Coronary aspirate TNFα reflects saphenous vein bypass graft restenosis risk in diabetic patients

Theodor Baars, Thomas Konorza, Philipp Kahlert, Stefan Möhlenkamp, Raimund Erbel, Gerd Heusch, Petra Kleinbongard, Theodor Baars, Thomas Konorza, Philipp Kahlert, Stefan Möhlenkamp, Raimund Erbel, Gerd Heusch, Petra Kleinbongard

Abstract

Background: Patients with diabetes mellitus (DM) have an increased risk for periprocedural complications and adverse cardiac events after percutaneous coronary intervention. We addressed the potential for coronary microvascular obstruction and restenosis in patients with and without DM undergoing stenting for saphenous vein bypass graft (SVG) stenosis under protection with a distal occlusion/aspiration device.

Methods: SVG plaque volume and composition were analyzed using intravascular ultrasound before stent implantation. Percent diameter stenosis was determined from quantitative coronary angiography before, immediately after and 6 months after stent implantation. Coronary aspirate was retrieved during stent implantation and divided into particulate debris and plasma. Total calcium, several vasoconstrictors, and tumor necrosis factor (TNF)α in particulate debris and coronary aspirate plasma were determined.

Results: Patients with and without DM had similar plaque volume, but larger necrotic core and greater particulate debris release in patients with than without DM (20.3±2.7 vs. 12.7±2.6% and 143.9±19.3 vs. 75.1±10.4 mg, P<0.05). The TNFα concentration in particulate debris and coronary aspirate plasma was higher in patients with than without DM (15.9±6.6 vs. 5.1±2.4 pmol/mg and 2.2±0.7 vs. 1.1±0.2 pmol/L, P<0.05), whereas total calcium and vasoconstrictors were not different. Patients with DM had a greater percent diameter stenosis 6 months after stent implantation than those without DM (22.17±5.22 vs. 6.34±1.11%, P<0.05). The increase in TNFα immediately after stent implantation correlated with restenosis 6 months later (r=0.69, P<0.05).

Conclusion: In diabetics, particulate debris and coronary aspirate plasma contained more TNFα, which might reflect the activity of the underlying atherosclerotic process.

Trial registration: URL: http://www.clinicaltrials.gov/ct2/results?term=NCT01430884; unique identifier: NCT01430884.

Figures

Figure 1
Figure 1
SVG plaque volume (A) and composition (B) - Data are mean±SEM, comparison between patients with and without DM by unpairedt tests. DM = diabetes mellitus.
Figure 2
Figure 2
Amount of released particulate debris (A) and calcium concentration per amount of particulate debris (B) – The normalized amount of released particulate debris to stent volume in numbers in inserts; data are mean±SEM, comparison between patients with and without DM by unpairedttests. DM = diabetes mellitus.
Figure 3
Figure 3
Concentrations of serotonin (A), TxB2(B), and TNFα (C) per amount of particulate debris- Data are mean±SEM, comparison between patients with and without DM by unpairedt tests. DM = diabetes mellitus; TxB2 = thromboxane B2, TNFα = tumor necrosis factor α.
Figure 4
Figure 4
Vasoconstrictor responses to coronary arterial plasma before and to coronary aspirate plasma after stent implantation – Detected on rat mesenteric arteries with intact endothelium (+E) and denuded -E, respectively. Data are mean±SEM, comparison between patients with and without DM and before and after stent implantation by 2-way repeated measures ANOVA with Bonferroni’s correction. DM = diabetes mellitus.
Figure 5
Figure 5
Correlation between TNFα increase immediately after stent implantation and percent diameter stenosis 6 months later – Linear regression (black line) between the increase in TNFα and percent diameter stenosis in patients with (filled circle) and without (open circle) DM. TNFα = tumor necrosis factor α.

References

    1. Heusch G, Kleinbongard P, Boese D, Levkau B, Haude M, Schulz R, Erbel R. Coronary microembolization: from bedside to bench and back to bedside. Circulation. 2009;120:1822–1836. doi: 10.1161/CIRCULATIONAHA.109.888784.
    1. Niccoli G, Burzotta F, Galiuto L, Crea F. Myocardial no-reflow in humans. J Am Coll Cardiol. 2009;54:281–292. doi: 10.1016/j.jacc.2009.03.054.
    1. Dörge H, Neumann T, Behrends M, Skyschally A, Schulz R, Kasper C, Erbel R, Heusch G. Perfusion-contraction mismatch with coronary microvascular obstruction: role of inflammation. Am J Physiol Heart Circ Physiol. 2000;279:H2587–H2592.
    1. Herrmann J, Haude M, Lerman A, Schulz R, Volbracht L, Ge J, Schmermund A, Wieneke H, von Birgelen C, Eggebrecht H, Baumgart D, Heusch G, Erbel R. Abnormal coronary flow velocity reserve following coronary intervention is associated with cardiac marker elevation. Circulation. 2001;103:2339–2345. doi: 10.1161/01.CIR.103.19.2339.
    1. Leineweber K, Boese D, Vogelsang M, Haude M, Erbel R, Heusch G. Intense vasoconstriction in response to aspirate from stented saphenous vein aortocoronary bypass grafts. J Am Coll Cardiol. 2006;47:981–986. doi: 10.1016/j.jacc.2005.10.053.
    1. Boese D, Leineweber K, Konorza T, Zahn A, Broecker-Preuss M, Mann K, Haude M, Erbel R, Heusch G. Release of TNF-a during stent implantation into saphenous vein aortocoronary bypass grafts and its relation to plaque extrusion and restenosis. Am J Physiol Heart Circ Physiol. 2007;292:H2295–H2299. doi: 10.1152/ajpheart.01116.2006.
    1. Kleinbongard P, Boese D, Baars T, Moehlenkamp S, Konorza T, Schoener S, Elter-Schulz M, Eggebrecht H, Degen H, Haude M, Levkau B, Schulz R, Erbel R, Heusch G. Vasoconstrictor potential of coronary aspirate from patients undergoing stenting of saphenous vein aortocoronary bypass grafts and its pharmacological attenuation. Circ Res. 2011;108:344–352. doi: 10.1161/CIRCRESAHA.110.235713.
    1. Kleinbongard P, Boese D, Konorza T, Steinhilber F, Moehlenkamp S, Eggebrecht H, Baars T, Degen H, Haude M, Levkau B, Erbel R, Heusch G. Acute vasomotor paralysis and potential downstream effects of paclitaxel from stents implanted for saphenous vein aorto-coronary bypass stenosis. Basic Res Cardiol. 2011;106:681–689. doi: 10.1007/s00395-011-0177-9.
    1. Quigley PJ, Hlatky MA, Hinohara T, Rendall DS, Perez JA, Phillips HR, Califf RM, Stack RS. Repeat percutaneous transluminal coronary angioplasty and predictors of recurrent restenosis. Am J Cardiol. 1989;63:409–413. doi: 10.1016/0002-9149(89)90309-3.
    1. Elezi S, Kastrati A, Pache J, Wehinger A, Hadamitzky M, Dirschinger J, Neumann FJ, Schomig A. Diabetes mellitus and the clinical and angiographic outcome after coronary stent placement. J Am Coll Cardiol. 1998;32:1866–1873. doi: 10.1016/S0735-1097(98)00467-7.
    1. Rensing BJ, Hermans WR, Vos J, Tijssen JG, Rutch W, Danchin N, Heyndrickx GR, Mast EG, Wijns W, Serruys PW. Luminal narrowing after percutaneous transluminal coronary angioplasty. A study of clinical, procedural, and lesional factors related to long-term angiographic outcome. Coronary Artery Restenosis Prevention on Repeated Thromboxane Antagonism (CARPORT) Study Group. Circulation. 1993;88:975–985. doi: 10.1161/01.CIR.88.3.975.
    1. Weintraub WS, Kosinski AS, Brown CL III, King SB III. Can restenosis after coronary angioplasty be predicted from clinical variables? J Am Coll Cardiol. 1993;21:6–14. doi: 10.1016/0735-1097(93)90711-9.
    1. Ahmed JM, Hong MK, Mehran R, Dangas G, Mintz GS, Pichard AD, Satler LF, Kent KM, Wu H, Stone GW, Leon MB. Influence of diabetes mellitus on early and late clinical outcomes in saphenous vein graft stenting. J Am Coll Cardiol. 2000;36:1186–1193. doi: 10.1016/S0735-1097(00)00861-5.
    1. Mehta RH, Honeycutt E, Shaw LK, Sketch MH Jr. Clinical characteristics associated with poor long-term survival among patients with diabetes mellitus undergoing saphenous vein graft interventions. Am Heart J. 2008;156:728–735. doi: 10.1016/j.ahj.2008.05.033.
    1. Virmani R, Burke AP, Kolodgie F. Morphological characteristics of coronary atherosclerosis in diabetes mellitus. Can J Cardiol. 2006;22(Suppl B):81B–84B.
    1. Philipp S, Boese D, Wijns W, Marso SP, Schwartz RS, Konig A, Lerman A, Garcia-Garcia HM, Serruys PW, Erbel R. Do systemic risk factors impact invasive findings from virtual histology? Insights from the international virtual histology registry. Eur Heart J. 2009;31:196–202.
    1. Pundziute G, Schuijf JD, Jukema JW, van Werkhoven JM, Nucifora G, Decramer I, Sarno G, Vanhoenacker PK, Reiber JH, Wijns W, Bax JJ. Type 2 diabetes is associated with more advanced coronary atherosclerosis on multislice computed tomography and virtual histology intravascular ultrasound. J Nucl Cardiol. 2009;16:376–383. doi: 10.1007/s12350-008-9046-9.
    1. Zheng M, Choi SY, Tahk SJ, Lim HS, Yang HM, Choi BJ, Yoon MH, Park JS, Hwang GS, Shin JH. The relationship between volumetric plaque components and classical cardiovascular risk factors and the metabolic syndrome a 3-vessel coronary artery virtual histology-intravascular ultrasound analysis. JACC Cardiovasc Interv. 2011;4:503–510.
    1. Otto S, Seeber M, Fujita B, Kretzschmar D, Ferrari M, Goebel B, Figulla HR, Poerner TC. Microembolization and myonecrosis during elective percutaneous coronary interventions in diabetic patients: an intracoronary Doppler ultrasound study with 2-year clinical follow-up. Basic Res Cardiol. 2012;107:289.
    1. Libby P. Inflammation in atherosclerosis. Nature. 2002;420:868–874. doi: 10.1038/nature01323.
    1. Alexandraki K, Piperi C, Kalofoutis C, Singh J, Alaveras A, Kalofoutis A. Inflammatory process in type 2 diabetes: the role of cytokines. Ann N Y Acad Sci. 2006;1084:89–117. doi: 10.1196/annals.1372.039.
    1. Packard RR, Libby P. Inflammation in atherosclerosis: from vascular biology to biomarker discovery and risk prediction. Clin Chem. 2008;54:24–38.
    1. Hartge MM, Unger T, Kintscher U. The endothelium and vascular inflammation in diabetes. Diab Vasc Dis Res. 2007;4:84–88.
    1. Goldberg RB. Cytokine and cytokine-like inflammation markers, endothelial dysfunction, and imbalanced coagulation in development of diabetes and its complications. J Clin Endocrinol Metab. 2009;94:3171–3182. doi: 10.1210/jc.2008-2534.
    1. Heusch G. Obesity and inflammatory vasculopathy: a surgical solution as ultima ratio? Arterioscler Thromb Vasc Biol. 2011;31:1953–1954. doi: 10.1161/ATVBAHA.111.232264.
    1. Tipping PG, Hancock WW. Production of tumor necrosis factor and interleukin-1 by macrophages from human atheromatous plaques. Am J Pathol. 1993;142:1721–1728.
    1. Waehre T, Halvorsen B, Damas JK, Yndestad A, Brosstad F, Gullestad L, Kjekshus J, Froland SS, Aukrust P. Inflammatory imbalance between IL-10 and TNFalpha in unstable angina potential plaque stabilizing effects of IL-10. Eur J Clin Invest. 2002;32:803–810. doi: 10.1046/j.1365-2362.2002.01069.x.
    1. Monraats PS, Pires NMM, Schepers A, Agema WRP, Boesten LSM, de Vries MR, Zwinderman AH, de Maat MPM, Doevendans PAFM, de Winter RJ, Tio RA, Waltenberger J, LM 't H, Frants RR, Quax PHA, van Vlijmen BJM, Havekes LM, van der Laarse A, van der Wall EE, Jukema JW. Tumor necrosis factor-alpha plays an important role in restenosis development. FASEB J. 2005;19:1998–2004. doi: 10.1096/fj.05-4634com.
    1. Kleinbongard P, Heusch G, Schulz R. TNFalpha in atherosclerosis, myocardial ischemia/reperfusion and heart failure. Pharmacol Ther. 2010;127:295–314. doi: 10.1016/j.pharmthera.2010.05.002.
    1. Kleinbongard P, Konorza T, Boese D, Baars T, Haude M, Erbel R, Heusch G. Lessons from human coronary aspirate. J Mol Cell Cardiol. 2011;52:890–896.
    1. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2012;35:S65–S71. doi: 10.2337/dc12-0660.
    1. Haude M, Caspari G, Baumgart D, Brennecke R, Meyer J, Erbel R. Comparison of myocardial perfusion reserve before and after coronary balloon predilation and after stent implantation in patients with postangioplasty restenosis. Circulation. 1996;94:286–297. doi: 10.1161/01.CIR.94.3.286.
    1. TIMI Study Group. The Thrombolysis in Myocardial Infarction (TIMI) trial. Phase I findings. N Engl J Med. 1985;312:932–936.
    1. Mintz GS, Nissen SE, Anderson WD, Bailey SR, Erbel R, Fitzgerald PJ, Pinto FJ, Rosenfield K, Siegel RJ, Tuzcu EM, Yock PG. American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, Measurement and Reporting of Intravascular Ultrasound Studies (IVUS). A report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol. 2001;37:1478–1492. doi: 10.1016/S0735-1097(01)01175-5.
    1. Baars T, Kleinbongard P, Boese D, Konorza T, Moehlenkamp S, Hippler J, Erbel R, Heusch G. Saphenous vein aorto-coronary graft atherosclerosis in patients with chronic kidney disease: more plaque calcification and necrosis, but less vasoconstrictor potential. Basic Res Cardiol. 2012;107:303.
    1. Leborgne L, Cheneau E, Pichard A, Ajani A, Pakala R, Yazdi H, Satler L, Kent K, Suddath WO, Pinnow E, Canos D, Waksman R. Effect of direct stenting on clinical outcome in patients treated with percutaneous coronary intervention on saphenous vein graft. Am Heart J. 2003;146:501–506. doi: 10.1016/S0002-8703(03)00309-0.
    1. Silber S, Albertsson P, Aviles FF, Camici PG, Colombo A, Hamm C, Jorgensen E, Marco J, Nordrehaug JE, Ruzyllo W, Urban P, Stone GW, Wijns W. Guidelines for percutaneous coronary interventions. The Task Force for Percutaneous Coronary Interventions of the European Society of Cardiology. Eur Heart J. 2005;26:804–847.
    1. Zettner A, Seligson D. Application of atomic absorption spectrophotometry in the determination of calcium in serum. Clin Chem. 1964;10:869–890.
    1. Herrmann J. Peri-procedural myocardial injury: 2005 update. Eur Heart J. 2005;26:2493–2519. doi: 10.1093/eurheartj/ehi455.
    1. Boese D, von Birgelen C, Zhou XY, Schmermund A, Philipp S, Sack S, Konorza T, Moehlenkamp S, Leineweber K, Kleinbongard P, Wijns W, Heusch G, Erbel R. Impact of atherosclerotic plaque composition on coronary microembolization during percutaneous coronary interventions. Basic Res Cardiol. 2008;103:587–597. doi: 10.1007/s00395-008-0745-9.
    1. Bax WA, Renzenbrink GJ, van der Linden EA, Zijlstra FJ, van Heuven-Nolsen D, Fekkes D, Bos E, Saxena PR. Low-dose aspirin inhibits plateled-induced contraction of the human isolated coronary artery. A role for additional 5- hydroxytryptamine receptor antagonism against coronary vasospasm? Circulation. 1994;89:623–629. doi: 10.1161/01.CIR.89.2.623.
    1. Fu JY, Masferrer JL, Seibert K, Raz A, Needleman P. The induction and suppression of prostaglandin H2 synthase (cyclooxygenase) in human monocytes. J Biol Chem. 1990;265:16737–16740.
    1. Penglis PS, Cleland LG, Demasi M, Caughey GE, James MJ. Differential regulation of prostaglandin E2 and thromboxane A2 production in human monocytes: implications for the use of cyclooxygenase inhibitors. J Immunol. 2000;165:1605–1611.
    1. Loppnow H, Werdan K, Buerke M. Vascular cells contribute to atherosclerosis by cytokine- and innate-immunity-related inflammatory mechanisms. Innate Immun. 2008;14:63–87. doi: 10.1177/1753425908091246.
    1. Arai M, Uchiba M, Komura H, Mizuochi Y, Harada N, Okajima K. Metformin, an antidiabetic agent, suppresses the production of tumor necrosis factor and tissue factor by inhibiting early growth response factor-1 expression in human monocytes in vitro. J Pharmacol Exp Ther. 2010;334:206–213. doi: 10.1124/jpet.109.164970.
    1. Krysiak R, Okopien B. Lymphocyte-suppressing and systemic anti-inflammatory effects of high-dose metformin in simvastatin-treated patients with impaired fasting glucose. Atherosclerosis. 2012;225:403–407. doi: 10.1016/j.atherosclerosis.2012.09.034.
    1. Kim SA, Choi HC. Metformin inhibits inflammatory response via AMPK-PTEN pathway in vascular smooth muscle cells. Biochem Biophys Res Commun. 2012;425:866–872. doi: 10.1016/j.bbrc.2012.07.165.
    1. Ahmed JM, Dangas G, Lansky AJ, Mehran R, Hong MK, Mintz GS, Pichard AD, Satler LF, Kent KM, Stone GW, Leon MB. Influence of gender on early and one-year clinical outcomes after saphenous vein graft stenting. Am J Cardiol. 2001;87:401–405. doi: 10.1016/S0002-9149(00)01391-6.
    1. Mautner SL, Mautner GC, Hunsberger SA, Roberts WC. Comparison of composition of atherosclerotic plaques in saphenous veins used as aortocoronary bypass conduits with plaques in native coronary arteries in the same men. Am J Cardiol. 1992;70:1380–1387. doi: 10.1016/0002-9149(92)90285-7.
    1. Silva JA, White CJ, Collins TJ, Ramee SR. Morphologic comparison of atherosclerotic lesions in native coronary arteries and saphenous vein graphs with intracoronary angioscopy in patients with unstable angina. Am Heart J. 1998;136:156–163. doi: 10.1016/S0002-8703(98)70196-6.
    1. Pregowski J, Tyczynski P, Mintz GS, Kim SW, Witkowski A, Waksman R, Pichard A, Satler L, Kent K, Kalinczuk L, Bieganski S, Ohlmann P, Maehara A, Weissman NJ. Comparison of ruptured plaques in native coronary arteries and in saphenous vein grafts: an intravascular ultrasound study. Am J Cardiol. 2006;97:593–597. doi: 10.1016/j.amjcard.2005.09.094.

Source: PubMed

3
Předplatit