Immune response after autologous hematopoietic stem cell transplantation in type 1 diabetes mellitus

Lei Ye, Li Li, Bing Wan, Minglan Yang, Jie Hong, Weiqiong Gu, Weiqing Wang, Guang Ning, Lei Ye, Li Li, Bing Wan, Minglan Yang, Jie Hong, Weiqiong Gu, Weiqing Wang, Guang Ning

Abstract

Background: This study explored the details of the immune response after autologous hematopoietic stem cell transplantation (AHSCT) treatment in type 1 diabetes mellitus.

Methods: Peripheral blood mononuclear cells (PBMCs) from 18 patients with type 1 diabetes mellitus were taken at baseline and 12 months after AHSCT or insulin-only therapy. The lymphocyte proliferation, mRNA expression and secretion of pro-inflammatory and anti-inflammatory cytokines belonging to T-helper type 1 (Th1), T-helper type 17 (Th17) and regulatory T (Treg) cells in PBMC culture supernatants were assessed.

Results: Compared with patients receiving insulin-only treatment, the patients receiving AHSCT treatment showed better residual C-peptide secretion, lower anti-GAD titers and less exogenous insulin dosages after 12 months of follow-up. AHSCT treatment was associated with significantly reduced Th1 and Th17 cell proportions as well as decreased IFN-γ, IL-2, IL-12p40 and IL-17A levels in the PBMC culture supernatants (all P < 0.05). Although there was no significant Treg cell expansion after AHSCT treatment, we observed increased IL-10, TGF-β and Foxp3 mRNA expression and increased TGF-β levels. However, we found no significant changes in the T-cell subpopulations after insulin treatment, except for higher IL-12p40 mRNA expression and a lower proportion of Treg cells.

Conclusions: AHSCT treatment was associated with decreased expansion and function of Th1 and Th17 cells, which may explain the better therapeutic effect of AHSCT compared with the traditional intensive insulin therapy.

Trial registration: Clinicaltrials.gov NCT00807651 . Registered 18 December 2008.

Keywords: Hematopoietic stem cell; Immune response; Regulartory T cell; Th1 cell; Th17 cell; Type 1 diabetes mellitus.

Figures

Fig. 1
Fig. 1
Flow cytometry analysis, cytokine proteins and mRNA measurements of Th1 cells from PBMCs in the AHSCT and Insulin-only groups before and after treatment (0 M and 12 M). a, b Representative flow cytometry plots of CD3+CD4+ (R2) and Th1 cells (R20). c Proportion of IFN-γ+ Th1 cells in PBMCs. d, e, f mRNA expression levels of IL-2, IL-12p40 and T-bet respectively. g, h, j Concentrations of IL-2, IL-12p40 and IFN-γ in the cell culture supernatants respectively. *P < 0.05, **P < 0.01, ***P < 0.001. AHSCT autologous hematopoietic stem cell transplantation, ns no significance, PBMC peripheral blood mononuclear cell
Fig. 2
Fig. 2
Flow cytometry analysis, cytokine proteins and mRNA measurements of Th17 cells from PBMCs in the AHSCT and Insulin-only groups before and after treatment (0 M and 12 M). a Representative flow cytometry plots of Th17 cells (R21). b Proportion of CD3+CD4+IL-17A+ Th17 cells in PBMCs. c, d mRNA expression levels of I IL-17A and ROR-rt respectively. e Concentration of IL-17A in the cell culture supernatants. *P < 0.05, **P < 0.01, ***P < 0.001. AHSCT autologous hematopoietic stem cell transplantation, ns no significance, PBMC peripheral blood mononuclear cell
Fig. 3
Fig. 3
Flow cytometry analysis, cytokine proteins and mRNA measurements of Treg cells from PBMCs in the AHSCT and Insulin-only groups before and after treatment (0 M and 12 M). a Representative flow cytometry plots of Treg cells (R3). b Proportion of CD4+CD25+CD127– Treg cells in PBMCs. c, d, e mRNA expression levels of IL-10, TGF-β and foxp3 respectively. f Concentration of TGF-β in the cell culture supernatants. *P < 0.05, **P < 0.01, ***P < 0.001. AHSCT autologous hematopoietic stem cell transplantation, ns no significance, PBMC peripheral blood mononuclear cell
Fig. 4
Fig. 4
PBMC proliferation levels detected with CCK-8 in the AHSCT and Insulin-only groups before and after treatment (0 M and 12 M). *P < 0.05, ***P < 0.001. AHSCT autologous hematopoietic stem cell transplantation, ns no significance

References

    1. Bluestone JA, Herold K, Eisenbarth G. Genetics, pathogenesis and clinical interventions in type 1 diabetes mellitus. Nature. 2010;464:1293–300. doi: 10.1038/nature08933.
    1. Knip M, Siljander H. Autoimmune mechanisms in type 1 diabetes. Autoimmun Rev. 2008;7:550–7. doi: 10.1016/j.autrev.2008.04.008.
    1. Mannering SI, Brodnicki TC. Recent insights into CD4+ T-cell specificity and function in type 1 diabetes. Expert Rev Clin Immunol. 2007;3:557–64. doi: 10.1586/1744666X.3.4.557.
    1. Voltarelli JC, Couri CE, Stracieri AB, Oliveira MC, Moraes DA, Pieroni F, Coutinho M, Malmegrim KC, Foss-Freitas MC, Simões BP, Foss MC, Squiers E, Burt RK. Autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. JAMA. 2007;297:1568–76. doi: 10.1001/jama.297.14.1568.
    1. Couri CE, Oliveira MC, Stracieri AB, Moraes DA, Pieroni F, Barros GM, Madeira MI, Malmegrim KC, Foss-Freitas MC, Simões BP, Martinez EZ, Foss MC, Burt RK, Voltarelli JC. C-peptide levels and insulin independence following autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. JAMA. 2009;301:1573–9. doi: 10.1001/jama.2009.470.
    1. Gu W, Hu J, Wang W, Li L, Tang W, Sun S, Cui W, Ye L, Zhang Y, Hong J, Zhu D, Ning G. Diabetic ketoacidosis at diagnosis influences complete remission after treatment with hematopoietic stem cell transplantation in adolescents with type 1 diabetes. Diabetes Care. 2012;35:1413–9. doi: 10.2337/dc11-2161.
    1. Beilhack GF, Landa RR, Masek MA, Shizuru JA. Prevention of type 1 diabetes with major histocompatibility complex-compatible and nonmarrow ablative hematopoietic stem cell transplants. Diabetes. 2005;54:1770–9. doi: 10.2337/diabetes.54.6.1770.
    1. Li L, Shen S, Ouyang J, Hu Y, Hu L, Cui W, Zhang N, Zhuge Y-z, Chen B, Xu J, Zhu D. Autologous hematopoietic stem cell transplantation modulates immunocompetent cells and improves β-cell function in Chinese patients with new onset of type 1 diabetes. J Clin Endocrinol Metab. 2012;97:1729–36. doi: 10.1210/jc.2011-2188.
    1. Burt RK, Slavin S, Burns WH, Marmont AM. Induction of tolerance in autoimmune diseases by hematopoietic stem cell transplantation: getting closer to a cure? Blood. 2002;99:768–84. doi: 10.1182/blood.V99.3.768.
    1. Brinkman DM, de Kleer IM, ten Cate R, van Rossum MA, Bekkering WP, Fasth A, van Tol MJ, Kuis W, Wulffraat NM, Vossen JM. Autologous stem cell transplantation in children with severe progressive systemic or polyarticular juvenile idiopathic arthritis: long-term follow-up of a prospective clinical trial. Arthritis Rheum. 2007;56:2410–21. doi: 10.1002/art.22656.
    1. de Oliveira GL, Malmegrim KC, Ferreira AF, Tognon R, Kashima S, Couri CE, Covas DT, Voltarelli JC, de Castro FA. Up-regulation of fas and fasL pro-apoptotic genes expression in type 1 diabetes patients after autologous hematopoietic stem cell transplantation. Clin Exp Immunol. 2012;168:291–302. doi: 10.1111/j.1365-2249.2012.04583.x.
    1. Zhang X, Ye L, Hu J, Tang W, Liu R, Yang M, Hong J, Wang W, Ning G, Gu W. Acute response of peripheral blood cell to autologous hematopoietic stem cell transplantation in type 1 diabetic patient. PLoS One. 2012;7:e31887. doi: 10.1371/journal.pone.0031887.
    1. American Diabetes Association Diagnosis and classification of diabetes mellitus. Diabetes Care. 2011;34(Suppl 1):S62–9. doi: 10.2337/dc11-S062.
    1. Niedbala W, Besnard AG, Jiang HR, Alves-Filho JC, Fukada SY, Nascimento D, Mitani A, Pushparaj P, Alqahtani MH, Liew FY. Nitric oxide-induced regulatory T cells inhibit Th17 but not Th1 cell differentiation and function. J Immunol. 2013;191:164–70. doi: 10.4049/jimmunol.1202580.
    1. Burt RK, Marmont A, Oyama Y, Slavin S, Arnold R, Hiepe F, Fassas A, Snowden J, Schuening F, Myint H, Patel DD, Collier D, Heslop H, Krance R, Statkute L, Verda L, Traynor A, Kozak T, Hintzen RQ, Rose JW, Voltarelli J, Loh Y, Territo M, Cohen BA, Craig RM, Varga J, Barr WG. Randomized controlled trials of autologous hematopoietic stem cell transplantation for autoimmune diseases: the evolution from myeloablative to lymphoablative transplant regimens. Arthritis Rheum. 2006;54:3750–60. doi: 10.1002/art.22256.
    1. Parving HH, Tarnow L, Nielsen FS, Rossing P, Mandrup-Poulsen T, Osterby R, Nerup J. Cyclosporine nephrotoxicity in type 1 diabetic patients. A 7-year follow-up study. Diabetes Care. 1999;22:478–83. doi: 10.2337/diacare.22.3.478.
    1. Voltarelli JC, Couri CE, Stracieri AB, Oliveira MC, Moraes DA, Pieroni F, Barros GM, Madeira MI, Malmegrim KC, Foss-Freitas MC, Simões BP, Foss MC, Squiers E, Burt RK. Autologous hematopoietic stem cell transplantation for type 1 diabetes. Ann NY Acad Sci. 2008;1150:220–9. doi: 10.1196/annals.1447.048.
    1. Eyerich K, Novak N. Immunology of atopic eczema: overcoming the Th1/Th2 paradigm. Allergy. 2013;68:974–82. doi: 10.1111/all.12184.
    1. Honkanen J, Nieminen JK, Gao R, Luopajarvi K, Salo HM, Ilonen J, Knip M, Otonkoski T, Vaarala O. IL-17 immunity in human type 1 diabetes. J Immunol. 2010;185:1959–67. doi: 10.4049/jimmunol.1000788.
    1. Arif S, Moore F, Marks K, Bouckenooghe T, Dayan CM, Planas R, Vives-Pi M, Powrie J, Tree T, Marchetti P, Huang GC, Gurzov EN, Pujol-Borrell R, Eizirik DL, Peakman M. Peripheral and islet interleukin-17 pathway activation characterizes human autoimmune diabetes and promotes cytokine-mediated β-cell death. Diabetes. 2011;60:2112–9. doi: 10.2337/db10-1643.
    1. Wang M, Yang L, Sheng X, Chen W, Tang H, Sheng H, Xi B, Zang YQ. T-cell vaccination leads to suppression of intrapancreatic Th17 cells through Stat3-mediated RORγt inhibition in autoimmune diabetes. Cell Res. 2011;21:1358–69. doi: 10.1038/cr.2011.74.
    1. Darlington PJ, Touil T, Doucet JS, Gaucher D, Zeidan J, Gauchat D, Corsini R, Kim HJ, Duddy M, Jalili F, Arbour N, Kebir H, Chen J, Arnold DL, Bowman M, Antel J, Prat A, Freedman MS, Atkins H, Sekaly R, Cheynier R, Bar-Or A, Canadian MS/BMT Study Group Diminished Th17 (not Th1) responses underlie multiple sclerosis disease abrogation after hematopoietic stem cell transplantation. Ann Neurol. 2013;73:341–54. doi: 10.1002/ana.23784.
    1. Antonelli A, Fallahi P, Ferrari SM, Pupilli C, d’Annunzio G, Lorini R, Vanelli M, Ferrannini E. Serum Th1 (CXCL10) and Th2 (CCL2) chemokine levels in children with newly diagnosed type 1 diabetes: a longitudinal study. Diabet Med. 2008;25(11):1349–53.
    1. Esensten JH, Lee MR, Glimcher LH, Bluestone JA. T-bet-deficient NOD mice are protected from diabetes due to defects in both T cell and innate immune system function. J Immunol. 2009;183:75–82. doi: 10.4049/jimmunol.0804154.
    1. Burman J, Fransson M, Tötterman TH, Fagius J, Mangsbo SM, Loskog AS. T-cell responses after hematopoietic stem cell transplantation for aggressive relapsing-remitting multiple sclerosis. Immunology. 2013;140:211–9. doi: 10.1111/imm.12129.
    1. Van YH, Lee WH, Ortiz S, Lee MH, Qin HJ, Liu CP. All-trans retinoic acid inhibits type 1 diabetes by T regulatory (Treg)-dependent suppression of interferon-gamma-producing T-cells without affecting Th17 cells. Diabetes. 2009;58:146–55. doi: 10.2337/db08-1154.
    1. Salomon B, Lenschow DJ, Rhee L, Ashourian N, Singh B, Sharpe A, Bluestone JA. B7/CD28 co-stimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity. 2000;12:431–40. doi: 10.1016/S1074-7613(00)80195-8.
    1. Marek-Trzonkowska N, Mysliwiec M, Dobyszuk A, Grabowska M, Techmanska I, Juscinska J, Wujtewicz MA, Witkowski P, Mlynarski W, Balcerska A, Mysliwska J, Trzonkowski P. Administration of CD4+CD25highCD127– regulatory T cells preserves β-cell function in type 1 diabetes in children. Diabetes Care. 2012;35:1817–20. doi: 10.2337/dc12-0038.
    1. Zhang L, Bertucci AM, Ramsey-Goldman R, Burt RK, Datta SK. Regulatory T cell (Treg) subsets return in patients with refractory lupus following stem cell transplantation, and TGF-β-producing CD8+ Treg cells are associated with immunological remission of lupus. J Immunol. 2009;183:6346–58. doi: 10.4049/jimmunol.0901773.
    1. Heylmann D, Bauer M, Becker H, van Gool S, Bacher N, Steinbrink K, Kaina B. Human CD4+CD25+ regulatory T cells are sensitive to low dose cyclophosphamide: implications for the immune response. PLoS One. 2013;8:e83384. doi: 10.1371/journal.pone.0083384.
    1. Reinhold D, Ansorge S, Schleicher ED. Elevated glucose levels stimulate transforming growth factor-beta 1 (TGF-β1), suppress interleukin IL-2, IL-6 and IL-10 production and DNA synthesis in peripheral blood mononuclear cells. Horm Metab Res. 1996;28:267–70. doi: 10.1055/s-2007-979789.
    1. Ellis TM, Schatz DA, Ottendorfer EW, Lan MS, Wasserfall C, Salisbury PJ, She JX, Notkins AL, Maclaren NK, Atkinson MA. The relationship between humoral and cellular immunity to IA-2 in IDDM. Diabetes. 1998;47:566–9. doi: 10.2337/diabetes.47.4.566.
    1. Moutschen MP, Scheen AJ, Lefebvre PJ. Impaired immune responses in diabetes mellitus: analysis of the factors and mechanisms involved. Relevance to the increased susceptibility of diabetic patients to specific infections. Diabete Metab. 1992;18(3):187–201.
    1. Geerlings SE, Hoepelman AI. Immune dysfunction in patients with diabetes mellitus (DM) FEMS Immunol Med Microbiol. 1999;26:259–65. doi: 10.1111/j.1574-695X.1999.tb01397.x.

Source: PubMed

3
Předplatit