Mycobactericidal activity of sutezolid (PNU-100480) in sputum (EBA) and blood (WBA) of patients with pulmonary tuberculosis

Robert S Wallis, Rodney Dawson, Sven O Friedrich, Amour Venter, Darcy Paige, Tong Zhu, Annette Silvia, Jason Gobey, Craig Ellery, Yao Zhang, Kathleen Eisenach, Paul Miller, Andreas H Diacon, Robert S Wallis, Rodney Dawson, Sven O Friedrich, Amour Venter, Darcy Paige, Tong Zhu, Annette Silvia, Jason Gobey, Craig Ellery, Yao Zhang, Kathleen Eisenach, Paul Miller, Andreas H Diacon

Abstract

Rationale: Sutezolid (PNU-100480) is a linezolid analog with superior bactericidal activity against Mycobacterium tuberculosis in the hollow fiber, whole blood and mouse models. Like linezolid, it is unaffected by mutations conferring resistance to standard TB drugs. This study of sutezolid is its first in tuberculosis patients.

Methods: Sputum smear positive tuberculosis patients were randomly assigned to sutezolid 600 mg BID (N = 25) or 1200 mg QD (N = 25), or standard 4-drug therapy (N = 9) for the first 14 days of treatment. Effects on mycobacterial burden in sputum (early bactericidal activity or EBA) were monitored as colony counts on agar and time to positivity in automated liquid culture. Bactericidal activity was also measured in ex vivo whole blood cultures (whole blood bactericidal activity or WBA) inoculated with M. tuberculosis H37Rv.

Results: All patients completed assigned treatments and began subsequent standard TB treatment according to protocol. The 90% confidence intervals (CI) for bactericidal activity in sputum over the 14 day interval excluded zero for all treatments and both monitoring methods, as did those for cumulative WBA. There were no treatment-related serious adverse events, premature discontinuations, or dose reductions due to laboratory abnormalities. There was no effect on the QT interval. Seven sutezolid-treated patients (14%) had transient, asymptomatic ALT elevations to 173±34 U/L on day 14 that subsequently normalized promptly; none met Hy's criteria for serious liver injury.

Conclusions: The mycobactericidal activity of sutezolid 600 mg BID or 1200 mg QD was readily detected in sputum and blood. Both schedules were generally safe and well tolerated. Further studies of sutezolid in tuberculosis treatment are warranted.

Trial registration: ClinicalTrials.gov NCT01225640.

Conflict of interest statement

Competing Interests: The authors have read the journal's policy and have the following conflicts: RSW, DP, TZ, AS, JG, CE, YZ and PM are/were Pfizer employees, and/or shareholders at the time the study was conducted, whose company funded this study. KE of the University of Arkansas was a paid consultant to Pfizer Inc in regards to the study design. Rights to sutezolid were acquired by Sequella, Inc. in 2013. There are no further patents, products in development or marketed products to declare. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials.

Figures

Figure 1. CONSORT flow diagram of study…
Figure 1. CONSORT flow diagram of study enrollment.
Figure 2. Bactericidal activity in sputum according…
Figure 2. Bactericidal activity in sputum according to treatment arm as assessed by colony counts (left) and time to positivity in automated liquid culture (MGIT TTP, right).
Lines indicate prediction and shading 90% confidence interval (CI) as determined by mixed effects model repeated measures analysis, using day as a categorical variable. The vertical axis of the right hand figure is inverted to facilitate visual comparison with CFU findings. At 14 days, the 90% CI of all treatments excluded zero.
Figure 3. Bactericidal activity against M. tuberculosis…
Figure 3. Bactericidal activity against M. tuberculosis H37Rv in whole blood culture (WBA) according to treatment arm, at discrete time points (left), and as cumulative effect (right).
Lines and shading indicate means and 90% confidence intervals (CI).
Figure 4. Distributions of minimal inhibitory concentrations…
Figure 4. Distributions of minimal inhibitory concentrations (MICs) to sutezolid (PNU-100480) pre and post treatment (rows and columns, respectively), according to dosing schedule.
Values in each cell indicate numbers of patients. Cells shaded red are those in which MIC values increased, whereas they decreased in those shaded blue. No change was apparent in MIC values of the metabolite (PNU-101603, not shown).
Figure 5. Plasma concentrations of sutezolid (pink)…
Figure 5. Plasma concentrations of sutezolid (pink) and its major metabolite (yellow) at steady state (day 13–14) in patients treated with sutezolid 600 mg BID (left) or 1200 mg QD (right).
Solid lines indicate medians; shading indicates 90% CI. Lower and upper dotted lines indicate median pre-treatment MIC values for parent and metabolite, respectively.
Figure 6. Treatment-emergent ALT increases in sutezolid-treated…
Figure 6. Treatment-emergent ALT increases in sutezolid-treated subjects.

References

    1. World Health Organization (2010) Multidrug and extensively drug-resistant TB (M/XDR-TB): 2010 Global report on surveillance and response. WHO/HTM/TB/2010.3.
    1. McKee EE, Ferguson M, Bentley AT, Marks TA (2006) Inhibition of mammalian mitochondrial protein synthesis by oxazolidinones. Antimicrob Agents Chemother 50: 2042–2049.
    1. Lee M, Lee J, Carroll M, Choi H, Min S, et al. (2012) Linezolid for the treatment of chronic extensively drug-resistant tuberculosis. N Engl J Med 367: 1508–1518.
    1. Williams KN, Brickner SJ, Stover CK, Zhu T, Ogden A, et al. (2009) Addition of PNU-100480 to first-line drugs shortens the time needed to cure murine tuberculosis. Am J Respir Crit Care Med 180: 371–376.
    1. Wallis RS, Jakubiec W, Kumar V, Bedarida G, Silvia A, et al. (2011) Biomarker assisted dose selection for safety and efficacy in early development of PNU-100480 for tuberculosis. Antimicrob Agents Chemother 55: 567–574.
    1. Louie A, Eichas K, Files K, Swift M, Bahniuk N, et al. (2011) Activities of PNU-100480 (PNU 480) alone, PNU 480 plus its major metabolite PNU-101603 (PNU 1603) and PNU 480 plus PNU 1603 in combination with rifampin (RIF) against Mycobacterium tuberculosis: Comparison with linezolid. ICAAC 51. Abstract A1–1737.
    1. Wallis RS, Jakubiec W, Kumar V, Silvia AM, Paige D, et al. (2010) Pharmacokinetics and whole blood bactericidal activity against Mycobacterium tuberculosis of single ascending doses of PNU-100480 in healthy volunteers. J Infect Dis 202: 745–751.
    1. Temple R (2006) Hy's law: predicting serious hepatotoxicity. Pharmacoepidemiol Drug Saf 15: 241–243.
    1. Dietze R, Hadad DJ, Peloquin C, Molino LP, Maciel EL, et al. (2008) Early and Extended Early Bactericidal Activity of Linezolid in Pulmonary Tuberculosis. Am J Respir Crit Care Med 178: 1180–1185.
    1. Rustomjee R, Diacon AH, Allen J, Venter A, Reddy C, et al. (2008) Early bactericidal activity and pharmacokinetics of the Diarylquinoline TMC 207 in pulmonary tuberculosis. Antimicrob Agents Chemother 52: 2831–2835.
    1. Diacon AH, Dawson R, Hanekom M, Narunsky K, Maritz SJ, et al. (2010) Early bactericidal activity and pharmacokinetics of PA-824 in smear-positive tuberculosis patients. Antimicrob Agents Chemother 54: 3402–3407.
    1. Wallis RS, Nacy C (2013) Early bactericidal activity of new drug regimens for tuberculosis. Lancet 381: 111–112.
    1. Louie A, Brown D, Files K, Swift M, Fikes S, et al. (2012) Pharmacodynamics of PNU-100480 (sutezolid), a new oxazolidinone, in combination with its active metabolite in the killing of M. tuberculosis in an in vitro hollow fiber infection model. ICAAC A-1265.
    1. Converse PJ, Lee J, Williams KN, Dionne K, Parrish N, et al. (2012) Activity of PNU-100480 and its major metabolite in whole blood and broth culture models of tuberculosis. Amer Soc Microbiol 112. Abstract GM-A-2052.
    1. Wallis RS, Vinhas SA, Johnson JL, Ribeiro FC, Palaci M, et al. (2003) Whole blood bactericidal activity during treatment of pulmonary tuberculosis. J Infect Dis 187: 270–278.
    1. Wallis RS, Wang C, Doherty TM, Onyebujoh P, Vahedi M, et al. (2010) Biomarkers for tuberculosis disease activity, cure, and relapse. Lancet Infect Dis 10: 68–69.
    1. Singanayagam A, Sridhar S, Dhariwal J, Abdel-Aziz D, Munro K, et al. (2012) A comparison between two strategies for monitoring hepatic function during antituberculous therapy. Am J Respir Crit Care Med 185: 653–659.
    1. Palanisamy GS, Kirk NM, Ackart DF, Shanley CA, Orme IM, et al. (2011) Evidence for oxidative stress and defective antioxidant response in guinea pigs with tuberculosis. PLoS ONE 6: e26254.
    1. Chowdhury A, Santra A, Kundu S, Mukherjee A, Pandit A, et al. (2001) Induction of oxidative stress in antitubercular drug-induced hepatotoxicity. Indian J Gastroenterol 20: 97–100.
    1. Venketaraman V, Millman A, Salman M, Swaminathan S, Goetz M, et al. (2008) Glutathione levels and immune responses in tuberculosis patients. Microb Pathog 44: 255–261.
    1. Vijayamalini M, Manoharan S (2004) Lipid peroxidation, vitamins C, E and reduced glutathione levels in patients with pulmonary tuberculosis. Cell Biochem Funct 22: 19–22.
    1. Baniasadi S, Eftekhari P, Tabarsi P, Fahimi F, Raoufy MR, et al. (2010) Protective effect of N-acetylcysteine on antituberculosis drug-induced hepatotoxicity. Eur J Gastroenterol Hepatol 22: 1235–1238.

Source: PubMed

3
Předplatit