Effects of Power-Oriented Resistance Training With Heavy vs. Light Loads on Muscle-Tendon Function in Older Adults: A Study Protocol for a Randomized Controlled Trial

Carlos Rodriguez-Lopez, Julian Alcazar, Jose Losa-Reyna, Noelia Maria Martin-Espinosa, Ivan Baltasar-Fernandez, Ignacio Ara, Robert Csapo, Luis M Alegre, Carlos Rodriguez-Lopez, Julian Alcazar, Jose Losa-Reyna, Noelia Maria Martin-Espinosa, Ivan Baltasar-Fernandez, Ignacio Ara, Robert Csapo, Luis M Alegre

Abstract

Background: Power-oriented resistance training (PRT) is one of the most effective exercise programs to counteract neuromuscular and physical function age-related declines. However, the optimal load that maximizes these outcomes or the load-specific adaptations induced on muscle power determinants remain to be better understood. Furthermore, to investigate whether these adaptations are potentially transferred to an untrained limb (i.e., cross-education phenomenon) could be especially relevant during limb-immobilization frequently observed in older people (e.g., after hip fracture).

Methods: At least 30 well-functioning older participants (>65 years) will participate in a within-person randomized controlled trial. After an 8-week control period, the effects of two 12-week PRT programs using light vs. heavy loads will be compared using an unilateral exercise model through three study arms (light-load PRT vs. non-exercise; heavy-load PRT vs. non-exercise; and light- vs. heavy- load PRT). Muscle-tendon function, muscle excitation and morphology and physical function will be evaluated to analyze the load-specific effects of PRT in older people. Additionally, the effects of PRT will be examined on a non-exercised contralateral limb.

Discussion: Tailored exercise programs are largely demanded given their potentially greater efficiency preventing age-related negative consequences, especially during limb-immobilization. This trial will provide evidence supporting the use of light- or heavy-load PRT on older adults depending on individual needs, improving decision making and exercise program efficacy.

Clinical trial registration: NCT03724461 registration data: October 30, 2018.

Keywords: aging; force-velocity; intensity; physical function; power training; strength training.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Rodriguez-Lopez, Alcazar, Losa-Reyna, Martin-Espinosa, Baltasar-Fernandez, Ara, Csapo and Alegre.

Figures

FIGURE 1
FIGURE 1
Flowchart of the study protocol.
FIGURE 2
FIGURE 2
Demonstrative example of the experimental setting for acquisition of in vivo patellar tendon behavior during isometric ramp contractions (A). Field of view of ultrasound images collected from the patellar tendon (B). White arrows indicate points on patella (left) and tibial tuberosity (right) that will be tracked to determine tendon elongation.

References

    1. Alcazar J., Aagaard P., Haddock B., Kamper R. S., Hansen S. K., Prescott E., et al. (2020). Age- and sex-specific changes in lower-Limb muscle power throughout the lifespan. J. Gerontol. A Biol. Sci. Med. Sci. 75 1369–1378. 10.1093/gerona/glaa013
    1. Alcazar J., Rodriguez-Lopez C., Ara I., Alfaro-Acha A., Mañas-Bote A., Guadalupe-Grau A., et al. (2017). The force-velocity relationship in older people: reliability and validity of a systematic procedure. Int. J. Sports Med. 38 1097–1104. 10.1055/s-0043-119880
    1. Alcazar J., Rodriguez-Lopez C., Ara I., Alfaro-Acha A., Rodríguez-Gómez I., Navarro-Cruz R., et al. (2018). Force-velocity profiling in older adults: an adequate tool for the management of functional trajectories with aging. Exp. Gerontol. 108 1–6. 10.1016/j.exger.2018.03.015
    1. Alegre L. M., Aguado X., Rojas-Martin D., Martin-Garcia M., Ara I., Csapo R. (2015). Load-controlled moderate and high-intensity resistance training programs provoke similar strength gains in young women. Muscle Nerve 51 92–101. 10.1002/mus.24271
    1. Bean J. F., Leveille S. G., Kiely D. K., Bandinelli S., Guralnik J. M., Ferrucci L. (2003). A comparison of leg power and leg strength within the InCHIANTI study: which influences mobility more? J. Gerontol. A Biol. Sci. Med. Sci. 58 728–733. 10.1093/gerona/58.8.m728
    1. Borde R., Hortobágyi T., Granacher U. (2015). Dose–response relationships of resistance training in healthy old adults: a systematic review and meta-analysis. Sports Med. 45 1693–1720. 10.1007/s40279-015-0385-9
    1. Burd N. A., West D. W. D., Staples A. W., Atherton P. J., Baker J. M., Moore D. R., et al. (2010). Low-load high volume resistance exercise stimulates muscle protein synthesis more than high-load low volume resistance exercise in young men. PLoS One 5:e12033. 10.1371/journal.pone.0012033
    1. Byrne C., Faure C., Keene D. J., Lamb S. E. (2016). Ageing, muscle power and physical function: a systematic review and implications for pragmatic training interventions. Sports Med. 46 1311–1332. 10.1007/s40279-016-0489-x
    1. Byrne C., Twist C., Eston R. (2006). Neuromuscular function after exercise-induced muscle damage. Sports Med. 34 49–69. 10.2165/00007256-200434010-00005
    1. Chan A. W., Tetzlaff J. M., Altman D. G., Laupacis A., Gøtzsche P. C., Krleža-Jerić K., et al. (2013). SPIRIT 2013 statement: defining standard protocol items for clinical trials. Ann. Intern. Med. 158 200–207. 10.7326/0003-4819-158-3-201302050-00583
    1. Cirer-Sastre R., Beltrán-Garrido J. V., Corbi F. (2017). Contralateral effects after unilateral strength training: a meta-analysis comparing training loads. J. Sports Sci. Med. 16 180–186.
    1. Clark D. J., Patten C., Reid K. F., Carabello R. J., Phillips E. M., Fielding R. A. (2010). Impaired voluntary neuromuscular activation limits muscle power in mobility-limited older adults. J. Gerontol. A Biol. Sci. Med. Sci. 65 495–502. 10.1093/gerona/glq012
    1. Cohen J. (1988). Statistical Power Analysis for the Behavioral Sciences, 2nd Edn. Hillsdale, NJ: Lawrence Erlbaum Associates.
    1. Colomer-Poveda D., Romero-Arenas S., Fariñas J., Iglesias-Soler E., Hortobágyi T., Márquez G. (2020). Training load but not fatigue affects cross-education of maximal voluntary force. Scand. J. Med. Sci. Sports 31 313–324. 10.1111/sms.13844
    1. Colomer-Poveda D., Romero-Arenas S., Keller M., Hortobágyi T., Márquez G. (2019). Effects of acute and chronic unilateral resistance training variables on ipsilateral motor cortical excitability and cross-education: a systematic review. Phys. Ther. Sport 40 143–152. 10.1016/j.ptsp.2019.09.006
    1. Csapo R., Alegre L. M. (2016). Effects of resistance training with moderate vs heavy loads on muscle mass and strength in the elderly: a meta-analysis. Scand. J. Med. Sci. Sports 26 995–1006. 10.1111/sms.12536
    1. de Vos N. J., Singh N. A., Ross D. A., Stavrinos T. M., Orr R., Fiatarone Singh M. A. (2005). Optimal load for increasing muscle power during explosive resistance training in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 60 638–647. 10.1093/gerona/60.5.638
    1. Englund D. A., Sharp R. L., Selsby J. T., Ganesan S. S., Franke W. D. (2017). Resistance training performed at distinct angular velocities elicits velocity-specific alterations in muscle strength and mobility status in older adults. Exp. Gerontol. 91 51–56. 10.1016/j.exger.2017.02.072
    1. Eriksen C. S., Svensson R. B., Gylling A. T., Couppé C., Magnusson S. P., Kjaer M. (2019). Load magnitude affects patellar tendon mechanical properties but not collagen or collagen cross-linking after long-term strength training in older adults. BMC Geriatr. 19:30. 10.1186/s12877-019-1043-0
    1. Faul F., Erdfelder E., Lang A. G., Buchner A. G. (2007). ∗Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39 175–191. 10.3758/bf03193146
    1. Fragala M. S., Cadore E. L., Dorgo S., Izquierdo M., Kraemer W. J., Peterson M. D., et al. (2019). Resistance training for older adults: position statement from the National strength and conditioning association. J. Strength Cond. Res. 33 2019–2052. 10.1519/JSC.0000000000003230
    1. Franchi M. V., Monti E., Carter A., Quinlan J. I., Herrod P. J. J., Reeves N. D., et al. (2019). Bouncing back! counteracting muscle aging with plyometric muscle loading. Front. Physiol. 10:178. 10.3389/fphys.2019.00178
    1. Fried L. P., Tangen C. M., Walston J., Newman A. B., Hirsch C., Gottdiener J., et al. (2001). Frailty in older adults: evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 56 M146–M156. 10.1093/gerona/56.3.m146
    1. Guralnik J. M., Simonsick E. M., Ferrucci L., Glynn R. J., Berkman L. F., Blazer D. G., et al. (1994). A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J. Gerontol. 49 M85–M94.
    1. Hamaguchi K., Kurihara T., Fujimoto M., Iemitsu M., Sato K., Hamaoka T., et al. (2017). The effects of low-repetition and light-load power training on bone mineral density in postmenopausal women with sarcopenia: a pilot study. BMC Geriatr. 17:102. 10.1186/s12877-017-0490-8
    1. Hermens H. J., Freriks B., Disselhorst-Klug C., Rau G. (2000). Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 10 361–374. 10.1016/s1050-6411(00)00027-4
    1. Hester G. M., Magrini M. A., Colquhoun R. J., Barrera-Curiel A., Estrada C. A., Olmos A. A., et al. (2019a). Cross-education: effects of age on rapid and maximal voluntary contractile characteristics in males. Eur. J. Appl. Physiol. 119 1313–1322. 10.1007/s00421-019-04123-8
    1. Hester G. M., Pope Z. K., Magrini M. A., Colquhoun R. J., Barrera-Curiel A., Estrada C. A., et al. (2019b). Age does not attenuate maximal velocity adaptations in the ipsilateral and contralateral limbs during unilateral resistance training. J. Aging Phys. Act 27 1–8. 10.1123/japa.2017-0297
    1. Hoffrén M., Ishikawa M., Avela J., Komi P. V. (2012). Age-related fascicle-tendon interaction in repetitive hopping. Eur. J. Appl. Physiol. 112 4035–4043. 10.1007/s00421-012-2393-x
    1. Hopkins W. G. (2000). Measures of reliability in sports medicine and science. Sports Med. 30 1–15. 10.2165/00007256-200030010-00001
    1. Ihalainen J. K., Inglis A., Mäkinen T., Newton R. U., Kainulainen H., Kyröläinen H., et al. (2019). Strength training improves metabolic health markers in older individual regardless of training frequency. Front. Physiol. 10:32. 10.3389/fphys.2019.00032
    1. Katsoulis K., Stathokostas L., Amara C. E. (2019). The effects of high- versus low-intensity power training on muscle power outcomes in healthy, older adults: a systematic review. J. Aging Phys. Act 27 422–439. 10.1123/japa.2018-0054
    1. Klass M., Baudry S., Duchateau J. (2008). Age-related decline in rate of torque development is accompanied by lower maximal motor unit discharge frequency during fast contractions. J. Appl. Physiol. (1985) 104 739–746. 10.1152/japplphysiol.00550.2007
    1. Lee M., Carroll T. J. (2007). Cross education: possible mechanisms for the contralateral effects of unilateral resistance training. Sports Med. 37 1–14. 10.2165/00007256-200737010-00001
    1. Liu C.-J., Latham N. K. (2009). Progressive resistance strength training for improving physical function in older adults. Cochrane Database Syst. Rev. 2009:CD002759. 10.1002/14651858.CD002759.pub2
    1. Lopez P., Pinto R. S., Radaelli R., Rech A., Grazioli R., Izquierdo M., et al. (2018). Benefits of resistance training in physically frail elderly: a systematic review. Aging Clin. Exp. Res. 30 889–899. 10.1007/s40520-017-0863-z
    1. Macaluso A., Young A., Gibb K. S., Rowe D. A., De Vito G. (2003). Cycling as a novel approach to resistance training increases muscle strength, power, and selected functional abilities in healthy older women. J. Appl. Physiol. (1985) 95 2544–2553. 10.1152/japplphysiol.00416.2003
    1. MacInnis M. J., McGlory C., Gibala M. J., Phillips S. M. (2017). Investigating human skeletal muscle physiology with unilateral exercise models: when one limb is more powerful than two. Appl. Physiol. Nutr. Metab. 42 563–570. 10.1139/apnm-2016-0645
    1. Magnusson S. P., Kjaer M. (2019). The impact of loading, unloading, ageing and injury on the human tendon. J. Physiol. 597 1283–1298. 10.1113/jp275450
    1. Mitchell C. J., Churchward-Venne T. A., West D. W. D., Burd N. A., Breen L., Baker S. K., et al. (2012). Resistance exercise load does not determine training-mediated hypertrophic gains in young men. J. Appl. Physiol. 113 71–77. 10.1152/japplphysiol.00307.2012
    1. Munn J., Herbert R. D., Gandevia S. C. (2004). Contralateral effects of unilateral resistance training: a meta-analysis. J. Appl. Physiol. (1985) 96 1861–1866. 10.1152/japplphysiol.00541.2003
    1. Navarro-Cruz R., Alcazar J., Rodriguez-Lopez C., Losa-Reyna J., Alfaro-Acha A., Ara I., et al. (2019). The effect of the stretch-shortening cycle in the force-velocity relationship and its association with physical function in older adults with COPD. Front. Physiol. 10:316. 10.3389/fphys.2019.00316
    1. Orr R., de Vos N. J., Singh N. A., Ross D. A., Stavrinos T. M., Fiatarone-Singh M. A. (2006). Power training improves balance in healthy older adults. J. Gerontol. A Biol. Sci. Med. Sci. 61 78–85. 10.1093/gerona/61.1.78
    1. Pandis N., Chung B., Scherer R. W., Elbourne D., Altman D. G. (2017). CONSORT 2010 statement: extension checklist for reporting within person randomised trials. BMJ 357:j2835. 10.1136/bmj.j2835
    1. Peterson M. D., Rhea M. R., Sen A., Gordon P. M. (2010). Resistance exercise for muscular strength in older adults: a meta-analysis. Ageing Res. Rev. 9 226–237. 10.1016/j.arr.2010.03.004
    1. Ramirez-Campillo R., Diaz D., Martinez-Salazar C., Valdés-Badilla P., Delgado-Floody P., Méndez-Rebolledo G., et al. (2016). Effects of different doses of high-speed resistance training on physical performance and quality of life in older women: a randomized controlled trial. Clin. Interv. Aging 11 1797–1804. 10.2147/CIA.S121313
    1. Ramírez-Vélez R., Izquierdo M. (2019). Editorial: precision physical activity and exercise prescriptions for disease prevention: the effect of interindividual variability under different training approaches. Front. Physiol. 10:646. 10.3389/fphys.2019.00646
    1. Reid K. F., Martin K. I., Doros G., Clark D. J., Hau C., Patten C., et al. (2015). Comparative effects of light or heavy resistance power training for improving lower extremity power and physical performance in mobility-limited older adults. J. Gerontol. A Biol. Sci. Med. Sci. 70 374–380. 10.1093/gerona/glu156
    1. Richardson D. L., Duncan M. J., Jimenez A., Juris P. M., Clarke N. D. (2019). Effects of movement velocity and training frequency of resistance exercise on functional performance in older adults: a randomised controlled trial. Eur J Sport Sci 19 234–246. 10.1080/17461391.2018.1497709
    1. Rodriguez-Lopez C., Alcazar J., Sánchez-Martín C., Ara I., Csapo R., Alegre L. M. (2020). Mechanical characteristics of heavy vs. light load ballistic resistance training in older adults. J. Strength Cond. Res. 10.1519/jsc.0000000000003826 [Online ahead of print].
    1. Sayers S. P., Gibson K. (2010). A comparison of high-speed power training and traditional slow-speed resistance training in older men and women. J. Strength Cond. Res. 24 3369–3380. 10.1519/JSC.0b013e3181f00c7c
    1. Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat. Methods 9 676–682. 10.1038/nmeth.2019
    1. Seynnes O. R., Cronin N. J. (2020). Simple muscle architecture analysis (SMA): an ImageJ macro tool to automate measurements in B-mode ultrasound scans. PLoS One 15:e0229034. 10.1371/journal.pone.0229034
    1. Steib S., Schoene D., Pfeifer K. (2010). Dose-response relationship of resistance training in older adults: a meta-analysis. Med. Sci. Sports Exerc. 42 902–914. 10.1249/MSS.0b013e3181c34465
    1. Stengel S. V., Kemmler W., Pintag R., Beeskow C., Weineck J., Lauber D., et al. (2005). Power training is more effective than strength training for maintaining bone mineral density in postmenopausal women. J. Appl. Physiol. (1985) 99 181–188. 10.1152/japplphysiol.01260.2004
    1. Suetta C., Hvid L. G., Justesen L., Christensen U., Neergaard K., Simonsen L., et al. (2009). Effects of aging on human skeletal muscle after immobilization and retraining. J. Appl. Physiol. (1985) 107 1172–1180. 10.1152/japplphysiol.00290.2009
    1. Tschopp M., Sattelmayer M. K., Hilfiker R. (2011). Is power training or conventional resistance training better for function in elderly persons? A meta-analysis. Age Ageing 40 549–556. 10.1093/ageing/afr005
    1. Van Roie E., Walker S., Van Driessche S., Delabastita T., Vanwanseele B., Delecluse C. (2020). An age-adapted plyometric exercise program improves dynamic strength, jump performance and functional capacity in older men either similarly or more than traditional resistance training. PLoS One 15:e0237921. 10.1371/journal.pone.0237921
    1. Vigotsky A. D., Halperin I., Lehman G. J., Trajano G. S., Vieira T. M. (2018). Interpreting signal amplitudes in surface electromyography studies in sport and rehabilitation sciences. Front. Physiol. 8:985. 10.3389/fphys.2017.00985
    1. Visser J. J., Hoogkamer J. E., Bobbert M. F., Huijing P. A. (1990). Length and moment arm of human leg muscles as a function of knee and hip-joint angles. Eur. J. Appl. Physiol. Occup. Physiol. 61, 453–460. 10.1007/bf00236067

Source: PubMed

3
Předplatit