Brain changes in long-term zen meditators using proton magnetic resonance spectroscopy and diffusion tensor imaging: a controlled study

Nicolás Fayed, Yolanda Lopez Del Hoyo, Eva Andres, Antoni Serrano-Blanco, Juan Bellón, Keyla Aguilar, Ausias Cebolla, Javier Garcia-Campayo, Nicolás Fayed, Yolanda Lopez Del Hoyo, Eva Andres, Antoni Serrano-Blanco, Juan Bellón, Keyla Aguilar, Ausias Cebolla, Javier Garcia-Campayo

Abstract

Introduction: This work aimed to determine whether (1)H magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) are correlated with years of meditation and psychological variables in long-term Zen meditators compared to healthy non-meditator controls.

Materials and methods: Design. Controlled, cross-sectional study. Sample. Meditators were recruited from a Zen Buddhist monastery. The control group was recruited from hospital staff. Meditators were administered questionnaires on anxiety, depression, cognitive impairment and mindfulness. (1)H-MRS (1.5 T) of the brain was carried out by exploring four areas: both thalami, both hippocampi, the posterior superior parietal lobule (PSPL) and posterior cingulate gyrus. Predefined areas of the brain were measured for diffusivity (ADC) and fractional anisotropy (FA) by MR-DTI.

Results: Myo-inositol (mI) was increased in the posterior cingulate gyrus and Glutamate (Glu), N-acetyl-aspartate (NAA) and N-acetyl-aspartate/Creatine (NAA/Cr) was reduced in the left thalamus in meditators. We found a significant positive correlation between mI in the posterior cingulate and years of meditation (r = 0.518; p = .019). We also found significant negative correlations between Glu (r = -0.452; p = .045), NAA (r = -0.617; p = .003) and NAA/Cr (r = -0.448; P = .047) in the left thalamus and years of meditation. Meditators showed a lower Apparent Diffusion Coefficient (ADC) in the left posterior parietal white matter than did controls, and the ADC was negatively correlated with years of meditation (r = -0.4850, p = .0066).

Conclusions: The results are consistent with the view that mI, Glu and NAA are the most important altered metabolites. This study provides evidence of subtle abnormalities in neuronal function in regions of the white matter in meditators.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Voxel placement in the different…
Figure 1. Voxel placement in the different brain regions.
The thalamus (a,b), hippocampus (c,d), posterior superior parietal lobule (e) and posterior cingulate gyrus (f).
Figure 2. Representative left thalamus spectrum.
Figure 2. Representative left thalamus spectrum.
The narrow line width indicates excellent data quality and the uniform residual represents excellent model fit. NAA: N-acetyl-aspartate; Glx: glutamate+glutamine+GABA; Cho: Choline; Cr: creatine+phosphocholine; mI: myo-inositol.
Figure 3. Axial diffusion images showing the…
Figure 3. Axial diffusion images showing the different locations of the equal-sized regions of interest (ROIs) were placed in normal appearing brain parenchyma.
The ROI placements for periaqueductal grey (1) and amygdale (2) (a); orbital cortex (2) and insular cortex (3) (b); internal capsule (5), thalamus ventral (6) and dorsal (7), (c); cingulate gyrus cortex (16) and corpus callosum (8), (d); frontal white matter (4), parietal white matter (5), and dorsolateral prefrontal cortex (6) (e); and left motor cortex (7) (f).
Figure 4. Differences on Myo-Inositol levels in…
Figure 4. Differences on Myo-Inositol levels in Posterior Cingulate between meditators and healthy non-meditators.
Figure 5. Differences on Glutamate levels in…
Figure 5. Differences on Glutamate levels in Left Thalamus between meditators and healthy non-meditators.
Figure 6. Differences on NAA levels in…
Figure 6. Differences on NAA levels in Left Thalamus between meditators and healthy non-meditators.
Figure 7. Differences on NAA/Creatine in in…
Figure 7. Differences on NAA/Creatine in in Left Thalamus between meditators and healthy non-meditators.

References

    1. Kabat-Zinn J (1990) Full catastrophe living. New York, NY: Delta Publishing.
    1. Baer RA (2003) Mindfulness training as a clinical intervention: A conceptual and empirical review. Clinical Psychology: Science and Practice 10: 125–43.
    1. Grossman P, Niemann L, Schmidt S, Walach H (2004) Mindfulness-based stress reduction and health benefits. A metaanalysis. J Psychosom Res 57: 35–43.
    1. Hölzel BK, Lazar SW, Gard T, Schuman-Olivier Z, Vago DR, et al. (2011) How does mindfulness meditation work? Proposing mechanisms of action from a conceptual and neural perspective. Perpsective Psychol Sci 6: 537–59.
    1. Grant JA, Courtemanche J, Duerden EG, Duncan GH, Rainville P (2010) Cortical thickness and pain sensitivity in Zen meditators. Emotion 10: 43–53.
    1. Hölzel BK, Ott U, Gard T, Hempel H, Weygandt M, et al. (2008) Investigation of mindfulness meditation practitioners with voxel-based morphometry. Soc Cogn Affect Neurosci 3: 55–61.
    1. Luders E, Toga AW, Lepore N, Gaser C (2009) The underlying anatomical correlates of long-term meditation: Larger hippocampal and frontal volumes of gray matter. Neuroimage 45: 672–678.
    1. Creswell JD, Way BM, Eisenberger NI, Lieberman MD (2007) Neural correlates of dispositional mindfulness during affect labeling. Psychosom Med 69: 560–65.
    1. Hölzel BK, Ott U, Hempel H, Hackl A, Wolf K, et al. (2007) Differential engagement of anterior cingulated and adjacent medial frontal cortex in adept meditators and nonmeditators. Neurosci Lett 421: 16–21.
    1. Farb NA, Segal ZV, Mayberg H, Bean J, McKeon D, et al. (2007) Attending to the present: Mindfulness meditation reveals distinct neural modes of selfreference. Soc Cogn Affect Neurosci 2: 313–22.
    1. Murakami H, Nakao T, Matsunaga M, Kasuya Y, Shinoda J, et al. (2012) The structure of mindful brain. Plos One 7: e46377.
    1. Lee MH, Hacker CD, Snyder AZ, Corbetta M, Zhang D, et al. (2012) Clustering of been resting networks. PLoS One 7: e40370.
    1. Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124: 1–38.
    1. Fayed N, Olmos S, Morales H, Modrego PJ (2006) Physical basis of magnetic resonance spectroscopy and its application to central nervous system diseases. Am J Appl Sci 3: 1836–1845.
    1. Bleich S, Römer K, Wiltfang J, Kornhuber J (2003) Glutamate and the glutamate receptor system: a target for drug action. Int J Geriatr Psychiatry (suppl 1): S33–S40.
    1. Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 111: 209–19.
    1. Slagter HA, Davidson RJ, Lutz A (2011) Mental training as a tool in the neuroscientific study of brain and cognitive plasticity. Front Hum Neurosci 5: 17.
    1. Luders E, Clark K, Narr KL, Toga AW (2011) Enhanced brain connectivity in long-term meditation practitioners. Neuroimage 57: 1308–16.
    1. Tang YY, Lu Q, Fan M, Yang Y, Posner MI (2012) Mechanisms of white matter changes induced by meditation. Proc Natl Acad Sci U S A 109(26): 10570–4.
    1. Zigmond AS, Snaith RP (1983) The Hospital Anxiety and Depression Scale. Acta Psychiatr Scand 67: 361–70.
    1. Tejero A, Guimerá EM, Farré JM, Peri JM (1986) Uso clínico del HAD (Hospital Anxiety and Depression Scale) en población psiquiátrica: un estudio de su sensibilidad, fiabilidad y validez. Rev Dep Psiquiatr Fac Med Barc 3: 233–38.
    1. Folstein MF, Folstein SE, McHugh PR (1975) “Mini-Mental State”: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12: 189–98.
    1. Lobo A, Saz P, Marcos G, Día JL, de la Cámara C, et al. (1999) Revalidation and standardization of the cognition mini-exam (first Spanish version of the Mini-Mental Status Examination) in the general geriatric population. Med Clin (Barc) 112: 767–74.
    1. Brown KW, Ryan RM (2002) The benefits of being present: Mindfulness and its role in psychological well-being. J Pers Soc Psychol 4: 822–48.
    1. Soler J, Tejedor R, Feliu A, Pascual J, Cebolla A, et al. (2012) Propiedades psicométricas de la versión española de la escala Mindful Attention Awareness Scale (MAAS). Actas Esp Psiquiatr 40: 19–26.
    1. Talairach J, Tournoux P (1998) Co-planar stereotaxic atlas of the human brain. New York: Thieme.
    1. Bucci DJ, Conley M, Gallagher M (1999) Thalamic and basal forebrain cholinergic connections of the rat posterior parietal cortex. Neuroreport 10: 941–45.
    1. Herzog H, Lele VR, Kuwert T, Langen KJ, Rota Kops E, et al. (1990–1991) Changed pattern of regional glucose metabolism during Yoga meditative relaxation. Neuropsychobiology 23: 182–87.
    1. Newberg A, Alavi A, Baime M, Pourdehnad M, Santanna J, et al. (2001) The measurement of regional cerebral blood flow during the complex cognitive task of meditation: a preliminary SPECT study. Psychiatr Res 106: 113–22.
    1. Joseph R (1996) Neuropsychology, Neuropsychiatry, and Behavioral. Neurology. New York: Williams & Wilkins 197.
    1. Fayed N, Modrego PJ, Medrano J (2009) Comparative test-retest reliability of metabolite values assessed with magnetic resonance spectroscopy of the brain. The LCModel versus the manufacturer software. Neurol Res 31: 472–77.
    1. Jones DK, Williams SC, Gasston D, Horsfield MA, Simmons A, et al. (2002) Isotropic resolution diffusion tensor imaging with whole brain acquisition in a clinically acceptable time. Hum Brain Mapp 15: 216–30.
    1. Baraban JM, Worley PF, Snyder SH (1989) Second messenger systems and psychoactive drug action: focus on the phosphoinositide system and lithium. Am J Psychiatry 146: 1251–1260.
    1. Barkai IA, Dunner DL, Gross HA, Mayo P, Fieve RR (1978) Reduced myo-inositol levels in cerebrospinal fluid from patiens with affective disorder. Biol Psychiatry 13: 65–72.
    1. Levine J, Rapaport A, Lev L, Bersudsky Y, Kofman O, et al. (1993) Inositol treatment raises CSF inositol levels. Brain Res 627: 168–170.
    1. Levine J, Barak Y, Gonzalves M, Szor H, Elizur A, et al. (1995) Double-blind, controlled trial of inositol treatment of depression. Am J Psychiatry 152: 792–794.
    1. Berry GT, Wang ZJ, Dreha SF, Finucane BM, Zimmerman RA (1999) In vivo brain myo-inositol levels in children with Down syndrome. J Pediatr 135: 94–97.
    1. Kantarci K, Jack CR Jr, Xu YC, Campeau NG, O’Brien PC, et al. (2000) Regional metabolic patterns in mild cognitive impairment and Alzheimer’s disease: a 1H MRS study. Neurology 55: 210–17.
    1. Olson BLB, Holshouser BA, Britt W, Mueller C, Baqai W, et al. (2008) Longitudinal metabolic and cognitive changes in mild cognitive impairment patients. Alzheimer Dis Assoc Disord 22: 269–77.
    1. Geissler A, Fründ R, Schölmerich J, Feuerbach S, Zietz B (2003) Alterations of cerebral metabolism in patients with diabetes mellitus studied by proton magnetic resonance spectroscopy. Exp Clin Endocrinol Diabetes 111: 421–27.
    1. Valdés M, Collado A, Bargalló N, Vázquez M, Rami L, et al. (2010) Increased Glutamate/Glutamine Compounds in the Brains of Patients With Fibromyalgia. A Magnetic Resonance Spectroscopy Study. Arthritis Rheum 62: 1829–36.
    1. Brand A, Richter-Landsberg C, Leibfritz D (1993) Multinuclear NMR studies on the energy metabolism of glial and neuronal cells. Dev Neurosci 15: 289–98.
    1. Avison MJ, Nath A, Greene-Avison R, Schmitt FA, Bales RA, et al. (2004) Inflammatory changes and breakdown of microvascular integrity in early human immunodeficiency virus dementia. J Neurovirol 10: 223–32.
    1. Frey R, Metzler D, Fischer P, Heiden A, Scharfetter J, et al. (1998) Myo-inositol in depressive and healthy subjects determined by frontal 1Hmagnetic resonance spectroscopy at 1.5 tesla. J Psych Res 32: 411–20.
    1. Sawada M, Suzumura A, Marunouchi T (1995) Induction of functional interleukin-2 receptor in mouse microglia. J Neurochem 64: 1973–79.
    1. Schneider P, Weber-Fahr W, Schweinfurth N, Ho YJ, Sartorius A, et al. (2012) Central metabolite changes and activation of microglia after peripheral interleukin-2 challenge. Brain Behav Immun 26: 277–83.
    1. Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9: 46–56.
    1. Adair KC, Gilmore RL, Fennell EB, Gold M, Heilman KM (1995) Anosognosia during intracarotid barbiturate anaesthesia: unawareness or amnesia for weakness. Neurology 45: 241–43.
    1. Fernandez-Duque D, Posner MI (2001) Brain imaging of attentional networks in normal and pathological states. J Clin Exp Neuropsychol 23: 74–93.
    1. Armony JL, LeDoux JE (2000) In:M. S. Gazzaniga (ed). The New Cognitive Neurosciences. Cambridge: MIT Press.
    1. Lou HC, Kjaer TW, Friberg L, Wildschiodtz G, Holm S, et al. (1999) A 15O-H2O PET study of meditation and the resting state of normal consciousness. Hum Brain Map 7: 98–105.
    1. Cooper JR, Bloom FE, Roth RH (2000). The biochemical basis of neuropharmacology. 8th ed. Oxford, UK: Oxford University Press.
    1. Gracely RH, Petzke F, Wolf JM, Clauw DJ (2002) Functional magnetic resonance imaging evidence of augmented pain processing in fibromyalgia. Arthritis Rheum. 46: 1333–43.
    1. Cull-Candy S, Brickley S, Farrant M (2001) NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol 11: 327–35.
    1. Beal MF (1995) Aging, energy, and oxidative stress in neurodegenerative diseases. Ann Neurol 38: 357–66.
    1. Rothman DL, Behar KL, Hyder F, Shulman RG (2003) In vivo NMR studies of the glutamate neurotransmitter flux and neuroenergetics: implications for brain function. Annu Rev Physiol 5: 401–27.
    1. Fonnum F, Storm-Mathisen J, Divac I (1981) Biochemical evidence for glutamate as neurotransmitter in corticostriatal and corticothalamic fibres in rat brain. Neuroscience 6: 863–73.
    1. Thomas AG, Vornov JJ, Olkowski JL, Merion AT, Slusher BS (2000) N-acetylated a-linked acidic dipeptidase converts N-acetylaspartylglutamate from a neuroprotectant to a neurotoxin. J Pharmacol Exp Ther 295: 16–22.
    1. Krause J, Dresel SH, Krause KH, La Fougere C, Zill P, et al. (2006) Striatal dopamine transporter availability and DAT-1 gene in adults with ADHD: no higher DAT availability in patients with homozygosity for the 10-repeat allele. World J Biol Psychiatry 7: 152–57.
    1. van Elst LT, Valerius G, Büchert M, Thiel T, Rüsch N, et al. (2005) Increased prefrontal and hippocampal glutamate concentration in schizophrenia: evidence from a magnetic resonance spectroscopy study. Biol Psychiatry 58: 724–30.
    1. Olbrich HM, Valerius G, Rusch N, BuchertM, Thiel T, et al. (2008) Frontolimbic glutamate alterations in first episode schizophrenia: Evidence from a magnetic resonance spectroscopy study. World J Biol Psychiatry 9: 59–63.
    1. Fayed N, Modrego PJ, Rojas-Salinas G, Aguilar K (2011) Brain glutamate levels are decreased in Alzheimer’s disease: a magnetic resonance spectroscopy study. Am J Alzheimers Dis Other Demen 26: 450–56.
    1. Fayed N, Dávila J, Oliveros A, Castillo J, Medrano JJ (2008) Utility of different MR modalities in mild cognitive impairment and its use as a predictor of conversion to probable dementia. Acad Radiol 15: 1089–98.
    1. Stanley JA, Kipp H, Greisenegger E, MacMaster FP, Panchalingam K, et al. (2006) Regionally specific alterations in membrane phospholipids in children with ADHD: An in vivo 31P spectroscopy study. Psychiatry Res 148: 217–21.
    1. Otsuka H, Harada M, Mori K, Hisaoka S, Nishitani H (1999) Brain metabolites in the hippocampus-amygdala region and cerebellum in autism: an 1H-MR spectroscopy study. Neuroradiology 41: 517–19.
    1. Chugani DC, Sundram BS, Behen M, Lee ML, Moore GJ (1999) Evidence of altered energy metabolism in autistic children. Prog Neuropsychopharmacol Biol Psychiatry 23: 635–41.
    1. Castillo M (2005) Autism and ADHD: common disorders, elusive explanations. Acad Radiol 12: 533–34.
    1. Engelbrecht V, Scherer A, Rassek M, Witsack HJ, Mödder U (2002) Diffusion-weighted MR imaging in the brain in children: findings in the normal brain and in the brain with white matter diseases. Radiology 2: 410–8.
    1. Neil JJ, Shiran SI, McKinstry RC, Schefft GL, Snyder AZ, et al. (1998) Normal brain in human newborns: apparent diffusion coefficient and diffusion anisotropy measured by using diffusion tensor MR imaging. Radiology 209: 57–66.
    1. Hüppi PS, Maier SE, Peled S, Zientara GP, Barnes PD, et al. (1998) Microstructural development of human newborn cerebral white matter assessed in vivo by diffusion tensor magnetic resonance imaging. Pediatr Res 44: 584–590.
    1. Baratti C, Barnett AS, Pierpaoli C (1999) Comparative MR imaging study of brain maturation in kittens with T1, T2, and the trace of the diffusion tensor. Radiology 210: 133–142.
    1. Wimberger DM, Roberts TP, Barkovich AJ, Prayer LM, Moseley ME, et al. (1995) Identification of “premyelination” by diffusion- weighted MRI. J Comput Assist Tomogr 19: 28–33.
    1. Tang YY, Lu Q, Fan M, Yang Y, Posner MI (2012) Mechanisms of white matter changes induced by meditation. Proc Natl Acad Sci U S A 109(26): 10570–4.
    1. Minati L, Grisoli M, Bruzzone MG (2007) MR Spectroscopy, Functional MRI, and Diffusion-Tensor Imaging in the Aging Brain: A Conceptual Review. J Geriatr Psychiatry Neurol 20: 3–21.
    1. Tang YY, Lu Q, Geng X, Stein EA, Yang Y, et al. (2010) Short-term meditation induces white matter changes in the anterior cingulate. Proc Natl Acad Sci USA 107: 15649–15652.
    1. Engvig A, Fjell AM, Westlye LT, Moberget T, Sundseth Ø et al... (2011) Memory training impacts short-term changes in aging white matter: A longitudinal diffusion tensor imaging study. Hum Brain Mapp. doi:10.1002/hbm.21370.
    1. Chen L, Lui S, Wu QZ, Zhang W, Zhou D et al... (2011) Impact of acute stress on human brain microstructure: An MR diffusion study of earthquake survivors. Hum Brain Mapp. doi:10.1002/hbm.21438.
    1. Burzynska AZ, Preuschhof C, Bäckman L, Nyberg L, Li SC, et al. (2010) Age-related differences in white matter microstructure: region-specific patterns of diffusivity. Neuroimage 49(3): 2104–12.
    1. Luders E, Toga AW, Lepore N, Gaser C (2009) The underlying anatomical correlates of long-term meditation: Larger hippocampal and frontal volumes of gray matter. Neuroimage 45: 672–78.
    1. Hölzel BK, Carmody J, Vangel M, Congleton C, Yerramsetti SM, et al. (2011) Mindfulness practice leads to increases in regional brain gray matter density. Psychiatry Research 191: 36–43.
    1. Kantarci K, Jack CR Jr, Xu YC, Campeau NG, O’Brien PC, et al. (2001) Mild cognitive impairment and Alzheimer disease: regional diffusivity of water. Radiology 219: 101–07.
    1. Sandson TA, Felician O, Edelman RR, Warach S (1999) Diffusion-weighted magnetic resonance imaging in Alzheimer’s disease. Dement Geriatr Cogn Disord 10: 166–71.
    1. Büchel C, Raedler T, Sommer M, Sach M, Weiller C, et al. (2004) White matter asymmetry in the human brain: a diffusion tensor MRI study. Cereb Cortex 14: 945–951.
    1. Grant JA, Courtemanche J, Duerden EG, Duncan GH, Rainville P (2010) Cortical thickness and pain sensitivity in Zen meditators. Emotion 10: 43–53.
    1. Biber K, Vinet J, Boddeke HW (2008) Neuron-microglia signaling: chemokines as versatile messengers. J. Neuroimmunol 198: 69–74.
    1. Streit WJ (2002) Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 40, 133–139.

Source: PubMed

3
Předplatit