Anti-Tat Immunity in HIV-1 Infection: Effects of Naturally Occurring and Vaccine-Induced Antibodies Against Tat on the Course of the Disease

Aurelio Cafaro, Antonella Tripiciano, Orietta Picconi, Cecilia Sgadari, Sonia Moretti, Stefano Buttò, Paolo Monini, Barbara Ensoli, Aurelio Cafaro, Antonella Tripiciano, Orietta Picconi, Cecilia Sgadari, Sonia Moretti, Stefano Buttò, Paolo Monini, Barbara Ensoli

Abstract

HIV-1 Tat is an essential protein in the virus life cycle, which is required for virus gene expression and replication. Most Tat that is produced during infection is released extracellularly and it plays a key role in HIV pathogenesis, including residual disease upon combination antiretroviral therapy (cART). Here, we review epidemiological and experimental evidence showing that antibodies against HIV-1 Tat, infrequently occurring in natural infection, play a protective role against disease progression, and that vaccine targeting Tat can intensify cART. In fact, Tat vaccination of subjects on suppressive cART in Italy and South Africa promoted immune restoration, including CD4+ T-cell increase in low immunological responders, and a reduction of proviral DNA even after six years of cART, when both CD4+ T-cell gain and DNA decay have reached a plateau. Of note, DNA decay was predicted by the neutralization of Tat-mediated entry of Env into dendritic cells by anti-Tat antibodies, which were cross-clade binding and neutralizing. Anti-Tat cellular immunity also contributed to the DNA decay. Based on these data, we propose the Tat therapeutic vaccine as a pathogenesis-driven intervention that effectively intensifies cART and it may lead to a functional cure, providing new perspectives and opportunities also for prevention and virus eradication strategies.

Keywords: HIV reservoir; HIV-1 Tat; HIV-1 Tat therapeutic vaccine; HIV-1 vaccine development; anti-Tat antibodies; cART intensification; crossclade antibodies; functional cure; natural vs. vaccine-induced antibody response; perspective for clinical implications.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Functional domains of HIV-1 Tat (HXB2). Amino acid numbering according to the IIIB/Lai sequence. Tat can be divided into six domains: a proline-rich acidic N-terminus (aa 1–21), a cysteine-rich region (aa 22–37), a hydrophobic core region (aa 38–48), an arginine-rich basic domain (aa 49–57), a glutamin-rich region (aa 60–76) and a C-terminal domain containing the RGD sequence, recognized by RGD-binding integrins. Shown is the 86 aa long form of Tat, commonly found in cell lines and used experimentally. However, in field isolates the 101 aa long form of Tat is mostly found [8].
Figure 2
Figure 2
Role of intracellular and extracellular HIV-1 Tat in the virus life cycle. Tat drives both productive infection and establishment of latent virus reservoirs by increasing permissivity and half-life of resting CD4+ T cells harboring HIV proviral DNA.
Figure 3
Figure 3
Neutralization of Tat/Env complex entry into monocyte-derived DCs (MDDCs) by sera from HIV-infected individuals. (A) Neutralization of trimeric Env ΔV2 entry into MDDCs by sera from HIV-infected subjects in the presence or absence of Tat (0.01 µM) in anti-Tat Ab negative (n = 8) and anti-Tat Ab positive (n = 8) subjects. The bars represent the percentage of entry of Env alone incubated in buffer (in blue) or with Tat (in red). The percentage of Env positive cells is shown. Data are expressed as the mean with standard deviation of experiments performed in duplicate. The codes of the anti-Tat Ab negative or positive sera are indicated at the bottom of the bars. (B) Geometric mean (GM) of the ratio, with 95% confidence interval (CI) of the percentage of MDDCs internalizing Env in the absence (blue bar) or in the presence (red bar) of Tat in anti-Tat Ab negative (n = 8) and anti-Tat Ab positive (n = 8) subjects. Statistical analysis was performed by the two-tailed Student’s t-test.
Figure 4
Figure 4
Tat-mediated entry of HIV and role of antibodies against Env or Tat. By binding Tat, HIV acquires the capability of using RGD binding integrins to enter cells, circumventing neutralization by anti-Env Abs and greatly expanding its spreading potential. Anti-Tat Abs effectively counteract this entry pathway. APC: Antigen-presenting cell; DC: Dendritic cell; DC-SIGN: Dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin; DC-SIGN-R: DC-SIGN-related; EC: Endothelial cell; Mo: Monocyte/macrophage; MR: Mannose receptor; RGD: Arg-Gly-Asp motif; Tat: Transactivator of transcription.
Figure 5
Figure 5
The presence of anti-Tat antibodies is predictive of non-progression to AIDS or AIDS-related events. Data are from 252 HIV+ individuals enrolled in the observational Italian HIV Seroconversion Study conducted from 1985 to 2000. Kaplan-Meier curves show progression to AIDS or to CD4+ T cells count ≤200 cells/μL over 14 years of follow-up in individuals negative or positive for anti-Tat Abs. Anti-Tat Ab positivity: titers ≥100. Subjects were evaluated every three years, stratified by anti-Tat serostatus. The cumulative incidence of AIDS or severe immunodeficiency was calculated for both the anti-Tat Ab positive subjects and the anti-Tat Ab negative subjects; disease progression was significantly slower in the anti-Tat Ab positive subjects than in the anti-Tat Ab negative subjects (p = 0.016, log-rank test).
Figure 6
Figure 6
Virological outcome in Tat/Env-vaccinated vs. control monkeys after intrarectal challenge with the SHIVSF162P4cy (70 MID50). Box plots of (A) viral RNA, (B) proviral DNA in blood at 2, 3, 4 and 5 weeks after challenge, respectively; and, (C) proviral DNA at week 4 after challenge in rectal tissue (RT) and inguinal lymph nodes (LN). Statistical analysis was performed by the one-sided Wilcoxon rank sum test. Red: monkeys vaccinated with Tat/Env (n = 6); blue: control animals (n = 6).
Figure 7
Figure 7
Kinetics parameter estimates of proviral DNA decay in vaccinees stratified by Tat vaccine regimens. Estimates calculated according to Random-effects regression model for decay with first-order kinetics effect, as in Finzi D, et al. Nat Med, 1999 [99]. Estimates of HIV-1 DNA annual decay in all vaccinees expressed as the percentage of HIV-1 DNA decay with 95% confidence interval (upper panel) or years to 50% reduction [half-life (t1/2)], to 90% reduction and to eradication for all vaccinees and by Tat vaccine regimens (lower panel) are shown.

References

    1. Fauci A.S. An HIV Vaccine Is Essential for Ending the HIV/AIDS Pandemic. JAMA. 2017;318:1535–1536. doi: 10.1001/jama.2017.13505.
    1. Ringel O., Vieillard V., Debré P., Eichler J., Büning H., Dietrich U. The Hard Way towards an Antibody-Based HIV-1 Env Vaccine: Lessons from Other Viruses. Viruses. 2018;10:197. doi: 10.3390/v10040197.
    1. López-Huertas M.R., Callejas S., Abia D., Mateos E., Dopazo A., Alcamí J., Coiras M. Modifications in host cell cytoskeleton structure and function mediated by intracellular HIV-1 Tat protein are greatly dependent on the second coding exon. Nucleic Acids Res. 2010;38:3287–3307. doi: 10.1093/nar/gkq037.
    1. López-Huertas M.R., Mateos E., Sánchez Del Cojo M., Gómez-Esquer F., Díaz-Gil G., Rodríguez-Mora S., López J.A., Calvo E., López-Campos G., Alcamí J., et al. The presence of HIV-1 Tat protein second exon delays fas protein-mediated apoptosis in CD4+ T lymphocytes: A potential mechanism for persistent viral production. J. Biol. Chem. 2013;288:7626–7644. doi: 10.1074/jbc.M112.408294.
    1. Kukkonen S., Martinez-Viedma Mdel P., Kim N., Manrique M., Aldovini A. HIV-1 Tat second exon limits the extent of Tat-mediated modulation of interferon-stimulated genes in antigen presenting cells. Retrovirology. 2014;11:30. doi: 10.1186/1742-4690-11-30.
    1. Howcroft T.K., Strebel K., Martin M.A., Singer D.S. Repression of MHC class I gene promoter activity by two-exon Tat of HIV. Science. 1993;260:1320–1322. doi: 10.1126/science.8493575.
    1. Kanazawa S., Okamoto T., Peterlin B.M. Tat competes with CIITA for the binding to P-TEFb and blocks the expression of MHC class II genes in HIV infection. Immunity. 2000;12:61–70. doi: 10.1016/S1074-7613(00)80159-4.
    1. Clark E., Nava B., Caputi M. Tat is a multifunctional viral protein that modulates cellular gene expression and functions. Oncotarget. 2017;8:27569–27581. doi: 10.18632/oncotarget.15174.
    1. Fu W., Sanders-Beer B.E., Katz K.S., Maglott D.R., Pruitt K.D., Ptak R.G. Human immunodeficiency virus type 1, human protein interaction database at NCBI. Nucleic Acids Res. 2009;37:D417–D422. doi: 10.1093/nar/gkn708.
    1. Reeder J.E., Kwak Y.T., McNamara R.P., Forst C.V., D’Orso I. HIV Tat controls RNA Polymerase II and the epigenetic landscape to transcriptionally reprogram target immune cells. Elife. 2015;4:e08955. doi: 10.7554/eLife.08955.
    1. Knoener R.A., Becker J.T., Scalf M., Sherer N.M., Smith L.M. Elucidating the in vivo interactome of HIV-1 RNA by hybridization capture and mass spectrometry. Sci. Rep. 2017;7:16965. doi: 10.1038/s41598-017-16793-5.
    1. Jean M.J., Power D., Kong W., Huang H., Santoso N., Zhu J. Identification of HIV-1 Tat-Associated Proteins Contributing to HIV-1 Transcription and Latency. Viruses. 2017;9:67. doi: 10.3390/v9040067.
    1. Razooky B.S., Pai A., Aull K., Rouzine I.M., Weinberger L.S. A hardwired HIV latency program. Cell. 2015;160:990–1001. doi: 10.1016/j.cell.2015.02.009.
    1. Jordan A., Defechereux P., Verdin E. The site of HIV-1 integration in the human genome determines basal transcriptional activity and response to Tat transactivation. EMBO J. 2001;20:1726–1738. doi: 10.1093/emboj/20.7.1726.
    1. Dar R.D., Razooky B.S., Singh A., Trimeloni T.V., McCollum J.M., Cox C.D., Simpson M.L., Weinberger L.S. Transcriptional burst frequency and burst size are equally modulated across the human genome. Proc. Natl. Acad. Sci. USA. 2012;109:17454–17459. doi: 10.1073/pnas.1213530109.
    1. Raj A., van Oudenaarden A. Nature, nurture, or chance: Stochastic gene expression and its consequences. Cell. 2008;135:216–226. doi: 10.1016/j.cell.2008.09.050.
    1. Weinberger L.S., Burnett J.C., Toettcher J.E., Arkin A.P., Schaffer D.V. Stochastic gene expression in a lentiviral positive-feedback loop: HIV-1 Tat fluctuations drive phenotypic diversity. Cell. 2005;122:169–182. doi: 10.1016/j.cell.2005.06.006.
    1. Chertova E., Chertov O., Coren L.V., Roser J.D., Trubey C.M., Bess J.W., Jr., Sowder R.C., 2nd, Barsov E., Hood B.L., Fisher R.J., et al. Proteomic and biochemical analysis of purified human immunodeficiency virus type 1 produced from infected monocyte-derived macrophages. J. Virol. 2006;80:9039–9052. doi: 10.1128/JVI.01013-06.
    1. Wu Y., Marsh J.W. Selective transcription and modulation of resting T cell activity by preintegrated HIV DNA. Science. 2001;293:1503–1506. doi: 10.1126/science.1061548.
    1. Ensoli B., Gendelman R., Markham P., Fiorelli V., Colombini S., Raffeld M., Cafaro A., Chang H.K., Brady J.N., Gallo R.C. Synergy between basic fibroblast growth factor and HIV-1 Tat protein in induction of Kaposi’s sarcoma. Nature. 1994;371:674–680. doi: 10.1038/371674a0.
    1. Chang H.C., Samaniego F., Nair B.C., Buonaguro L., Ensoli B. HIV-1 Tat protein exits from cells via a leaderless secretory pathway and binds to extracellular matrix-associated heparan sulfate proteoglycans through its basic region. AIDS. 1997;11:1421–1431. doi: 10.1097/00002030-199712000-00006.
    1. Harrich D., Ulich C., García-Martínez L.F., Gaynor R.B. Tat is required for efficient HIV-1 reverse transcription. EMBO J. 1997;16:1224–1235. doi: 10.1093/emboj/16.6.1224.
    1. Bohan C.A., Kashanchi F., Ensoli B., Buonaguro L., Boris-Lawrie K.A., Brady J.N. Analysis of Tat transactivation of human immunodeficiency virus transcription in vitro. Gene Expr. 1992;2:391–407.
    1. Feinberg M.B., Baltimore D., Frankel A.D. The role of Tat in the human immunodeficiency virus life cycle indicates a primary effect on transcriptional elongation. Proc. Natl. Acad. Sci. USA. 1991;88:4045–4049. doi: 10.1073/pnas.88.9.4045.
    1. Mueller N., Pasternak A.O., Klaver B., Cornelissen M., Berkhout B., Das A.T. The HIV-1 Tat Protein Enhances Splicing at the Major Splice Donor Site. J. Virol. 2018;92:e01855-17. doi: 10.1128/JVI.01855-17.
    1. Trono D. Partial reverse transcripts in virions from human immunodeficiency and murine leukemia viruses. J. Virol. 1992;66:4893–4900.
    1. Zhang H., Dornadula G., Pomerantz R.J. Endogenous reverse transcription of human immunodeficiency virus type 1 in physiological microenviroments: An important stage for viral infection of nondividing cells. J. Virol. 1996;70:2809–2824.
    1. Ho Y.C., Shan L., Hosmane N.N., Wang J., Laskey S.B., Rosenbloom D.I., Lai J., Blankson J.N., Siliciano J.D., Siliciano R.F. Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell. 2013;155:540–551. doi: 10.1016/j.cell.2013.09.020.
    1. Hosmane N.N., Kwon K.J., Bruner K.M., Capoferri A.A., Beg S., Rosenbloom D.I., Keele B.F., Ho Y.C., Siliciano J.D., Siliciano R.F. Proliferation of latently infected CD4+ T cells carrying replication-competent HIV-1: Potential role in latent reservoir dynamics. J. Exp. Med. 2017;214:959–972. doi: 10.1084/jem.20170193.
    1. Weinberger A.D., Weinberger L.S. Stochastic Fate Selection in HIV-Infected Patients. Cell. 2013;155:497–499. doi: 10.1016/j.cell.2013.09.039.
    1. Mediouni S., Chinthalapudi K., Ekka M.K., Usui I., Jablonski J.A., Clementz M.A., Mousseau G., Nowak J., Macherla V.R., Beverage J.N., et al. Didehydro-Cortistatin A Inhibits HIV-1 by Specifically Binding to the Unstructured Basic Region of Tat. mBio. 2019;10:e02662-18. doi: 10.1128/mBio.02662-18.
    1. Mousseau G., Kessing C.F., Fromentin R., Trautmann L., Chomont N., Valente S.T. The Tat Inhibitor Didehydro-Cortistatin A Prevents HIV-1 Reactivation from Latency. mBio. 2015;6:e00465-15. doi: 10.1128/mBio.00465-15.
    1. Mediouni S., Kessing C.F., Jablonski J.A., Thenin-Houssier S., Clementz M., Kovach M.D., Mousseau G., de Vera I.M.S., Li C., Kojetin D.J., et al. The Tat inhibitor didehydro-cortistatin A suppresses SIV replication and reactivation. FASEB J. 2019;33:8280–8293. doi: 10.1096/fj.201801165R.
    1. Ensoli B., Barillari G., Salahuddin S.Z., Gallo R.C., Wong-Staal F. Tat protein of HIV-1 stimulates growth of cells derived from Kaposi’s sarcoma lesions of AIDS patients. Nature. 1990;345:84–86. doi: 10.1038/345084a0.
    1. Ensoli B., Buonaguro L., Barillari G., Fiorelli V., Gendelman R., Morgan R.A., Wingfield P., Gallo R.C. Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation. J. Virol. 1993;67:277–287.
    1. Rayne F., Debaisieux S., Yezid H., Lin Y.L., Mettling C., Konate K., Chazal N., Arold S.T., Pugnière M., Sanchez F., et al. Phosphatidylinositol-(4,5)-bisphosphate enables efficient secretion of HIV-1 Tat by infected T-cells. EMBO J. 2010;29:1348–1362. doi: 10.1038/emboj.2010.32.
    1. Mele A.R., Marino J., Chen K., Pirrone V., Janetopoulos C., Wigdahl B., Klase Z., Nonnemacher M.R. Defining the molecular mechanisms of HIV-1 Tat secretion: PtdIns(4,5)P2 at the epicenter. Traffic. 2018;19:655–665. doi: 10.1111/tra.12578.
    1. Jost M., Simpson F., Kavran J.M., Lemmon M.A., Schmid S.L. Phosphatidylinositol-4,5-bisphosphate is required for endocytic coated vesicle formation. Curr. Biol. 1998;8:1399–1402. doi: 10.1016/S0960-9822(98)00022-0.
    1. Debaisieux S., Lachambre S., Gross A., Mettling C., Besteiro S., Yezid H., Henaff D., Chopard C., Mesnard J.M., Beaumelle B. HIV-1 Tat inhibits phagocytosis by preventing the recruitment of Cdc42 to the phagocytic cup. Nat. Commun. 2015;6:6211. doi: 10.1038/ncomms7211.
    1. Tryoen-Tóth P., Chasserot-Golaz S., Tu A., Gherib P., Bader M.F., Beaumelle B., Vitale N. HIV-1 Tat protein inhibits neurosecretion by binding to phosphatidylinositol 4,5-bisphosphate. J. Cell Sci. 2013;126:454–463. doi: 10.1242/jcs.111658.
    1. Rahimian P., He J.J. Exosome-associated release, uptake, and neurotoxicity of HIV-1 Tat protein. J. Neurovirol. 2016;22:774–788. doi: 10.1007/s13365-016-0451-6.
    1. Narayanan A., Iordanskiy S., Das R., Van Duyne R., Santos S., Jaworski E., Guendel I., Sampey G., Dalby E., Iglesias-Ussel M., et al. Exosomes derived from HIV-1-infected cells contain trans-activation response element RNA. J. Biol. Chem. 2013;288:20014–20033. doi: 10.1074/jbc.M112.438895.
    1. Sampey G.C., Saifuddin M., Schwab A., Barclay R., Punya S., Chung M.C., Hakami R.M., Zadeh M.A., Lepene B., Klase Z.A., et al. Exosomes from HIV-1-infected Cells Stimulate Production of Pro-inflammatory Cytokines through Trans-activating Response (TAR) RNA. J. Biol. Chem. 2016;291:1251–1266. doi: 10.1074/jbc.M115.662171.
    1. Chen L., Feng Z., Yue H., Bazdar D., Mbonye U., Zender C., Harding C.V., Bruggeman L., Karn J., Sieg S.F., et al. Exosomes derived from HIV-1-infected cells promote growth and progression of cancer via HIV TAR RNA. Nat. Commun. 2018;9:4585. doi: 10.1038/s41467-018-07006-2.
    1. Poggi A., Zocchi M.R. HIV-1 Tat triggers TGF-beta production and NK cell apoptosis that is prevented by pertussis toxin B. Clin. Dev. Immunol. 2006;13:369–372. doi: 10.1080/17402520600645712.
    1. Westendorp M.O., Frank R., Ochsenbauer C., Stricker K., Dhein J., Walczak H., Debatin K.M., Krammer P.H. Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120. Nature. 1995;375:497–500. doi: 10.1038/375497a0.
    1. Marchiò S., Alfano M., Primo L., Gramaglia D., Butini L., Gennero L., De Vivo E., Arap W., Giacca M., Pasqualini R., et al. Cell surface-associated Tat modulates HIV-1 infection and spreading through a specific interaction with gp120 viral envelope protein. Blood. 2005;105:2802–2811. doi: 10.1182/blood-2004-06-2212.
    1. Buonaguro L., Buonaguro F.M., Giraldo G., Ensoli B. The human immunodeficiency virus type 1 Tat protein transactivates tumor necrosis factor beta gene expression through a TAR-like structure. J. Virol. 1994;68:2677–2682.
    1. Nappi F., Chiozzini C., Bordignon V., Borsetti A., Bellino S., Cippitelli M., Barillari G., Caputo A., Tyagi M., Giacca M., et al. Immobilized HIV-1 Tat protein promotes gene transfer via a transactivation-independent mechanism which requires binding of Tat to viral particles. J. Gene Med. 2009;11:955–965. doi: 10.1002/jgm.1381.
    1. Ott M., Emiliani S., Van Lint C., Herbein G., Lovett J., Chirmule N., McCloskey T., Pahwa S., Verdin E. Immune hyperactivation of HIV-1-infected T cells mediated by Tat and the CD28 pathway. Science. 1997;275:1481–1485. doi: 10.1126/science.275.5305.1481.
    1. Li C.J., Ueda Y., Shi B., Borodyansky L., Huang L., Li Y.Z., Pardee A.B. Tat protein induces self-perpetuating permissivity for productive HIV-1 infection. Proc. Natl. Acad. Sci. USA. 1997;94:8116–8120. doi: 10.1073/pnas.94.15.8116.
    1. Gavioli R., Gallerani E., Fortini C., Fabris M., Bottoni A., Canella A., Bonaccorsi A., Marastoni M., Micheletti F., Cafaro A., et al. HIV-1 tat protein modulates the generation of cytotoxic T cell epitopes by modifying proteasome composition and enzymatic activity. J. Immunol. 2004;173:3838–3843. doi: 10.4049/jimmunol.173.6.3838.
    1. Campbell G.R., Loret E.P. What does the structure-function relationship of the HIV-1 Tat protein teach us about developing an AIDS vaccine? Retrovirology. 2009;6:50. doi: 10.1186/1742-4690-6-50.
    1. Fanales-Belasio E., Moretti S., Nappi F., Barillari G., Micheletti F., Cafaro A., Ensoli B. Native HIV-1 Tat protein targets monocyte-derived dendritic cells and enhances their maturation, function, and antigen-specific T cell responses. J. Immunol. 2002;168:197–206. doi: 10.4049/jimmunol.168.1.197.
    1. Fanales-Belasio E., Moretti S., Fiorelli V., Tripiciano A., Pavone Cossut M.R., Scoglio A., Collacchi B., Nappi F., Macchia I., Bellino S., et al. HIV-1 Tat addresses dendritic cells to induce a predominant Th1-type adaptive immune response that appears prevalent in the asymptomatic stage of infection. J. Immunol. 2009;182:2888–2897. doi: 10.4049/jimmunol.0711406.
    1. Li J.C., Yim H.C., Lau A.S. Role of HIV-1 Tat in AIDS pathogenesis: Its effects on cytokine dysregulation and contributions to the pathogenesis of opportunistic infection. AIDS. 2010;24:1609–1623. doi: 10.1097/QAD.0b013e32833ac6a0.
    1. Herbein G., Gras G., Khan K.A., Abbas W. Macrophage signaling in HIV-1 infection. Retrovirology. 2010;7:34. doi: 10.1186/1742-4690-7-34.
    1. Torre D., Ferrario G., Issi M., Pugliese A., Speranza F. Expression of the alpha 5 beta 1 fibronectin receptor on T lymphocytes of patients with HIV-1 infection. J. Clin. Pathol. 1996;49:733–736. doi: 10.1136/jcp.49.9.733.
    1. Johnson T.P., Patel K., Johnson K.R., Maric D., Calabresi P.A., Hasbun R., Nath A. Induction of IL-17 and nonclassical T-cell activation by HIV-Tat protein. Proc. Natl. Acad. Sci. USA. 2013;110:13588–13593. doi: 10.1073/pnas.1308673110.
    1. Remoli A.L., Marsili G., Perrotti E., Gallerani E., Ilari R., Nappi F., Cafaro A., Ensoli B., Gavioli R., Battistini A. Intracellular HIV-1 Tat protein represses constitutive LMP2 transcription increasing proteasome activity by interfering with the binding of IRF-1 to STAT1. Biochem. J. 2006;396:371–380. doi: 10.1042/BJ20051570.
    1. Gavioli R., Cellini S., Castaldello A., Voltan R., Gallerani E., Gagliardoni F., Fortini C., Cofano E.B., Triulzi C., Cafaro A., et al. The Tat protein broadens T cell responses directed to the HIV-1 antigens Gag and Env: Implications for the design of new vaccination strategies against AIDS. Vaccine. 2008;26:727–737. doi: 10.1016/j.vaccine.2007.11.040.
    1. Nicoli F., Finessi V., Sicurella M., Rizzotto L., Gallerani E., Destro F., Cafaro A., Marconi P., Caputo A., Ensoli B., et al. The HIV-1 Tat protein induces the activation of CD8+ T cells and affects in vivo the magnitude and kinetics of antiviral responses. PLoS ONE. 2013;8:e77746. doi: 10.1371/journal.pone.0077746.
    1. Sforza F., Nicoli F., Gallerani E., Finessi V., Reali E., Cafaro A., Caputo A., Ensoli B., Gavioli R. HIV-1 Tat affects the programming and functionality of human CD8⁺ T cells by modulating the expression of T-box transcription factors. AIDS. 2014;28:1729–1738. doi: 10.1097/QAD.0000000000000315.
    1. Chiozzini C., Collacchi B., Nappi F., Bauer T., Arenaccio C., Tripiciano A., Longo O., Ensoli F., Cafaro A., Ensoli B., et al. Surface-bound Tat inhibits antigen-specific CD8+ T-cell activation in an integrin-dependent manner. AIDS. 2014;28:2189–2200. doi: 10.1097/QAD.0000000000000389.
    1. Gutheil W.G., Subramanyam M., Flentke G.R., Sanford D.G., Muñoz E., Huber B.T., Bachovchin W.W. Human immunodeficiency virus 1 Tat binds to dipeptidyl aminopeptidase IV (CD26): A possible mechanism for Tat’s immunosuppressive activity. Proc. Natl. Acad. Sci. USA. 1994;91:6594–6598. doi: 10.1073/pnas.91.14.6594.
    1. Schmitz T., Underwood R., Khiroya R., Bachovchin W.W., Huber B.T. Potentiation of the immune response in HIV-1+ individuals. J. Clin. Investig. 1996;97:1545–1549. doi: 10.1172/JCI118577.
    1. Planès R., Bahraoui E. HIV-1 Tat Protein Induces the Production of IDO in Human Monocyte Derived-Dendritic Cells through a Direct Mechanism: Effect on T Cells Proliferation. PLoS ONE. 2013;8:e74551. doi: 10.1371/journal.pone.0074551.
    1. Serrano-Villar S., Sainz T., Lee S.A., Hunt P.W., Sinclair E., Shacklett B.L., Ferre A.L., Hayes T.L., Somsouk M., Hsue P.Y., et al. HIV-infected individuals with low CD4/CD8 ratio despite effective antiretroviral therapy exhibit altered T cell subsets, heightened CD8+ T cell activation, and increased risk of non-AIDS morbidity and mortality. PLoS Pathog. 2014;10:e1004078. doi: 10.1371/journal.ppat.1004078.
    1. Barillari G., Buonaguro L., Fiorelli V., Hoffman J., Michaels F., Gallo R.C., Ensoli B. Effects of cytokines from activated immune cells on vascular cell growth and HIV-1 gene expression. Implications for AIDS-Kaposi’s sarcoma pathogenesis. J. Immunol. 1992;149:3727–3734.
    1. Buonaguro L., Barillari G., Chang H.K., Bohan C.A., Kao V., Morgan R., Gallo R.C., Ensoli B. Effects of the human immunodeficiency virus type 1 Tat protein on the expression of inflammatory cytokines. J. Virol. 1992;66:7159–7167.
    1. Scala G., Ruocco M.R., Ambrosino C., Mallardo M., Giordano V., Baldassarre F., Dragonetti E., Quinto I., Venuta S. The expression of the interleukin 6 gene is induced by the human immunodeficiency virus 1 TAT protein. J. Exp. Med. 1994;179:961–971. doi: 10.1084/jem.179.3.961.
    1. Lafrenie R.M., Wahl L.M., Epstein J.S., Yamada K.M., Dhawan S. Activation of monocytes by HIV-Tat treatment is mediated by cytokine expression. J. Immunol. 1997;159:4077–4083.
    1. Ben Haij N., Planès R., Leghmari K., Serrero M., Delobel P., Izopet J., BenMohamed L., Bahraoui E. HIV-1 Tat Protein Induces Production of Proinflammatory Cytokines by Human Dendritic Cells and Monocytes/Macrophages through Engagement of TLR4-MD2-CD14 Complex and Activation of NF-κB Pathway. PLoS ONE. 2015;10:e0129425. doi: 10.1371/journal.pone.0129425.
    1. Planès R., Ben Haij N., Leghmari K., Serrero M., BenMohamed L., Bahraoui E. HIV-1 Tat Protein Activates both the MyD88 and TRIF Pathways To Induce Tumor Necrosis Factor Alpha and Interleukin-10 in Human Monocytes. J. Virol. 2016;90:5886–5898. doi: 10.1128/JVI.00262-16.
    1. Albini A., Ferrini S., Benelli R., Sforzini S., Giunciuglio D., Aluigi M.G., Proudfoot A.E., Alouani S., Wells T.N., Mariani G., et al. HIV-1 Tat protein mimicry of chemokines. Proc. Natl. Acad. Sci. USA. 1998;95:13153–13158. doi: 10.1073/pnas.95.22.13153.
    1. Huang L., Bosch I., Hofmann W., Sodroski J., Pardee A.B. Tat protein induces human immunodeficiency virus type 1 (HIV-1) coreceptors and promotes infection with both macrophage-tropic and T-lymphotropic HIV-1 strains. J. Virol. 1998;72:8952–8960.
    1. Ghezzi S., Noonan D.M., Aluigi M.G., Vallanti G., Cota M., Benelli R., Morini M., Reeves J.D., Vicenzi E., Poli G., et al. Inhibition of CXCR4-dependent HIV-1 infection by extracellular HIV-1 Tat. Biochem. Biophys. Res. Commun. 2000;270:992–996. doi: 10.1006/bbrc.2000.2523.
    1. Monini P., Cafaro A., Srivastava I.K., Moretti S., Sharma V.A., Andreini C., Chiozzini C., Ferrantelli F., Cossut M.R., Tripiciano A., et al. HIV-1 tat promotes integrin-mediated HIV transmission to dendritic cells by binding Env spikes and competes neutralization by anti-HIV antibodies. PLoS ONE. 2012;7:e48781. doi: 10.1371/journal.pone.0048781.
    1. Palmer S., Maldarelli F., Wiegand A., Bernstein B., Hanna G.J., Brun S.C., Kempf D.J., Mellors J.W., Coffin J.M., King M.S. Low-level viremia persists for at least 7 years in patients on suppressive antiretroviral therapy. Proc. Natl. Acad. Sci. USA. 2008;105:3879–3884. doi: 10.1073/pnas.0800050105.
    1. Hatano H., Delwart E.L., Norris P.J., Lee T.H., Neilands T.B., Kelley C.F., Hunt P.W., Hoh R., Linnen J.M., Martin J.N., et al. Evidence of persistent low-level viremia in long-term HAART-suppressed, HIV-infected individuals. AIDS. 2010;24:2535–2539. doi: 10.1097/QAD.0b013e32833dba03.
    1. Álvarez Estévez M., Chueca Porcuna N., Guillot Suay V., Peña Monge A., García García F., Muñoz Medina L., Vinuesa García D., Parra Ruiz J., Hernández-Quero J., García García F. Quantification of viral loads lower than 50 copies per milliliter by use of the Cobas AmpliPrep/Cobas TaqMan HIV-1 test, version 2.0, can predict the likelihood of subsequent virological rebound to >50 copies per milliliter. J. Clin. Microbiol. 2013;51:1555–1557. doi: 10.1128/JCM.00100-13.
    1. Doyle T., Smith C., Vitiello P., Cambiano V., Johnson M., Owen A., Phillips A.N., Geretti A.M. Plasma HIV-1 RNA detection below 50 copies/mL and risk of virologic rebound in patients receiving highly active antiretroviral therapy. Clin. Infect. Dis. 2012;54:724–732. doi: 10.1093/cid/cir936.
    1. Sedaghat A.R., Siliciano J.D., Brennan T.P., Wilke C.O., Siliciano R.F. Limits on replenishment of the resting CD4+ T cell reservoir for HIV in patients on HAART. PLoS Pathog. 2007;3:e122. doi: 10.1371/journal.ppat.0030122.
    1. Tobin N.H., Learn G.H., Holte S.E., Wang Y., Melvin A.J., McKernan J.L., Pawluk D.M., Mohan K.M., Lewis P.F., Mullins J.I., et al. Evidence that low-level viremias during effective highly active antiretroviral therapy result from two processes: Expression of archival virus and replication of virus. J. Virol. 2005;79:9625–9634. doi: 10.1128/JVI.79.15.9625-9634.2005.
    1. Lorenzo-Redondo R., Fryer H.R., Bedford T., Kim E.Y., Archer J., Pond S.L.K., Chung Y.S., Penugonda S., Chipman J., Fletcher C.V., et al. Persistent HIV-1 replication maintains the tissue reservoir during therapy. Nature. 2016;530:51–56. doi: 10.1038/nature16933.
    1. Fletcher C.V., Staskus K., Wietgrefe S.W., Rothenberger M., Reilly C., Chipman J.G., Beilman G.J., Khoruts A., Thorkelson A., Schmidt T.E., et al. Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues. Proc. Natl. Acad. Sci. USA. 2014;111:2307–2312. doi: 10.1073/pnas.1318249111.
    1. Sigal A., Kim J.T., Balazs A.B., Dekel E., Mayo A., Milo R., Baltimore D. Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy. Nature. 2011;477:95–98. doi: 10.1038/nature10347.
    1. Furtado M.R., Callaway D.S., Phair J.P., Kunstman K.J., Stanton J.L., Macken C.A., Perelson A.S., Wolinsky S.M. Persistence of HIV-1 transcription in peripheral-blood mononuclear cells in patients receiving potent antiretroviral therapy. N. Engl. J. Med. 1999;340:1614–1622. doi: 10.1056/NEJM199905273402102.
    1. Zhang L., Ramratnam B., Tenner-Racz K., He Y., Vesanen M., Lewin S., Talal A., Racz P., Perelson A.S., Korber B.T., et al. Quantifying residual HIV-1 replication in patients receiving combination antiretroviral therapy. N. Engl. J. Med. 1999;340:1605–1613. doi: 10.1056/NEJM199905273402101.
    1. Chun T.W., Justement J.S., Lempicki R.A., Yang J., Dennis G., Jr., Hallahan C.W., Sanford C., Pandya P., Liu S., McLaughlin M., et al. Gene expression and viral prodution in latently infected, resting CD4+ T cells in viremic versus aviremic HIV-infected individuals. Proc. Natl. Acad. Sci. USA. 2003;100:1908–1913. doi: 10.1073/pnas.0437640100.
    1. Lassen K.G., Ramyar K.X., Bailey J.R., Zhou Y., Siliciano R.F. Nuclear retention of multiply spliced HIV-1 RNA in resting CD4+ T cells. PLoS Pathog. 2006;2:e68. doi: 10.1371/journal.ppat.0020068.
    1. Ensoli B., Bellino S., Tripiciano A., Longo O., Francavilla V., Marcotullio S., Cafaro A., Picconi O., Paniccia G., Scoglio A., et al. Therapeutic immunization with HIV-1 Tat reduces immune activation and loss of regulatory T-cells and improves immune function in subjects on HAART. PLoS ONE. 2010;5:e13540. doi: 10.1371/journal.pone.0013540.
    1. Mediouni S., Darque A., Baillat G., Ravaux I., Dhiver C., Tissot-Dupont H., Mokhtari M., Moreau H., Tamalet C., Brunet C., et al. Antiretroviral therapy does not block the secretion of the human immunodeficiency virus tat protein. Infect. Disord. Drug Targets. 2012;12:81–86. doi: 10.2174/187152612798994939.
    1. Dahl V., Lee E., Peterson J., Spudich S.S., Leppla I., Sinclair E., Fuchs D., Palmer S., Price R.W. Raltegravir treatment intensification does not alter cerebrospinal fluid HIV-1 infection or immunoactivation in subjects on suppressive therapy. J. Infect. Dis. 2011;204:1936–1945. doi: 10.1093/infdis/jir667.
    1. Frankel A.D., Pabo C.O. Cellular uptake of the tat protein from human immunodeficiency virus. Cell. 1988;55:1189–1193. doi: 10.1016/0092-8674(88)90263-2.
    1. Lin X., Irwin D., Kanazawa S., Huang L., Romeo J., Yen T.S., Peterlin B.M. Transcriptional profiles of latent human immunodeficiency virus in infected individuals: Effects of Tat on the host and reservoir. J. Virol. 2003;77:8227–8236. doi: 10.1128/JVI.77.15.8227-8236.2003.
    1. Murray A.J., Kwon K.J., Farber D.L., Siliciano R.F. The Latent Reservoir for HIV-1: How Immunologic Memory and Clonal Expansion Contribute to HIV-1 Persistence. J. Immunol. 2016;197:407–417. doi: 10.4049/jimmunol.1600343.
    1. Lewis G.K., Pazgier M., Evans D.T., Ferrari G., Bournazos S., Parsons M.S., Bernard N.F., Finzi A. Beyond Viral Neutralization. AIDS Res. Hum. Retrovir. 2017;33:760–764. doi: 10.1089/aid.2016.0299.
    1. Finzi D., Blankson J., Siliciano J.D., Margolick J.B., Chadwick K., Pierson T., Smith K., Lisziewicz J., Lori F., Flexner C., et al. Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat. Med. 1999;5:512–517. doi: 10.1038/8394.
    1. Crooks A.M., Bateson R., Cope A.B., Dahl N.P., Griggs M.K., Kuruc J.D., Gay C.L., Eron J.J., Margolis D.M., Bosch R.J., et al. Precise Quantitation of the Latent HIV-1 Reservoir: Implications for Eradication Strategies. J. Infect. Dis. 2015;212:1361–1365. doi: 10.1093/infdis/jiv218.
    1. Siliciano J.M., Siliciano R.F. The Remarkable Stability of the Latent Reservoir for HIV-1 in Resting Memory CD4+ T Cells. J. Infect. Dis. 2015;212:1345–1347. doi: 10.1093/infdis/jiv219.
    1. Ensoli F., Cafaro A., Casabianca A., Tripiciano A., Bellino S., Longo O., Francavilla V., Picconi O., Sgadari C., Moretti S., et al. HIV-1 Tat immunization restores immune homeostasis and attacks the HAART-resistant blood HIV DNA: Results of a randomized phase II exploratory clinical trial. Retrovirology. 2015;12:33. doi: 10.1186/s12977-015-0151-y.
    1. Besson G.J., Lalama C.M., Bosch R.J., Gandhi R.T., Bedison M.A., Aga E., Riddler S.A., McMahon D.K., Hong F., Mellors J.W. HIV-1 DNA decay dynamics in blood during more than a decade of suppressive antiretroviral therapy. Clin. Infect. Dis. 2014;59:1312–1321. doi: 10.1093/cid/ciu585.
    1. Arsenio J., Metz P.J., Chang J.T. Asymmetric Cell Division in T Lymphocyte Fate Diversification. Trends Immunol. 2015;36:670–683. doi: 10.1016/j.it.2015.09.004.
    1. Simonetti F.R., Sobolewski M.D., Fyne E., Shao W., Spindler J., Hattori J., Anderson E.M., Watters S.A., Hill S., Wu X., et al. Clonally expanded CD4+ T cells can produce infectious HIV-1 in vivo. Proc. Natl. Acad. Sci. USA. 2016;113:1883–1888. doi: 10.1073/pnas.1522675113.
    1. Reeves D.B., Duke E.R., Wagner T.A., Palmer S.E., Spivak A.M., Schiffer J.T. A majority of HIV persistence during antiretroviral therapy is due to infected cell proliferation. Nat. Commun. 2018;9:4811. doi: 10.1038/s41467-018-06843-5.
    1. Shan L., Deng K., Shroff N.S., Durand C.M., Rabi S.A., Yang H.C., Zhang H., Margolick J.B., Blankson J.N., Siliciano R.F. Stimulation of HIV-1-specific cytolytic T lymphocytes facilitates elimination of latent viral reservoir after virus reactivation. Immunity. 2012;36:491–501. doi: 10.1016/j.immuni.2012.01.014.
    1. Shan L., Deng K., Gao H., Xing S., Capoferri A.A., Durand C.M., Rabi S.A., Laird G.M., Kim M., Hosmane N.N., et al. Transcriptional Reprogramming during Effector-to-Memory Transition Renders CD4+ T Cells Permissive for Latent HIV-1 Infection. Immunity. 2017;47:766–775. doi: 10.1016/j.immuni.2017.09.014.
    1. Zauli G., Gibellini D., Caputo A., Bassini A., Negrini M., Monne M., Mazzoni M., Capitani S. The human immunodeficiency virus type-1 Tat protein upregulates Bcl-2 gene expression in Jurkat T-cell lines and primary peripheral blood mononuclear cells. Blood. 1995;86:3823–3834.
    1. Krone W.J., Debouck C., Epstein L.G., Heutink P., Meloen R., Goudsmit J. Natural antibodies to HIV-tat epitopes and expression of HIV-1 genes in vivo. J. Med. Virol. 1988;26:261–270. doi: 10.1002/jmv.1890260306.
    1. Reiss P., Lange J.M., de Ronde A., de Wolf F., Dekker J., Debouck C., Goudsmit J. Speed of progression to AIDS and degree of antibody response to accessory gene products of HIV-1. J. Med. Virol. 1990;30:163–168. doi: 10.1002/jmv.1890300303.
    1. Re M.C., Furlini G., Vignoli M., Ramazzotti E., Roderigo G., De Rosa V., Zauli G., Lolli S., Capitani S., La Placa M. Effect of antibody to HIV-1 Tat protein on viral replication in vitro and progression of HIV-1 disease in vivo. J. Acquir. Immune. Defic. Syndr. Hum. Retrovirol. 1995;10:408–416. doi: 10.1097/00042560-199512000-00003.
    1. Zagury J.F., Sill A., Blattner W., Lachgar A., Le Buanec H., Richardson M., Rappaport J., Hendel H., Bizzini B., Gringeri A., et al. Antibodies to the HIV-1 Tat protein correlated with nonprogression to AIDS: A rationale for the use of Tat toxoid as an HIV-1 vaccine. J. Hum. Virol. 1998;1:282–292.
    1. Re M.C., Vignoli M., Furlini G., Gibellini D., Colangeli V., Vitone F., La Placa M. Antibodies against full-length Tat protein and some low-molecular-weight Tat-peptides correlate with low or undetectable viral load in HIV-1 seropositive patients. J. Clin. Virol. 2001;21:81–89. doi: 10.1016/S1386-6532(00)00189-X.
    1. Richardson M.W., Mirchandani J., Duong J., Grimaldo S., Kocieda V., Hendel H., Khalili K., Zagury J.F., Rappaport J. Antibodies to Tat and Vpr in the GRIV cohort: Differential association with maintenance of long-term non-progression status in HIV-1 infection. Biomed. Pharmacother. 2003;57:4–14. doi: 10.1016/S0753-3322(02)00327-X.
    1. Rezza G., Fiorelli V., Dorrucci M., Ciccozzi M., Tripiciano A., Scoglio A., Collacchi B., Ruiz-Alvarez M., Giannetto C., Caputo A., et al. The presence of anti-Tat antibodies is predictive of long-term nonprogression to AIDS or severe immunodeficiency: Findings in a cohort of HIV-1 seroconverters. J. Infect. Dis. 2005;191:1321–1324. doi: 10.1086/428909.
    1. Bellino S., Tripiciano A., Picconi O., Francavilla V., Longo O., Sgadari C., Paniccia G., Arancio A., Angarano G., Ladisa N., et al. The presence of anti-Tat antibodies in HIV-infected individuals is associated with containment of CD4+ T-cell decay and viral load, and with delay of disease progression: Results of a 3-year cohort study. Retrovirology. 2014;11:49. doi: 10.1186/1742-4690-11-49.
    1. Cafaro A., Tripiciano A., Sgadari C., Bellino S., Picconi O., Longo O., Francavilla V., Buttò S., Titti F., Monini P., et al. Development of a novel AIDS vaccine: The HIV-1 transactivator of transcription protein vaccine. Expert. Opin. Biol. Ther. 2015;15(Suppl. 1):S13–S29. doi: 10.1517/14712598.2015.1021328.
    1. Buttò S., Fiorelli V., Tripiciano A., Ruiz-Alvarez M.J., Scoglio A., Ensoli F., Ciccozzi M., Collacchi B., Sabbatucci M., Tat Multicentric Study Group et al. Sequence conservation and antibody cross-recognition of clade B human immunodeficiency virus (HIV) type 1 Tat protein in HIV-1-infected Italians, Ugandans, and South Africans. J. Infect. Dis. 2003;188:1171–1180.
    1. Pauza C.D., Trivedi P., Wallace M., Ruckwardt T.J., Le Buanec H., Lu W., Bizzini B., Burny A., Zagury D., Gallo R.C. Vaccination with tat toxoid attenuates disease in simian/HIV-challenged macaques. Proc. Natl. Acad. Sci. USA. 2000;97:3515–3519. doi: 10.1073/pnas.97.7.3515.
    1. Silvera P., Richardson M.W., Greenhouse J., Yalley-Ogunro J., Shaw N., Mirchandani J., Khalili K., Zagury J.F., Lewis M.G., Rappaport J. Outcome of simian-human immunodeficiency virus strain 89.6p challenge following vaccination of rhesus macaques with human immunodeficiency virus Tat protein. J. Virol. 2002;76:3800–3809. doi: 10.1128/JVI.76.8.3800-3809.2002.
    1. Demberg T., Brocca-Cofano E., Kuate S., Aladi S., Vargas-Inchaustegui D.A., Venzon D., Kalisz I., Kalyanaraman V.S., Lee E.M., Pal R., et al. Impact of antibody quality and anamnestic response on viremia control post-challenge in a combined Tat/Env vaccine regimen in rhesus macaques. Virology. 2013;440:210–221. doi: 10.1016/j.virol.2013.02.024.
    1. Cafaro A., Caputo A., Fracasso C., Maggiorella M.T., Goletti D., Baroncelli S., Pace M., Sernicola L., Koanga-Mogtomo M.L., Betti M., et al. Control of SHIV-89.6P-infection of cynomolgus monkeys by HIV-1 Tat protein vaccine. Nat. Med. 1999;5:643–650. doi: 10.1038/9488.
    1. Cafaro A., Caputo A., Maggiorella M.T., Baroncelli S., Fracasso C., Pace M., Borsetti A., Sernicola L., Negri D.R., Ten Haaft P., et al. SHIV89.6P pathogenicity in cynomolgus monkeys and control of viral replication and disease onset by human immunodeficiency virus type 1 Tat vaccine. J. Med. Primatol. 2000;29:193–208. doi: 10.1034/j.1600-0684.2000.290313.x.
    1. Cafaro A., Titti F., Fracasso C., Maggiorella M.T., Baroncelli S., Caputo A., Goletti D., Borsetti A., Pace M., Fanales-Belasio E., et al. Vaccination with DNA containing tat coding sequences and unmethylated CpG motifs protects cynomolgus monkeys upon infection with simian/human immunodeficiency virus (SHIV89.6P) Vaccine. 2001;19:2862–2877. doi: 10.1016/S0264-410X(01)00002-0.
    1. Maggiorella M.T., Baroncelli S., Michelini Z., Fanales-Belasio E., Moretti S., Sernicola L., Cara A., Negri D.R., Buttò S., Fiorelli V., et al. Long-term protection against SHIV89.6P replication in HIV-1 Tat vaccinated cynomolgus monkeys. Vaccine. 2004;22:3258–3269. doi: 10.1016/j.vaccine.2004.03.009.
    1. Borsetti A., Baroncelli S., Maggiorella M.T., Moretti S., Fanales-Belasio E., Sernicola L., Tripiciano A., Macchia I., Michelini Z., Belli R., et al. Containment of infection in tat vaccinated monkeys after rechallenge with a higher dose of SHIV89.6P(cy243) Viral. Immunol. 2009;22:117–124. doi: 10.1089/vim.2008.0082.
    1. Cafaro A., Bellino S., Titti F., Maggiorella M.T., Sernicola L., Wiseman R.W., Venzon D., Karl J.A., O’Connor D., Monini P., et al. Impact of viral dose and major histocompatibility complex class IB haplotype on viral outcome in mauritian cynomolgus monkeys vaccinated with Tat upon challenge with simian/human immunodeficiency virus SHIV89.6P. J. Virol. 2010;84:8953–8958. doi: 10.1128/JVI.00377-10.
    1. Titti F., Maggiorella M.T., Ferrantelli F., Sernicola L., Bellino S., Collacchi B., Fanales Belasio E., Moretti S., Pavone Cossut M.R., Belli R., et al. Biocompatible anionic polymeric microspheres as priming delivery system for effetive HIV/AIDS Tat-based vaccines. PLoS ONE. 2014;9:e111360. doi: 10.1371/journal.pone.0111360.
    1. Demberg T., Florese R.H., Heath M.J., Larsen K., Kalisz I., Kalyanaraman V.S., Lee E.M., Pal R., Venzon D., Grant R., et al. A replication-competent adenovirus-human immunodeficiency virus (Ad-HIV) tat and Ad-HIV env priming/Tat and envelope protein boosting regimen elicits enhanced protective efficacy against simian/human immunodeficiency virus SHIV89.6P challenge in rhesus macaques. J. Virol. 2007;81:3414–3427.
    1. Bachler B.C., Humbert M., Palikuqi B., Siddappa N.B., Lakhashe S.K., Rasmussen R.A., Ruprecht R.M. Novel biopanning strategy to identify epitopes associated with vaccine protection. J. Virol. 2013;87:4403–4416. doi: 10.1128/JVI.02888-12.
    1. Ensoli B., Fiorelli V., Ensoli F., Lazzarin A., Visintini R., Narciso P., Di Carlo A., Tripiciano A., Longo O., Bellino S., et al. The preventive phase I trial with the HIV-1 Tat-based vaccine. Vaccine. 2009;28:371–378. doi: 10.1016/j.vaccine.2009.10.038.
    1. Bellino S., Francavilla V., Longo O., Tripiciano A., Paniccia G., Arancio A., Fiorelli V., Scoglio A., Collacchi B., Campagna M., et al. Parallel conduction of the phase I preventive and therapeutic trials based on the Tat vaccine candidate. Rev. Recent Clin. Trials. 2009;4:195–204. doi: 10.2174/157488709789957529.
    1. Ensoli B., Fiorelli V., Ensoli F., Lazzarin A., Visintini R., Narciso P., Di Carlo A., Monini P., Magnani M., Garaci E. The therapeutic phase I trial of the recombinant native HIV-1 Tat protein. AIDS. 2008;22:2207–2209. doi: 10.1097/QAD.0b013e32831392d4.
    1. Bbosa N., Kaleebu P., Ssemwanga D. HIV subtype diversity worldwide. Curr. Opin. HIV AIDS. 2019;14:153–160. doi: 10.1097/COH.0000000000000534.
    1. Sgadari C., Monini P., Tripiciano A., Picconi O., Casabianca A., Orlandi C., Moretti S., Francavilla V., Arancio A., Paniccia G., et al. Continued Decay of HIV Proviral DNA Upon Vaccination With HIV-1 Tat of Subjects on Long-Term ART: An 8-Year Follow-Up Study. Front. Immunol. 2019;10:233. doi: 10.3389/fimmu.2019.00233.
    1. Golob J.L., Stern J., Holte S., Kitahata M.M., Crane H.M., Coombs R.W., Goecker E., Woolfrey A.E., Harrington R.D. HIV DNA levels and decay in a cohort of 111 long-term virally suppressed patients. AIDS. 2018;32:2113–2118. doi: 10.1097/QAD.0000000000001948.
    1. Jaafoura S., de Goër de Herve M.G., Hernandez-Vargas E.A., Hendel-Chavez H., Abdoh M., Mateo M.C., Krzysiek R., Merad M., Seng R., Tardieu M., et al. Progressive contraction of the latent HIV reservoir around a core of less-differentiated CD4⁺ memory T Cells. Nat. Commun. 2014;5:5407. doi: 10.1038/ncomms6407.
    1. Ensoli B., Nchabeleng M., Ensoli F., Tripiciano A., Bellino S., Picconi O., Sgadari C., Longo O., Tavoschi L., Joffe D., et al. SMU-MeCRU study group. HIV-Tat immunization induces cross-clade neutralizing antibodies and CD4(+) T cell increases in antiretroviral-treated South African volunteers: A randomized phase II clinical trial. Retrovirology. 2016;13:34. doi: 10.1186/s12977-016-0261-1.
    1. Burgers W.A., Manrique A., Masopust D., McKinnon L.R., Reynolds M.R., Rolland M., Blish C., Chege G.K., Curran R., Fischer W., et al. Measurements of immune responses for establishing correlates of vaccine protection against HIV. AIDS Res. Hum. Retrovir. 2012;28:641–648. doi: 10.1089/aid.2011.0239.
    1. Albert-Vega C., Tawfik D.M., Trouillet-Assant S., Vachot L., Mallet F., Textoris J. Immune Functional Assays, From Custom to Standardized Tests for Precision Medicine. Front. Immunol. 2018;9:2367. doi: 10.3389/fimmu.2018.02367.
    1. Goonetilleke N., Liu M.K., Salazar-Gonzalez J.F., Ferrari G., Giorgi E., Ganusov V.V., Keele B.F., Learn G.H., Turnbull E.L., Salazar M.G., et al. The first T cell response to transmitted/founder virus contributes to the control of acute viremia in HIV-1 infection. J. Exp. Med. 2009;206:1253–1272. doi: 10.1084/jem.20090365.
    1. Addo M.M., Altfeld M., Rosenberg E.S., Eldridge R.L., Philips M.N., Habeeb K., Khatri A., Brander C., Robbins G.K., Mazzara G.P., et al. HIV Controller Study Collaboration. The HIV-1 regulatory proteins Tat and Rev are frequently targeted by cytotoxic T lymphocytes derived from HIV-1-infected individuals. Proc. Natl. Acad. Sci. USA. 2001;98:1781–1786. doi: 10.1073/pnas.98.4.1781.
    1. Van Baalen C.A., Pontesilli O., Huisman R.C., Geretti A.M., Klein M.R., de Wolf F., Miedema F., Gruters R.A., Osterhaus A.D. Human immunodeficiency virus type 1 Rev- and Tat-specific cytotoxic T lymphocyte frequencies inversely correlate with rapid progression to AIDS. J. Gen. Virol. 1997;78:1913–1918. doi: 10.1099/0022-1317-78-8-1913.
    1. Cao J., McNevin J., Malhotra U., McElrath M.J. Evolution of CD8+ T cell immunity and viral escape following acute HIV-1 infection. J. Immunol. 2003;171:3837–3846. doi: 10.4049/jimmunol.171.7.3837.
    1. Allen T.M., O’Connor D.H., Jing P., Dzuris J.L., Mothé B.R., Vogel T.U., Dunphy E., Liebl M.E., Emerson C., Wilson N., et al. Tat-specific cytotoxic T lymphocytes select for SIV escape variants during resolution of primary viraemia. Nature. 2000;407:386–390. doi: 10.1038/35030124.
    1. O’Connor D.H., Allen T.M., Vogel T.U., Jing P., DeSouza I.P., Dodds E., Dunphy E.J., Melsaether C., Mothé B., Yamamoto H., et al. Acute phase cytotoxic T lymphocyte escape is a hallmark of simian immunodeficiency virus infection. Nat. Med. 2002;8:493–499. doi: 10.1038/nm0502-493.
    1. Guillon C., Stankovic K., Ataman-Onal Y., Biron F., Verrier B. Evidence for CTL-mediated selection of Tat and Rev mutants after the onset of the asymptomatic period during HIV type 1 infection. AIDS Res. Hum. Retroviruses. 2006;22:1283–1292. doi: 10.1089/aid.2006.22.1283.
    1. Allard S.D., De Keersmaecker B., de Goede A.L., Verschuren E.J., Koetsveld J., Reedijk M.L., Wylock C., De Bel A.V., Vandeloo J., Pistoor F., et al. A phase I/IIa immunotherapy trial of HIV-1-infected patients with Tat, Rev and Nef expressing dendritic cells followed by treatment interruption. Clin. Immunol. 2012;142:252–268. doi: 10.1016/j.clim.2011.10.010.
    1. Goldstein G., Damiano E., Donikyan M., Pasha M., Beckwith E., Chicca J. HIV-1 Tat B-cell epitope vaccination was ineffectual in preventing viral rebound after ART cessation: HIV rebound with current ART appears to be due to infection with new endogenous founder virus and not to resurgence of pre-existing Tat-dependent viremia. Hum. Vaccines. Immunother. 2012;8:1425–1430. doi: 10.4161/hv.21616.
    1. Novitsky V., Rybak N., McLane M.F., Gilbert P., Chigwedere P., Klein I., Gaolekwe S., Chang S.Y., Peter T., Thior I., et al. Identification of human immunodeficiency virus type 1 subtype C Gag-, Tat-, Rev-, and Nef-specific elispot-based cytotoxic T-lymphocyte responses for AIDS vaccine design. J. Virol. 2001;75:9210–9228. doi: 10.1128/JVI.75.19.9210-9228.2001.
    1. Kamori D., Ueno T. HIV-1 Tat and Viral Latency: What We Can Learn from Naturally Occurring Sequence Variations. Front. Microbiol. 2017;8:80. doi: 10.3389/fmicb.2017.00080.
    1. Dey S.S., Xue Y., Joachimiak M.P., Friedland G.D., Burnett J.C., Zhou Q., Arkin A.P., Schaffer D.V. Mutual information analysis reveals coevolving residues in Tat that compensate for two distinct functions in HIV-1 gene expression. J. Biol. Chem. 2012;287:7945–7955. doi: 10.1074/jbc.M111.302653.
    1. Tahirov T.H., Babayeva N.D., Varzavand K., Cooper J.J., Sedore S.C., Price D.H. Crystal structure of HIV-1 Tat complexed with human P-TEFb. Nature. 2010;465:747–751. doi: 10.1038/nature09131.
    1. D’Orso I., Frankel A.D. HIV-1 Tat: Its Dependence on Host Factors is Crystal Clear. Viruses. 2010;2:2226–2234. doi: 10.3390/v2102226.
    1. Xiao H., Neuveut C., Tiffany H.L., Benkirane M., Rich E.A., Murphy P.M., Jeang K.T. Selective CXCR4 antagonism by Tat: Implications for in vivo expansion of coreceptor use by HIV-1. Proc. Natl. Acad. Sci. USA. 2000;97:11466–11471. doi: 10.1073/pnas.97.21.11466.
    1. Hoogewerf A.J., Kuschert G.S., Proudfoot A.E., Borlat F., Clark-Lewis I., Power C.A., Wells T.N. Glycosaminoglycans mediate cell surface oligomerization of chemokines. Biochemistry. 1997;36:13570–13578. doi: 10.1021/bi971125s.
    1. Cafaro A., Sgadari C., Picconi O., Tripiciano A., Moretti S., Francavilla V., Pavone Cossut M.R., Buttò S., Cozzone G., Ensoli F., et al. cART intensification by the HIV-1 Tat B clade vaccine: Progress to phase III efficacy studies. Expert Rev. Vaccines. 2018;17:115–126. doi: 10.1080/14760584.2018.1418666.

Source: PubMed

3
Předplatit