Impact of [18F]FDG-PET and [18F]FLT-PET-Parameters in Patients with Suspected Relapse of Irradiated Lung Cancer

Tine N Christensen, Seppo W Langer, Gitte Persson, Klaus Richter Larsen, Annemarie G Amtoft, Sune H Keller, Andreas Kjaer, Barbara Malene Fischer, Tine N Christensen, Seppo W Langer, Gitte Persson, Klaus Richter Larsen, Annemarie G Amtoft, Sune H Keller, Andreas Kjaer, Barbara Malene Fischer

Abstract

Radiation-induced changes may cause a non-malignant high 2-deoxy-2-[18F]fluoro-d-glucose (FDG)-uptake. The 3'-deoxy-3'-[18F]fluorothymidine (FLT)-PET/CT performs better in the differential diagnosis of inflammatory changes and lung lesions with a higher specificity than FDG-PET/CT. We investigated the association between post-radiotherapy FDG-PET-parameters, FLT-PET-parameters, and outcome. Sixty-one patients suspected for having a relapse after definitive radiotherapy for lung cancer were included. All the patients had FDG-PET/CT and FLT-PET/CT. FDG-PET- and FLT-PET-parameters were collected from within the irradiated high-dose volume (HDV) and from recurrent pulmonary lesions. For associations between PET-parameters and relapse status, respectively, the overall survival was analyzed. Thirty patients had a relapse, of these, 16 patients had a relapse within the HDV. FDG-SUVmax and FLT-SUVmax were higher in relapsed HDVs compared with non-relapsed HDVs (median FDG-SUVmax: 12.8 vs. 4.2; p < 0.001; median FLT-SUVmax 3.9 vs. 2.2; p < 0.001). A relapse within HDV had higher FDG-SUVpeak (median FDG-SUVpeak: 7.1 vs. 3.5; p = 0.014) and was larger (median metabolic tumor volume (MTV50%): 2.5 vs. 0.7; 0.014) than the relapsed lesions outside of HDV. The proliferative tumor volume (PTV50%) was prognostic for the overall survival (hazard ratio: 1.07 pr cm3 [1.01-1.13]; p = 0.014) in the univariate analysis, but not in the multivariate analysis. FDG-SUVmax and FLT-SUVmax may be helpful tools for differentiating the relapse from radiation-induced changes, however, they should not be used definitively for relapse detection.

Keywords: FDG-PET/CT; FLT-PET/CT; MTV; PTV; SUVmax; lung cancer; prognosis; relapse diagnosis.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Patient with relapse in the irradiated high-dose volume (HDV). (a) HDV defined as the volume irradiated with >50% of max from the radiotherapy plan. The patient received two Gy × 33 for a T3N1M0 tumor in the left upper lobe. FDG-PET/CT (b) and FLT-PET/CT (c) 7 months after the end of radiotherapy both showed a high tracer uptake. SUV: Standardized uptake value.
Figure 2
Figure 2
Patient with radiation-induced changes in HDV. (a) HDV defined as volume irradiated with >50% of max from the radiotherapy plan. The patient received SBRT (22 Gy × 3) for a T1N0M0 tumor in the right lower lobe. (b) FDG-PET/CT and (c) FLT-PET/CT 13 months after the end of radiotherapy showed only a faint shadow of FDG- and FLT-uptake in the HDV.
Figure 3
Figure 3
Correlation of (a) FDG-SUVmax and FLT-SUVmax with linear fit (R = 0.804; p < 0.001; spearman’s correlation), and (b) FDG-SUVpeak and FLT-SUVpeak with linear fit (R = 0.770; p < 0.001; spearman’s correlation).
Figure 4
Figure 4
Scatter plot of SUVmax in HDV vs. time from the end of radiotherapy to the suspicion of relapse with a linear fit stratified by the relapse status. (a) FDG-SUVmax; (b) FLT-SUVmax.
Figure 5
Figure 5
Boxplots of FDG- and FLT-SUVmax in HDV with relapse vs. HDV without relapse in patients with irradiated lung cancer.
Figure 6
Figure 6
Receiver operating characteristic (ROC) curves for the relapse diagnosis with FDG-SUVmax (a) and FLT-SUVmax (b).
Figure 7
Figure 7
Scatter plot of sensitivity and specificity of FDG-SUVmax (a) and FLT-SUVmax (b) in HDV with variable cutoffs.

References

    1. Matsuo Y. A Systematic Literature Review on Salvage Radiotherapy for Local or Regional Recurrence After Previous Stereotactic Body Radiotherapy for Lung Cancer. Technol. Cancer Res. Treat. 2018;17:1533033818798633. doi: 10.1177/1533033818798633.
    1. Sheikhbahaei S., Mena E., Yanamadala A., Reddy S., Solnes L.B., Wachsmann J., Subramaniam R.M. The Value of FDG PET/CT in Treatment Response Assessment, Follow-Up, and Surveillance of Lung Cancer. AJR Am. J. Roentgenol. 2017;208:420–433. doi: 10.2214/AJR.16.16532.
    1. Postmus P.E., Kerr K.M., Oudkerk M., Senan S., Waller D.A., Vansteenkiste J., Escriu C., Peters S., Committee E.G. Early and locally advanced non-small-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2017;28((Suppl. 4)):iv1–iv21. doi: 10.1093/annonc/mdx222.
    1. Christensen T.N., Langer S.W., Persson G.F., Larsen K.R., Loft A., Amtoft A.G., Berthelsen A.K., Johannesen H.H., Keller S.H., Kjaer A., et al. (18)F-FLT-PET/CT adds value to (18)F-FDG-PET/CT for diagnosing relapse after definitive radiotherapy in patients with lung cancer. Results of a prospective clinical trial. J. Nucl. Med. 2020 doi: 10.2967/jnumed.120.247742.
    1. Inoue T., Kim E.E., Komaki R., Wong F.C., Bassa P., Wong W.H., Yang D.J., Endo K., Podoloff D.A. Detecting recurrent or residual lung cancer with FDG-PET. J. Nucl. Med. 1995;36:788–793.
    1. Nakajima N., Sugawara Y., Kataoka M., Hamamoto Y., Ochi T., Sakai S., Takahashi T., Kajihara M., Teramoto N., Yamashita M., et al. Differentiation of tumor recurrence from radiation-induced pulmonary fibrosis after stereotactic ablative radiotherapy for lung cancer: Characterization of 18F-FDG PET/CT findings. Ann. Nucl. Med. 2013;27:261–270. doi: 10.1007/s12149-012-0682-4.
    1. Matsuo Y., Nakamoto Y., Nagata Y., Shibuya K., Takayama K., Norihisa Y., Narabayashi M., Mizowaki T., Saga T., Higashi T., et al. Characterization of FDG-PET images after stereotactic body radiation therapy for lung cancer. Radiother. Oncol. 2010;97:200–204. doi: 10.1016/j.radonc.2010.04.011.
    1. Hoopes D.J., Tann M., Fletcher J.W., Forquer J.A., Lin P.F., Lo S.S., Timmerman R.D., McGarry R.C. FDG-PET and stereotactic body radiotherapy (SBRT) for stage I non-small-cell lung cancer. Lung Cancer. 2007;56:229–234. doi: 10.1016/j.lungcan.2006.12.009.
    1. Hoeben B.A., Troost E.G., Bussink J., van Herpen C.M., Oyen W.J., Kaanders J.H. 18F-FLT PET changes during radiotherapy combined with cetuximab in head and neck squamous cell carcinoma patients. Nukl. Nucl. Med. 2014;53 doi: 10.3413/Nukmed-0625-13-09.
    1. Hoshikawa H., Mori T., Kishino T., Yamamoto Y., Inamoto R., Akiyama K., Mori N., Nishiyama Y. Changes in (18)F-fluorothymidine and (18)F-fluorodeoxyglucose positron emission tomography imaging in patients with head and neck cancer treated with chemoradiotherapy. Ann. Nucl. Med. 2013;27:363–370. doi: 10.1007/s12149-013-0694-8.
    1. Hoeben B.A., Troost E.G., Span P.N., van Herpen C.M., Bussink J., Oyen W.J., Kaanders J.H. 18F-FLT PET during radiotherapy or chemoradiotherapy in head and neck squamous cell carcinoma is an early predictor of outcome. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2013;54:532–540. doi: 10.2967/jnumed.112.105999.
    1. Cho L.P., Kim C.K., Viswanathan A.N. Pilot study assessing (18)F-fluorothymidine PET/CT in cervical and vaginal cancers before and after external beam radiation. Gynecol. Oncol. Rep. 2015;14:34–37. doi: 10.1016/j.gore.2015.10.003.
    1. Everitt S.J., Ball D.L., Hicks R.J., Callahan J., Plumridge N., Collins M., Herschtal A., Binns D., Kron T., Schneider M., et al. Differential (18)F-FDG and (18)F-FLT Uptake on Serial PET/CT Imaging Before and During Definitive Chemoradiation for Non-Small Cell Lung Cancer. J. Nucl. Med. 2014;55:1069–1074. doi: 10.2967/jnumed.113.131631.
    1. Vera P., Bohn P., Edet-Sanson A., Salles A., Hapdey S., Gardin I., Menard J.F., Modzelewski R., Thiberville L., Dubray B. Simultaneous positron emission tomography (PET) assessment of metabolism with (1)(8)F-fluoro-2-deoxy-d-glucose (FDG), proliferation with (1)(8)F-fluoro-thymidine (FLT), and hypoxia with (1)(8)fluoro-misonidazole (F-miso) before and during radiotherapy in patients with non-small-cell lung cancer (NSCLC): A pilot study. Radiother. Oncol. 2011;98:109–116. doi: 10.1016/j.radonc.2010.10.011.
    1. Everitt S., Hicks R.J., Ball D., Kron T., Schneider-Kolsky M., Walter T., Binns D., Mac Manus M. Imaging cellular proliferation during chemo-radiotherapy: A pilot study of serial 18F-FLT positron emission tomography/computed tomography imaging for non-small-cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 2009;75:1098–1104. doi: 10.1016/j.ijrobp.2008.12.039.
    1. Trigonis I., Koh P.K., Taylor B., Tamal M., Ryder D., Earl M., Anton-Rodriguez J., Haslett K., Young H., Faivre-Finn C., et al. Early reduction in tumour [18F]fluorothymidine (FLT) uptake in patients with non-small cell lung cancer (NSCLC) treated with radiotherapy alone. Eur. J. Nucl. Med. Mol. Imaging. 2014;41:682–693. doi: 10.1007/s00259-013-2632-3.
    1. Wang Z., Wang Y., Sui X., Zhang W., Shi R., Zhang Y., Dang Y., Qiao Z., Zhang B., Song W., et al. Performance of FLT-PET for pulmonary lesion diagnosis compared with traditional FDG-PET: A meta-analysis. Eur. J. Radiol. 2015;84:1371–1377. doi: 10.1016/j.ejrad.2015.03.025.
    1. Hiniker S.M., Sodji Q., Quon A., Gutkin P.M., Arksey N., Graves E.E., Chin F.T., Maxim P.G., Diehn M., Loo B.W., Jr. FLT-PET-CT for the Detection of Disease Recurrence After Stereotactic Ablative Radiotherapy or Hyperfractionation for Thoracic Malignancy: A Prospective Pilot Study. Front. Oncol. 2019;9:467. doi: 10.3389/fonc.2019.00467.
    1. Saga T., Koizumi M., Inubushi M., Yoshikawa K., Tanimoto K., Fukumura T., Miyamoto T., Nakajima M., Yamamoto N., Baba M. PET/CT with 3’-deoxy-3’-[18F]fluorothymidine for lung cancer patients receiving carbon-ion radiotherapy. Nucl. Med. Commun. 2011;32:348–355. doi: 10.1097/MNM.0b013e328344a427.
    1. Lopez Guerra J.L., Gladish G., Komaki R., Gomez D., Zhuang Y., Liao Z. Large decreases in standardized uptake values after definitive radiation are associated with better survival of patients with locally advanced non-small cell lung cancer. J. Nucl. Med. 2012;53:225–233. doi: 10.2967/jnumed.111.096305.
    1. Bollineni V.R., Widder J., Pruim J., Langendijk J.A., Wiegman E.M. Residual (1)(8)F-FDG-PET uptake 12 weeks after stereotactic ablative radiotherapy for stage I non-small-cell lung cancer predicts local control. Int. J. Radiat. Oncol. Biol. Phys. 2012;83:e551-5. doi: 10.1016/j.ijrobp.2012.01.012.
    1. Pierson C., Grinchak T., Sokolovic C., Holland B., Parent T., Bowling M., Arastu H., Walker P., Ju A. Response criteria in solid tumors (PERCIST/RECIST) and SUVmax in early-stage non-small cell lung cancer patients treated with stereotactic body radiotherapy. Radiat. Oncol. 2018;13:34. doi: 10.1186/s13014-018-0980-7.
    1. Lee J., Kim J.O., Jung C.K., Kim Y.S., Yoo Ie R., Choi W.H., Jeon E.K., Hong S.H., Chun S.H., Kim S.J., et al. Metabolic activity on [18f]-fluorodeoxyglucose-positron emission tomography/computed tomography and glucose transporter-1 expression might predict clinical outcomes in patients with limited disease small-cell lung cancer who receive concurrent chemoradiation. Clin. Lung Cancer. 2014;15:e13-21. doi: 10.1016/j.cllc.2013.09.005.
    1. Boellaard R., Delgado-Bolton R., Oyen W.J., Giammarile F., Tatsch K., Eschner W., Verzijlbergen F.J., Barrington S.F., Pike L.C., Weber W.A., et al. European Association of Nuclear M. FDG PET/CT: EANM procedure guidelines for tumour imaging: Version 2.0. Eur. J. Nucl. Med. Mol. Imaging. 2015;42:328–354. doi: 10.1007/s00259-014-2961-x.
    1. Shusharina N., Cho J., Sharp G.C., Choi N.C. Correlation of (18)F-FDG avid volumes on pre-radiation therapy and post-radiation therapy FDG PET scans in recurrent lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 2014;89:137–144. doi: 10.1016/j.ijrobp.2014.01.047.
    1. Jones M.P., Hruby G., Metser U., Sridharan S., Capp A., Kumar M., Gallagher S., Rutherford N., Holder C., Oldmeadow C., et al. FDG-PET parameters predict for recurrence in anal cancer-results from a prospective, multicentre clinical trial. Radiat. Oncol. 2019;14:140. doi: 10.1186/s13014-019-1342-9.
    1. Boellaard R., O’Doherty M.J., Weber W.A., Mottaghy F.M., Lonsdale M.N., Stroobants S.G., Oyen W.J., Kotzerke J., Hoekstra O.S., Pruim J., et al. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: Version 1.0. Eur. J. Nucl. Med. Mol. Imaging. 2010;37:181–200. doi: 10.1007/s00259-009-1297-4.
    1. Van Waarde A., Cobben D.C., Suurmeijer A.J., Maas B., Vaalburg W., de Vries E.F., Jager P.L., Hoekstra H.J., Elsinga P.H. Selectivity of 18F-FLT and 18F-FDG for differentiating tumor from inflammation in a rodent model. J. Nucl. Med. 2004;45:695–700.
    1. Lee T.S., Ahn S.H., Moon B.S., Chun K.S., Kang J.H., Cheon G.J., Choi C.W., Lim S.M. Comparison of 18F-FDG, 18F-FET and 18F-FLT for differentiation between tumor and inflammation in rats. Nucl. Med. Biol. 2009;36:681–686. doi: 10.1016/j.nucmedbio.2009.03.009.
    1. Yue J., Chen L., Cabrera A.R., Sun X., Zhao S., Zheng F., Han A., Zheng J., Teng X., Ma L., et al. Measuring tumor cell proliferation with 18F-FLT PET during radiotherapy of esophageal squamous cell carcinoma: A pilot clinical study. J. Nucl. Med. 2010;51:528–534. doi: 10.2967/jnumed.109.072124.
    1. Andersen F.L., Klausen T.L., Loft A., Beyer T., Holm S. Clinical evaluation of PET image reconstruction using a spatial resolution model. Eur. J. Radiol. 2013;82:862–869. doi: 10.1016/j.ejrad.2012.11.015.
    1. Riegler G., Karanikas G., Rausch I., Hirtl A., El-Rabadi K., Marik W., Pivec C., Weber M., Prosch H., Mayerhoefer M. Influence of PET reconstruction technique and matrix size on qualitative and quantitative assessment of lung lesions on [18F]-FDG-PET: A prospective study in 37 cancer patients. Eur. J. Radiol. 2017;90:20–26. doi: 10.1016/j.ejrad.2017.02.023.
    1. He Y.Q., Gong H.L., Deng Y.F., Li W.M. Diagnostic efficacy of PET and PET/CT for recurrent lung cancer: A meta-analysis. Acta Radiol. 2014;55:309–317. doi: 10.1177/0284185113498536.
    1. Hellwig D., Groschel A., Graeter T.P., Hellwig A.P., Nestle U., Schafers H.J., Sybrecht G.W., Kirsch C.M. Diagnostic performance and prognostic impact of FDG-PET in suspected recurrence of surgically treated non-small cell lung cancer. Eur. J. Nucl. Med. Mol. Imaging. 2006;33:13–21. doi: 10.1007/s00259-005-1919-4.
    1. Im H.J., Pak K., Cheon G.J., Kang K.W., Kim S.J., Kim I.J., Chung J.K., Kim E.E., Lee D.S. Prognostic value of volumetric parameters of (18)F-FDG PET in non-small-cell lung cancer: A meta-analysis. Eur. J. Nucl. Med. Mol. Imaging. 2015;42:241–251. doi: 10.1007/s00259-014-2903-7.
    1. Nygard L., Vogelius I.R., Fischer B.M., Kjaer A., Langer S.W., Aznar M.C., Persson G.F., Bentzen S.M. A Competing Risk Model of First Failure Site after Definitive Chemoradiation Therapy for Locally Advanced Non-Small Cell Lung Cancer. J. Thorac. Oncol. 2018;13:559–567. doi: 10.1016/j.jtho.2017.12.011.
    1. Scheffler M., Zander T., Nogova L., Kobe C., Kahraman D., Dietlein M., Papachristou I., Heukamp L., Buttner R., Boellaard R., et al. Prognostic impact of [18F]fluorothymidine and [18F]fluoro-D-glucose baseline uptakes in patients with lung cancer treated first-line with erlotinib. PLoS ONE. 2013;8:e53081. doi: 10.1371/journal.pone.0053081.

Source: PubMed

3
Předplatit