Therapeutic Properties of Stingless Bee Honey in Comparison with European Bee Honey

Fatin Aina Zulkhairi Amin, Suriana Sabri, Salma Malihah Mohammad, Maznah Ismail, Kim Wei Chan, Norsharina Ismail, Mohd Esa Norhaizan, Norhasnida Zawawi, Fatin Aina Zulkhairi Amin, Suriana Sabri, Salma Malihah Mohammad, Maznah Ismail, Kim Wei Chan, Norsharina Ismail, Mohd Esa Norhaizan, Norhasnida Zawawi

Abstract

Both honeybees (Apis spp.) and stingless bees (Trigona spp.) produce honeys with high nutritional and therapeutics value. Until recently, the information regarding potential health benefits of stingless bee honey (SBH) in medical databases is still scarce as compared to the common European bee honey (EBH) which is well known for their properties as therapeutic agents. Although there have been very few reports on SBH, empirically these products would have similar therapeutic quality as the EBH. In addition, due to the structure of the nest, few studies reported that the antimicrobial activity of SBH is a little bit stronger than EBH. Therefore, the composition of both the types of honey as well as the traditional uses and clinical applications were compared. The results of various studies on EBH and SBH from tissue culture research to randomised control clinical trials were collated in this review. Interestingly, there are many therapeutic properties that are unique to SBH. Therefore, SBH has a great potential to be developed for modern medicinal uses.

Figures

Figure 1
Figure 1
(a) Stingless bee. (b) Stingless bee honey in the nest.

References

    1. Namias N. Honey in the management of infections. Surgical Infections. 2003;4(2):219–226. doi: 10.1089/109629603766957022.
    1. Michener C. D. The Bees of the World. Vol. 1. Baltimore, MD, USA: John Hopkins University Press; 2000.
    1. Heard T. A. The role of stingless bees in crop pollination. Annual Review of Entomology. 1999;44(1):183–206. doi: 10.1146/annurev.ento.44.1.183.
    1. Knapp J. L., Shaw R. F., Osborne J. L. Pollinator visitation to mass-flowering courgette and co-flowering wild flowers: implications for pollination and bee conservation on farms. Basic and Applied Ecology. 2018 doi: 10.1016/j.baae.2018.09.003. In press.
    1. Gallai N., Salles J.-M., Settele J., Vaissière B. E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecological Economics. 2009;68(3):810–821. doi: 10.1016/j.ecolecon.2008.06.014.
    1. Souza B. A., Roubik D., Barth O., et al. Composition of stingless bee honey: setting quality standards. Interciencia. 2006;31(12)
    1. Alvarez-Suarez J., Giampieri F., Battino M. Honey as a source of dietary antioxidants: structures, bioavailability and evidence of protective effects against human chronic diseases. Current Medicinal Chemistry. 2013;20(5):621–638. doi: 10.2174/092986713804999358.
    1. Chuttong B., Chanbang Y., Sringarm K., Burgett M. Physicochemical profiles of stingless bee (Apidae: meliponini) honey from south East Asia (Thailand) Food Chemistry. 2016;192:149–155. doi: 10.1016/j.foodchem.2015.06.089.
    1. Guardado E., Molina E., Joo M., Uriarte E. Nutrition. InTech, London, UK: Well-Being and Health; 2012. Antioxidant and pro-oxidant effects of polyphenolic compounds and structure-activity relationship evidence.
    1. Ahmed S., Othman N. H. Review of the medicinal effects of Tualang honey and a comparison with Manuka honey. Malaysian Journal of Medical Sciences. 2013;20(3):6–13.
    1. Andualem B. Combined antibacterial activity of stingless bee (Apis mellipodae) honey and garlic (Allium sativum) extracts against standard and clinical pathogenic bacteria. Asian Pacific Journal of Tropical Biomedicine. 2013;3(9):725–731. doi: 10.1016/s2221-1691(13)60146-x.
    1. Ewnetu Y., Lemma W., Birhane N. Antibacterial effects of Apis mellifera and stingless bees honeys on susceptible and resistant strains of Escherichia coli, Staphylococcus aureus and Klebsiella pneumoniae in Gondar, Northwest Ethiopia. BMC Complementary and Alternative Medicine. 2013;13(1) doi: 10.1186/1472-6882-13-269.
    1. Vit P., Roubik D. W., Pedro S. R. M. Pot-Honey: A Legacy of Stingless Bees. Berlin, Germany: Springer; 2012.
    1. Ranneh Y., Ali F., Zarei M., Akim A. M., Hamid H. A., Khazaai H. Malaysian stingless bee and Tualang honeys: a comparative characterization of total antioxidant capacity and phenolic profile using liquid chromatography-mass spectrometry. LWT. 2018;89:1–9. doi: 10.1016/j.lwt.2017.10.020.
    1. Badolato M., Carullo G., Cione E., Aiello F., Caroleo M. C. From the hive: honey, a novel weapon against cancer. European Journal of Medicinal Chemistry. 2017;142:290–299. doi: 10.1016/j.ejmech.2017.07.064.
    1. Nosrati H., Rakhshbahar A., Salehiabar M., et al. Bovine serum albumin: an efficient biomacromolecule nanocarrier for improving the therapeutic efficacy of chrysin. Journal of Molecular Liquids. 2018;271:639–646. doi: 10.1016/j.molliq.2018.06.066.
    1. Nosrati H., Abbasi R., Charmi J., et al. Folic acid conjugated bovine serum albumin: an efficient smart and tumor targeted biomacromolecule for inhibition folate receptor positive cancer cells. International Journal of Biological Macromolecules. 2018;117:1125–1132. doi: 10.1016/j.ijbiomac.2018.06.026.
    1. Nosrati H., Javani E., Salehiabar M., Kheiri Manjili H., Davaran S., Danafar H. Biocompatibility and anticancer activity of L-phenyl alanine-coated iron oxide magnetic nanoparticles as potential chrysin delivery system. Journal of Materials Research. 2018;33(11):1602–1611. doi: 10.1557/jmr.2018.148.
    1. Kwapong P. K., Ilechie A. A., Kusi R. Comparative antibacterial activity of stingless bee honey and standard antibiotics against common eye pathogens. Journal of Microbiology and Biotechnology Research. 2013;3(1):9–15.
    1. Kahraman T., Buyukunal S. K., Vural A., Altunatmaz S. S. Physico-chemical properties in honey from different regions of Turkey. Food Chemistry. 2010;123(1):41–44. doi: 10.1016/j.foodchem.2010.03.123.
    1. Lusby P., Coombes A., Wilkinson J. M. Honey: a potent agent for wound healing? Journal of WOCN. 2002;29(6):295–300. doi: 10.1067/mjw.2002.129073.
    1. Sawatthum A., Vaithanomsat P., Tadakittisarn S. Comparative composition of honey from Thai stingless bee and European honeybee (Apis mellifera L.). Proceedings of the 47th Kasetsart University Annual Conference, Kasetsart; March 2009; Bangkok, Thailand. pp. 139–144.
    1. Bogdanov S., Vit P., Kilchenmann V. Sugar profiles and conductivity of stingless bee honeys from Venezuela. Apidologie. 1996;27(6):445–450. doi: 10.1051/apido:19960602.
    1. Weston R. J., Brocklebank L. K. The oligosaccharide composition of some New Zealand honeys. Food Chemistry. 1999;64(1):33–37. doi: 10.1016/s0308-8146(98)00099-5.
    1. Persano Oddo L., Piazza M. G., Sabatini A. G., Accorti M. Characterization of unifloral honeys. Apidologie. 1995;26(6):453–465. doi: 10.1051/apido:19950602.
    1. Rao P. V., Krishnan K. T., Salleh N., Gan S. H. Biological and therapeutic effects of honey produced by honey bees and stingless bees: a comparative review. Revista Brasileira de Farmacognosia. 2016;26(5):657–664. doi: 10.1016/j.bjp.2016.01.012.
    1. Fuenmayor C. A., Díaz-Moreno A. C., Zuluaga-Domínguez C. M., Quicazán M. C. Honey of colombian stingless bees: nutritional characteristics and physicochemical quality indicators. Pot-Honey. 2012:383–394. doi: 10.1007/978-1-4614-4960-7_27.
    1. Ghazali F. Morphological characterization study of Malaysian honey-A VPSEM, EDX randomised attempt. Annual Microscopy. 2009;9:93–102.
    1. Erejuwa O. O., Sulaiman S. A., Wahab M. S., Sirajudeen K. N. S., Salleh M. S. M., Gurtu S. Antioxidant protection of Malaysian Tualang honey in pancreas of normal and streptozotocin-induced diabetic rats. Annales d’Endocrinologie. 2010;71(4):291–296. doi: 10.1016/j.ando.2010.03.003.
    1. Moniruzzaman M., An C. Y., Rao P. V., et al. Identification of phenolic acids and flavonoids in monofloral honey from Bangladesh by high performance liquid chromatography: determination of antioxidant capacity. BioMed Research International. 2014;2014:11. doi: 10.1155/2014/737490.737490
    1. Emmertz A. Mineral Composition of New Zealand Monofloral Honeys. Lincoln, New Zealand: Lincoln University; 2010.
    1. Stephens J. M., Schlothauer R. C., Morris B. D., et al. Phenolic compounds and methylglyoxal in some New Zealand manuka and kanuka honeys. Food Chemistry. 2010;120(1):78–86. doi: 10.1016/j.foodchem.2009.09.074.
    1. Feller-Demalsy M. J., Vincent B., Beaulieu F. Mineral content and geographical origin of Canadian honeys. Apidologie. 1989;20(1):77–91. doi: 10.1051/apido:19890108.
    1. Biluca F. C., Braghini F., Gonzaga L. V., Costa A. C. O., Fett R. Physicochemical profiles, minerals and bioactive compounds of stingless bee honey (Meliponinae) Journal of Food Composition and Analysis. 2016;50:61–69. doi: 10.1016/j.jfca.2016.05.007.
    1. Bogdanov S., Jurendic T., Sieber R., Gallmann P. Honey for nutrition and health: a review. Journal of the American College of Nutrition. 2008;27(6):677–689. doi: 10.1080/07315724.2008.10719745.
    1. Ariefdjohan M. W., Martin B. R., Lachcik P. J., Weaver C. M. Acute and chronic effects of honey and its carbohydrate constituents on calcium absorption in rats. Journal of Agricultural and Food Chemistry. 2008;56(8):2649–2654. doi: 10.1021/jf073357w.
    1. Hossen M. S., Ali M. Y., Jahurul M. H. A., Abdel-Daim M. M., Gan S. H., Khalil M. I. Beneficial roles of honey polyphenols against some human degenerative diseases: a review. Pharmacological Reports. 2017;69(6):1194–1205. doi: 10.1016/j.pharep.2017.07.002.
    1. Yoon C.-H., Chung S.-J., Lee S.-W., Park Y.-B., Lee S.-K., Park M.-C. Gallic acid, a natural polyphenolic acid, induces apoptosis and inhibits proinflammatory gene expressions in rheumatoid arthritis fibroblast-like synoviocytes. Joint Bone Spine. 2013;80(3):274–279. doi: 10.1016/j.jbspin.2012.08.010.
    1. Khalil M. I., Sulaiman S. A. The potential role of honey and its polyphenols in preventing heart diseases: a review. African Journal of Traditional, Complementary and Alternative Medicines. 2010;7(4):315–321. doi: 10.4314/ajtcam.v7i4.56693.
    1. Estevinho L., Pereira A. P., Moreira L., Dias L. G., Pereira E. Antioxidant and antimicrobial effects of phenolic compounds extracts of Northeast Portugal honey. Food and Chemical Toxicology. 2008;46(12):3774–3779. doi: 10.1016/j.fct.2008.09.062.
    1. Rocha L. D., Monteiro M. C., Teodoro A. J. Anticancer properties of hydroxycinnamic acids -a review. Cancer and Clinical Oncology. 2012;1(2) doi: 10.5539/cco.v1n2p109.
    1. Jung U. J. Antihyperglycemic and antioxidant properties of caffeic acid in db/db mice. Journal of Pharmacology and Experimental Therapeutics. 2006;318(2):476–483. doi: 10.1124/jpet.106.105163.
    1. Spilioti E., Jaakkola M., Tolonen T., et al. Phenolic acid composition, antiatherogenic and anticancer potential of honeys derived from various regions in Greece. PLoS One. 2014;9(4) doi: 10.1371/journal.pone.0094860.e94860
    1. Koh S.-H., Kim S. H., Kwon H., et al. Epigallocatechin gallate protects nerve growth factor differentiated PC12 cells from oxidative-radical-stress-induced apoptosis through its effect on phosphoinositide 3-kinase/Akt and glycogen synthase kinase-3. Molecular Brain Research. 2003;118(1-2):72–81. doi: 10.1016/j.molbrainres.2003.07.003.
    1. Afroz R., Tanzir E. M., Zheng W. H., Little P. J. Molecular pharmacology of honey. Clinical and Experimental Pharmacology and Physiology. 2016;6(3)
    1. Mijanur Rahman M., Gan S. H., Khalil M. I. Neurological effects of honey: current and future prospects. Evidence-Based Complementary and Alternative Medicine. 2014;2014:13. doi: 10.1155/2014/958721.958721
    1. He X.-L., Wang Y.-H., Bi M.-G., Du G.-H. Chrysin improves cognitive deficits and brain damage induced by chronic cerebral hypoperfusion in rats. European Journal of Pharmacology. 2012;680(1–3):41–48. doi: 10.1016/j.ejphar.2012.01.025.
    1. Guzman J. D. Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity. Molecules. 2014;19(12):19292–19349.
    1. Sobral F., Calhelha R., Barros L., et al. Flavonoid composition and antitumor activity of bee bread collected in Northeast Portugal. Molecules. 2017;22(2):p. 248. doi: 10.3390/molecules22020248.
    1. Graf B. A., Milbury P. E., Blumberg J. B. Flavonols, flavones, flavanones, and human health: Epidemiological evidence. Journal of Medicinal Food. 2005;8(3):281–290. doi: 10.1089/jmf.2005.8.281.
    1. Arts I. C. W., Hollman P. C. H. Polyphenols and disease risk in epidemiologic studies. The American journal of clinical nutrition. 2005;81(1):317S–325S. doi: 10.1093/ajcn/81.1.317s.
    1. Basualdo C., Sgroy V., Finola M. S., Marioli J. M. Comparison of the antibacterial activity of honey from different provenance against bacteria usually isolated from skin wounds. Veterinary Microbiology. 2007;124(3-4):375–381. doi: 10.1016/j.vetmic.2007.04.039.
    1. Ajibola A., Chamunorwa J. P., Erlwanger K. H. Nutraceutical values of natural honey and its contribution to human health and wealth. Nutrition and Metabolism. 2012;9(1):p. 61. doi: 10.1186/1743-7075-9-61.
    1. Reyes-González A., Camou-Guerrero A., Reyes-Salas O., Argueta A., Casas A. Diversity, local knowledge and use of stingless bees (Apidae: meliponini) in the municipality of Nocupétaro, Michoacan, Mexico. Journal of Ethnobiology and Ethnomedicine. 2014;10(1) doi: 10.1186/1746-4269-10-47.
    1. Rosales G. R. O. Medicinal uses of Melipona beecheii honey, by the ancient Maya. Pot-Honey. 2012:229–240. doi: 10.1007/978-1-4614-4960-7_15.
    1. Meo S. A., Al-Asiri S. A., Mahesar A. L., Ansari M. J. Role of honey in modern medicine. Saudi Journal of Biological Sciences. 2017;24(5):975–978. doi: 10.1016/j.sjbs.2016.12.010.
    1. Medhi B., Puri A., Upadhyay S., Kaman L. Topical application of honey in the treatment of wound healing: a metaanalysis. JK Science. 2008;10(4):166–169.
    1. Bansal V., Medhi B., Pandhi P. Honey—a remedy rediscovered and its therapeutic utility. Kathmandu University Medical Journal. 2005;3(3):305–309.
    1. Shenoy R., Bialasiewicz A., Khandekar R., Al Barwani B., Al Belushi H. Traditional medicine in Oman: its role in ophthalmology. Middle East African Journal of Ophthalmology. 2009;16(2):92–96. doi: 10.4103/0974-9233.53869.
    1. Mishra S. B., Verma A., Mukerjee A., Vijayakumar M. Anti-hyperglycemic activity of leaves extract of Hyptis suaveolens L. Poit in streptozotocin induced diabetic rats. Asian Pacific Journal of Tropical Medicine. 2011;4(9):689–693. doi: 10.1016/s1995-7645(11)60175-2.
    1. Erejuwa O. O., Nwobodo N., Akpan J., et al. Nigerian honey ameliorates hyperglycemia and dyslipidemia in alloxan-induced diabetic rats. Nutrients. 2016;8(3):p. 95. doi: 10.3390/nu8030095.
    1. Safi S. Z., Batumalaie K., Qvist R., Mohd Yusof K., Ismail I. S. Gelam honey attenuates the oxidative stress-induced inflammatory pathways in pancreatic hamster cells. Evidence-Based Complementary and Alternative Medicine. 2016;2016:13. doi: 10.1155/2016/5843615.5843615
    1. Akhtar M. S., Khan M. S. Glycaemic responses to three different honeys given to normal and alloxan-diabetic rabbits. Journal of Pakistan Medical Association. 1989;39(4):107–113.
    1. Krishnasree V., Mary Ukkuru P. In vitro antidiabetic activity and glycemic index of bee honeys. Indian Journal of Traditional Knowledge. 2017;16(1):134–140.
    1. Aziz M. S. A., Giribabu N., Rao P. V., Salleh N. Pancreatoprotective effects of Geniotrigona thoracica stingless bee honey in streptozotocin-nicotinamide-induced male diabetic rats. Biomedicine & Pharmacotherapy. 2017;89:135–145. doi: 10.1016/j.biopha.2017.02.026.
    1. Sarkar S., Chaudhary A., Saha T. K., Das A. K., Chatterjee J. Modulation of collagen population under honey assisted wound healing in diabetic rat model. Wound Medicine. 2018;20:7–17.
    1. Oryan A., Zaker S. R. Effects of topical application of honey on cutaneous wound healing in rabbits. Journal of Veterinary Medicine Series A. 1998;45(3):181–188. doi: 10.1111/j.1439-0442.1998.tb00815.x.
    1. Eyarefe D. O., Kuforiji D. I., Jarikre T. A., Emikpe B. O. Enhanced electroscalpel incisional wound healing potential of honey in wistar rats. International Journal of Veterinary Science and Medicine. 2017;5:128–134. doi: 10.1016/j.ijvsm.2017.10.002.
    1. Aznan M. I., Khan O. H., Unar A. O., et al. Effect of Tualang honey on the anastomotic wound healing in large bowel anastomosis in rats-A randomized controlled trial. BMC Complementary and Alternative Medicine. 2016;16(1):1–7. doi: 10.1186/s12906-016-1003-6.
    1. Ergul E., Ergul S. The effect of honey on the intestinal anastomotic wound healing in rats with obstructive jaundice. Bratislavské Lekárske Listy. 2010;111(5):265–270.
    1. Ng W. J., Lye P. Y., Chan Y. J., Lau Z. K., Ee K. Y. Synergistic effect of trigona honey and ampicillin on Staphylococcus aureus isolated from infected wound. International Journal of Pharmacology. 2017;13(4):403–407.
    1. Efem S. E. E. Clinical observations on the wound healing properties of honey. British Journal of Surgery. 1988;75(7):679–681. doi: 10.1002/bjs.1800750718.
    1. Al-Waili N. S. Mixture of honey, beeswax and olive oil inhibits growth of Staphylococcus aureus and Candida albicans . Archives of Medical Research. 2005;36(1):10–13. doi: 10.1016/j.arcmed.2004.10.002.
    1. Hassan M. I., Mabrouk G. M., Shehata H. H., Aboelhussein M. M. Antineoplastic effects of bee honey and Nigella sativa on hepatocellular carcinoma cells. Integrative Cancer Therapies. 2010;11(4):354–363. doi: 10.1177/1534735410387422.
    1. Takruri H. R., Shomaf M. S., Shnaigat S. F. Multi floral honey has a protective effect against mammary cancer induced by 7,12-Dimethylbenz(a)anthracene in sprague dawley rats. Journal of Agricultural Science. 2017;9(2):p. 196. doi: 10.5539/jas.v9n2p196.
    1. Yazan L. S., Muhamad Zali M. F. S., Ali R. M., et al. Chemopreventive properties and toxicity of Kelulut honey in sprague dawley rats induced with azoxymethane. BioMed Research International. 2016;2016:6. doi: 10.1155/2016/4036926.4036926
    1. Kustiawan P. M., Puthong S., Arung E. T., Chanchao C. In vitro cytotoxicity of Indonesian stingless bee products against human cancer cell lines. Asian Pacific Journal of Tropical Biomedicine. 2014;4(7):549–556. doi: 10.12980/apjtb.4.2014apjtb-2013-0039.
    1. Cernak M., Majtanova N., Cernak A., Majtan J. Honey prophylaxis reduces the risk of endophthalmitis during perioperative period of eye surgery. Phytotherapy Research. 2011;26(4):613–616. doi: 10.1002/ptr.3606.
    1. Albietz J. M., Lenton L. M. Effect of antibacterial honey on the ocular flora in tear deficiency and meibomian gland disease. Cornea. 2006;25(9):1012–1019. doi: 10.1097/01.ico.0000225716.85382.7b.
    1. Bashkaran K., Zunaina E., Bakiah S., Sulaiman S. A., Sirajudeen K., Naik V. Anti-inflammatory and antioxidant effects of Tualang honey in alkali injury on the eyes of rabbits: experimental animal study. BMC Complementary and Alternative Medicine. 2011;11(1):p. 90. doi: 10.1186/1472-6882-11-90.
    1. Mansour A. M. Epithelial corneal oedema treated with honey. Clinical and Experimental Ophthalmology. 2002;30(2):149–150. doi: 10.1046/j.1442-6404.2002.00482.x.
    1. Patricia V. Effect of stingless bee honey in selenite cataracts. Apiacta. 2002;3:1–2.
    1. Ilechie A. A., Kwapong P. K., Mate-Kole E., Kyei S., Darko-Takyi C. The efficacy of stingless bee honey for the treatment of bacteria-induced conjunctivitis in Guinea pigs. Journal of Experimental Pharmacology. 2012;4:63–68. doi: 10.2147/JEP.S28415.
    1. Mohamed M., Sulaiman S. A., Sirajudeen K. N. S. Protective effect of honey against cigarette smoke induced-impaired sexual behavior and fertility of male rats. Toxicology and Industrial Health. 2012;29(3):264–271. doi: 10.1177/0748233711432568.
    1. Hemadi M., Saki G., Rajabzadeh A., Khodadadi A., Sarkaki A. The effects of honey and vitamin E administration on apoptosis in testes of rat exposed to noise stress. Journal of Human Reproductive Sciences. 2013;6(1):54–58. doi: 10.4103/0974-1208.112383.
    1. Haron M. N., Rahman W. F. W. A., Sulaiman S. A., Mohamed M. Tualang honey ameliorates restraint stress-induced impaired pregnancy outcomes in rats. European Journal of Integrative Medicine. 2014;6(6):657–663. doi: 10.1016/j.eujim.2014.07.001.
    1. Mosavat M., Ooi F. K., Mohamed M. Stress hormone and reproductive system in response to honey supplementation combined with different jumping exercise intensities in female rats. BioMed Research International. 2014;2014:6. doi: 10.1155/2014/123640.123640
    1. Budin S. B., Jubaidi F. F., Azam S. N. F. M. N., Yusof N. L. M., Taib I. S., Mohameda J. Kelulut honey supplementation prevents sperm and testicular oxidative damage in streptozotocin-induced diabetic rats. Jurnal Teknologi. 2017;79(3):89–95. doi: 10.11113/jt.v79.9674.
    1. Jais A. M. M., Matori M. F., Kittakoop P., Sowanborirux K. Fatty acid compositions in mucus and roe of haruan, Channa striatus, for wound healing. General Pharmacology: The Vascular System. 1998;30(4):561–563. doi: 10.1016/s0306-3623(97)00305-4.
    1. Marles R. J., Farnsworth N. R. Antidiabetic plants and their active constituents. Phytomedicine. 1995;2(2):137–189. doi: 10.1016/s0944-7113(11)80059-0.
    1. Patel D., Kumar R., Laloo D., Hemalatha S. Diabetes mellitus: an overview on its pharmacological aspects and reported medicinal plants having antidiabetic activity. Asian Pacific Journal of Tropical Biomedicine. 2012;2(5):411–420. doi: 10.1016/s2221-1691(12)60067-7.
    1. McDougall G. J., Shpiro F., Dobson P., Smith P., Blake A., Stewart D. Different polyphenolic components of soft fruits inhibit α-amylase and α-glucosidase. Journal of Agricultural and Food Chemistry. 2005;53(7):2760–2766. doi: 10.1021/jf0489926.
    1. Rouse M., Younès A., Egan J. M. Resveratrol and curcumin enhance pancreatic β-cell function by inhibiting phosphodiesterase activity. Journal of Endocrinology. 2014;223(2):107–117. doi: 10.1530/joe-14-0335.
    1. Eid H. M., Martineau L. C., Saleem A., et al. Stimulation of AMP-activated protein kinase and enhancement of basal glucose uptake in muscle cells by quercetin and quercetin glycosides, active principles of the antidiabetic medicinal plant vaccinium vitis-idaea. Molecular Nutrition & Food Research. 2010;54(7):991–1003. doi: 10.1002/mnfr.200900218.
    1. S. M.C, K S., Kuttan R. Anti-diabetic activity of green tea polyphenols and their role in reducing oxidative stress in experimental diabetes. Journal of Ethnopharmacology. 2002;83(1-2):109–116. doi: 10.1016/s0378-8741(02)00217-9.
    1. Hussain S. A., Ahmed Z. A., Mahwi T. O., Aziz T. A. Quercetin dampens postprandial hyperglycemia in type 2 diabetic patients challenged with carbohydrates load. International Journal of Diabetes Research. 2012;1(3):32–35. doi: 10.5923/j.diabetes.20120103.01.
    1. Kim J.-S., Kwon C.-S., Son K. H. Inhibition of Alpha-glucosidase and amylase by luteolin, a flavonoid. Bioscience, Biotechnology, and Biochemistry. 2014;64(11):2458–2461. doi: 10.1271/bbb.64.2458.
    1. Vessal M., Hemmati M., Vasei M. Antidiabetic effects of quercetin in streptozocin-induced diabetic rats. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 2003;135(3):357–364. doi: 10.1016/s1532-0456(03)00140-6.
    1. Tonks A., Cooper R. A., Jones K. P., Blair S., Parton J., Tonks A. Honey stimulates inflammatory cytokine production from monocytes. Cytokine. 2003;21(5):242–247. doi: 10.1016/s1043-4666(03)00092-9.
    1. Visavadia B. G., Honeysett J., Danford M. H. Manuka honey dressing: an effective treatment for chronic wound infections. British Journal of Oral and Maxillofacial Surgery. 2008;46(1):55–56. doi: 10.1016/j.bjoms.2006.09.013.
    1. Kumar A. Efficacy of some indigenous drugs in tissue repair in buffaloes. Indian Veterinary Journal. 1993;70:42–44.
    1. Alvarez-Suarez J. M., Giampieri F., Brenciani A., et al. Apis mellifera vs Melipona beecheii Cuban polifloral honeys: a comparison based on their physicochemical parameters, chemical composition and biological properties. LWT. 2018;87:272–279. doi: 10.1016/j.lwt.2017.08.079.
    1. Boorn K. L., Khor Y.-Y., Sweetman E., Tan F., Heard T. A., Hammer K. A. Antimicrobial activity of honey from the stingless bee Trigona carbonaria determined by agar diffusion, agar dilution, broth microdilution and time-kill methodology. Journal of Applied Microbiology. 2010;108(5):1534–1543. doi: 10.1111/j.1365-2672.2009.04552.x.
    1. Kuppusamy P., Yusoff M. M., Maniam G. P., Ichwan S. J. A., Soundharrajan I., Govindan N. Nutraceuticals as potential therapeutic agents for colon cancer: a review. Acta Pharmaceutica Sinica B. 2014;4(3):173–181. doi: 10.1016/j.apsb.2014.04.002.
    1. Ahmed S., Othman N. H. Honey as a potential natural anticancer agent: a review of its mechanisms. Evidence-Based Complementary and Alternative Medicine. 2013;2013:7. doi: 10.1155/2013/829070.829070
    1. Kuntz S., Wenzel U., Daniel H. Comparative analysis of the effects of flavonoids on proliferation, cytotoxicity, and apoptosis in human colon cancer cell lines. European Journal of Nutrition. 1999;38(3):133–142. doi: 10.1007/s003940050054.
    1. Khan N., Afaq F., Saleem M., Ahmad N., Mukhtar H. Targeting multiple signaling pathways by green tea polyphenol (−)-Epigallocatechin-3-Gallate. Cancer Research. 2006;66(5):2500–2505. doi: 10.1158/0008-5472.can-05-3636.
    1. Ishikawa Y., Kitamura M. Bioflavonoid quercetin inhibits mitosis and apoptosis of glomerular cells in vitro and in vivo. Biochemical and Biophysical Research Communications. 2000;279(2):629–634. doi: 10.1006/bbrc.2000.4016.
    1. Weng M.-S., Ho Y.-S., Lin J.-K. Chrysin induces G1 phase cell cycle arrest in C6 glioma cells through inducing p21 Waf1/Cip1 expression: involvement of p38 mitogen-activated protein kinase. Biochemical Pharmacology. 2005;69(12):1815–1827. doi: 10.1016/j.bcp.2005.03.011.
    1. Ujiki M. B., Ding X.-Z., Salabat M. R., et al. Apigenin inhibits pancreatic cancer cell proliferation through G2/M cell cycle arrest. Molecular Cancer. 2006;5:p. 76. doi: 10.1186/1476-4598-5-76.
    1. Xu Z., Sun T., Li W., Sun X. Inhibiting effects of dietary polyphenols on chronic eye diseases. Journal of Functional Foods. 2017;39:186–197. doi: 10.1016/j.jff.2017.10.031.
    1. Sunkireddy P., Jha S. N., Kanwar J. R., Yadav S. C. Natural antioxidant biomolecules promises future nanomedicine based therapy for cataract. Colloids and Surfaces B: Biointerfaces. 2013;112:554–562. doi: 10.1016/j.colsurfb.2013.07.068.
    1. Kyselova Z. The nutraceutical potential of natural products in diabetic cataract prevention. Journal of Food and Nutrition Research. 2012;51(4):185–200.
    1. Lee S. M., Ko I.-G., Kim S.-E., Kim D. H., Kang B. N. Protective effect of catechin on apoptosis of the lens epithelium in rats with N-methyl-N-nitrosourea-induced cataracts. Korean Journal of Ophthalmology. 2010;24(2):p. 101. doi: 10.3341/kjo.2010.24.2.101.

Source: PubMed

3
Předplatit