Rev Cardiovasc Ther. 2009;7:1079–1089.
    1. Shearer GC, Newman JW. Impact of circulating esterified eicosanoids and other oxylipins on endothelial function. Curr Atheroscler Rep. 2009;11:403–410.
    1. Kohli P, Levy BD. Resolvins and protectins: mediating solutions to inflammation. Br J Pharmacol. 2009;158:960–971.
    1. Serhan CN, Chiang N, Van Dyke TE. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol. 2008;8:349–361.
    1. Smith ML, Murphy RC. The eicosanoids: cyclooxygenase, lipoxygenase and epoxygenase pathways. In: Vance DE, Vance JE, editors. Biochemistry of lipids, lipoproteins and membranes. 5th ed. Amsterdam; Boston: Elsevier; 2008. p. xii, 631.
    1. Bezuglov VV, Bobrov M, Archakov AV. Bioactive amides of fatty acids. Biochemistry (Mosc) 1998;63:22–30.
    1. Carr TP, Jesch ED, Brown AW. Endocannabinoids, metabolic regulation, and the role of diet. Nutr Res. 2008;28:641–650.
    1. Borrelli F, Izzo AA. Role of acylethanolamides in the gastrointestinal tract with special reference to food intake and energy balance. Best Pract Res Clin Endocrinol Metab. 2009;23:33–49.
    1. Sugiura T. Physiological roles of 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand. Biofactors. 2009;35:88–97.
    1. Mueller GP, Driscoll WJ. In vitro synthesis of oleoylglycine by cytochrome c points to a novel pathway for the production of lipid signaling molecules. J Biol Chem. 2007;282:22364–22369.
    1. Merkler DJ, Chew GH, Gee AJ, Merkler KA, Sorondo JP, et al. Oleic acid derived metabolites in mouse neuroblastoma N18TG2 cells. Biochemistry. 2004;43:12667–12674.
    1. Huang SM, Bisogno T, Petros TJ, Chang SY, Zavitsanos PA, et al. Identification of a new class of molecules, the arachidonyl amino acids, and characterization of one member that inhibits pain. J Biol Chem. 2001;276:42639–42644.
    1. Shearer GC, Harris WS, Pedersen TL, Newman JW. Detection of omega-3 oxylipins in human plasma and response to treatment with omega-3 acid ethyl esters. J Lipid Res. 2010;51:2074–2081.
    1. Watkins S. Generating, viewing, interpreting and utilizing a quantitative database of metabolites. 2004. US20040143461.
    1. Martin H, Hologgitas J, Driscoll J, Fanger H, Gudzinowicz B. Reference values based on populations accessible to hospitals. In: Gräsbeck RAT, editor. Reference Values in Laboratory Medicine. Chichester: John Wiley; 1981. 413
    1. Wu A. Tietz Clinical Guide to Laboratory Tests. San Francisco CA, USA: Saunders; 2006.
    1. Cheng D, Knox C, Young N, Stothard P, Damaraju S, et al. PolySearch: a web-based text mining system for extracting relationships between human diseases, genes, mutations, drugs and metabolites. Nucleic Acids Res. 2008;36:W399–405.
    1. Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2006;34:D173–180.
    1. Buscher JM, Czernik D, Ewald JC, Sauer U, Zamboni N. Cross-platform comparison of methods for quantitative metabolomics of primary metabolism. Anal Chem. 2009;81:2135–2143.
    1. Tan B, Bradshaw HB, Rimmerman N, Srinivasan H, Yu YW, et al. Targeted lipidomics: discovery of new fatty acyl amides. AAPS J. 2006;8:E461–465.
    1. Cravatt BF, Saghatelian A, Hawkins EG, Clement AB, Bracey MH, et al. Functional disassociation of the central and peripheral fatty acid amide signaling systems. Proc Natl Acad Sci U S A. 2004;101:10821–10826.
    1. Massa F, Marsicano G, Hermann H, Cannich A, Monory K, et al. The endogenous cannabinoid system protects against colonic inflammation. J Clin Invest. 2004;113:1202–1209.
    1. Lambert DM, Vandevoorde S, Jonsson KO, Fowler CJ. The palmitoylethanolamide family: a new class of anti-inflammatory agents? Curr Med Chem. 2002;9:663–674.
    1. Pillarisetti S, Alexander CW, Khanna I. Pain and beyond: fatty acid amides and fatty acid amide hydrolase inhibitors in cardiovascular and metabolic diseases. Drug Discov Today. 2009;14:1098–1111.
    1. Walker JM, Krey JF, Chen JS, Vefring E, Jahnsen JA, et al. Targeted lipidomics: fatty acid amides and pain modulation. Prostaglandins Other Lipid Mediat. 2005;77:35–45.
    1. Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol. 2004;55:373–399.
    1. Rossi F, Siniscalco D, Luongo L, De Petrocellis L, Bellini G, et al. The endovanilloid/endocannabinoid system in human osteoclasts: possible involvement in bone formation and resorption. Bone. 2009;44:476–484.
    1. Gonthier MP, Hoareau L, Festy F, Matias I, Valenti M, et al. Identification of endocannabinoids and related compounds in human fat cells. Obesity (Silver Spring) 2007;15:837–845.
    1. Caraceni P, Viola A, Piscitelli F, Giannone F, Berzigotti A, et al. Circulating and hepatic endocannabinoids and endocannabinoid-related molecules in patients with cirrhosis. Liver Int 2009
    1. Hill MN, Miller GE, Carrier EJ, Gorzalka BB, Hillard CJ. Circulating endocannabinoids and N-acyl ethanolamines are differentially regulated in major depression and following exposure to social stress. Psychoneuroendocrinology. 2009;34:1257–1262.
    1. Chen P, Hu S, Yao J, Moore SA, Spector AA, et al. Induction of cyclooxygenase-2 by anandamide in cerebral microvascular endothelium. Microvasc Res. 2005;69:28–35.
    1. Bradshaw HB, Lee SH, McHugh D. Orphan endogenous lipids and orphan GPCRs: a good match. Prostaglandins Other Lipid Mediat. 2009;89:131–134.
    1. Ackermann BL, Berna MJ, Murphy AT. Recent advances in use of LC/MS/MS for quantitative high-throughput bioanalytical support of drug discovery. Curr Top Med Chem. 2002;2:53–66.
    1. Chiang N, Bermudez EA, Ridker PM, Hurwitz S, Serhan CN. Aspirin triggers antiinflammatory 15-epi-lipoxin A4 and inhibits thromboxane in a randomized human trial. Proc Natl Acad Sci U S A. 2004;101:15178–15183.
    1. Viinikka L, Ylikorkala O. Measurement of thromboxane B2 in human plasma or serum by radioimmunoassay. Prostaglandins. 1980;20:759–766.
    1. Ivanova PT, Milne SB, Myers DS, Brown HA. Lipidomics: a mass spectrometry based systems level analysis of cellular lipids. Curr Opin Chem Biol. 2009;13:526–531.
    1. Wenk MR. The emerging field of lipidomics. Nat Rev Drug Discov. 2005;4:594–610.
    1. Yang K, Cheng H, Gross RW, Han X. Automated lipid identification and quantification by multidimensional mass spectrometry-based shotgun lipidomics. Anal Chem. 2009;81:4356–4368.
    1. Han X, Gross RW. Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom Rev. 2005;24:367–412.
    1. Kuriki K, Nagaya T, Tokudome Y, Imaeda N, Fujiwara N, et al. Plasma concentrations of (n-3) highly unsaturated fatty acids are good biomarkers of relative dietary fatty acid intakes: a cross-sectional study. J Nutr. 2003;133:3643–3650.
    1. Quehenberger O, Armando AM, Brown AH, Milne SB, Myers DS, et al. Lipidomics reveals a remarkable diversity of lipids in human plasma. J Lipid Res. 2010;51:3299–3305.
    1. Zhang Q, Wysocki VH, Scaraffia PY, Wells MA. Fragmentation pathway for glutamine identification: loss of 73 Da from dimethylformamidine glutamine isobutyl ester. J Am Soc Mass Spectrom. 2005;16:1192–1203.
    1. Woo KL, Lee DS. Capillary Gas-Chromatographic Determination of Proteins and Biological Amino-Acids as N(O)-Tert-Butyldimethylsilyl Derivatives. Journal of Chromatography B-Biomedical Applications. 1995;665:15–25.
    1. Corso G, Esposito M, Gallo M, Dellorusso A, Antonio M. Transformation of Arginine into Ornithine during the Preparation of Its Tert-Butyldimethylsilyl Derivative for Analysis by Gas Chromatography/Mass Spectrometry. Biological Mass Spectrometry. 1993;22:698–702.
    1. Bou Khalil M, Hou W, Zhou H, Elisma F, Swayne LA, et al. Lipidomics era: accomplishments and challenges. Mass Spectrom Rev. 2010;29:877–929.
    1. Hsu FF, Turk J. Characterization of phosphatidylinositol, phosphatidylinositol-4-phosphate, and phosphatidylinositol-4,5-bisphosphate by electrospray ionization tandem mass spectrometry: a mechanistic study. J Am Soc Mass Spectrom. 2000;11:986–999.
    1. Hsu FF, Turk J. Structural characterization of triacylglycerols as lithiated adducts by electrospray ionization mass spectrometry using low-energy collisionally activated dissociation on a triple stage quadrupole instrument. J Am Soc Mass Spectrom. 1999;10:587–599.
    1. Ekroos K, Ejsing CS, Bahr U, Karas M, Simons K, et al. Charting molecular composition of phosphatidylcholines by fatty acid scanning and ion trap MS3 fragmentation. J Lipid Res. 2003;44:2181–2192.
    1. Koivusalo M, Haimi P, Heikinheimo L, Kostiainen R, Somerharju P. Quantitative determination of phospholipid compositions by ESI-MS: effects of acyl chain length, unsaturation, and lipid concentration on instrument response. J Lipid Res. 2001;42:663–672.
    1. DeLong CJ, Baker PR, Samuel M, Cui Z, Thomas MJ. Molecular species composition of rat liver phospholipids by ESI-MS/MS: the effect of chromatography. J Lipid Res. 2001;42:1959–1968.
    1. Whitehead SN, Hou W, Ethier M, Smith JC, Bourgeois A, et al. Identification and quantitation of changes in the platelet activating factor family of glycerophospholipids over the course of neuronal differentiation by high-performance liquid chromatography electrospray ionization tandem mass spectrometry. Anal Chem. 2007;79:8539–8548.
    1. Carlson EE, Cravatt BF. Enrichment tags for enhanced-resolution profiling of the polar metabolome. J Am Chem Soc. 2007;129:15780–15782.
    1. Guo K, Ji C, Li L. Stable-isotope dimethylation labeling combined with LC-ESI MS for quantification of amine-containing metabolites in biological samples. Anal Chem. 2007;79:8631–8638.
    1. Guo K, Li L. Differential 12C-/13C-isotope dansylation labeling and fast liquid chromatography/mass spectrometry for absolute and relative quantification of the metabolome. Anal Chem. 2009;81:3919–3932.

Source: PubMed

3
Předplatit