Anti-Microbial and Remineralizing Properties of Self-Adhesive Orthodontic Resin Containing Mesoporous Bioactive Glass

Aerin Choi, Kyung-Hyeon Yoo, Seog-Young Yoon, Bong-Soo Park, In-Ryoung Kim, Yong-Il Kim, Aerin Choi, Kyung-Hyeon Yoo, Seog-Young Yoon, Bong-Soo Park, In-Ryoung Kim, Yong-Il Kim

Abstract

Self-adhesive resins (SARs) contain adhesives, which simplify the procedures of resin application, and primers, which provide sufficient bonding ability. In this study, mesoporous bioactive glass nanoparticles (MBN) were added to a SAR to easily improve the physical properties and remineralization ability. The experimental resins comprised 1%, 3%, and 5% MBN mixed in Ortho Connect Flow (GC Corp, Tokyo, Japan). As the MBN content in the SAR increased, the microhardness increased, and a statistically significant difference was observed between the cases of 1% and 5% MBN addition. Shear bond strength increased for 1% and 3% MBN samples and decreased for 5% MBN. The addition of MBN indicated a statistically significant antibacterial effect on both gram-negative and gram-positive bacteria. The anti-demineralization experiment showed that the remineralization length increased with the MBN content of the sample. Through the above results, we found that SAR containing MBN has antibacterial and remineralization effects. Thus, by adding MBN to the SAR, we investigated the possibility of orthodontic resin development, wherein the strength is enhanced and the drawbacks of the conventional SAR addressed.

Keywords: antibacterial; mesoporous bioactive glass nanoparticles; remineralization; self-adhesive resin.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Resin Discs (SAR, SAR + 1% MBN, SAR + 3% MBN, SAR + 5% MBN, scale bar: 10 mm).
Figure 2
Figure 2
Micro CT images of the resin discs; (a) control (SAR); (b) SAR + 1% MBN; (c) SAR + 3% MBN; and (d) SAR + 5% MBN.
Figure 3
Figure 3
(a) FT-IR spectra; (b) XRD pattern; and (c) TEM image of the synthesized MBN.
Figure 4
Figure 4
(a) SEM images; and (b) XRD patterns of SAR with different amounts of MBN.
Figure 5
Figure 5
Comparison of shear bond strength (SBS) between the commercial control (Transbond XT), control (SAR), and MBN-treated SAR groups. Labels with the same letters indicate no statistically significant differences between groups. One-way ANOVA was performed (n = 20).
Figure 6
Figure 6
Microhardness comparison between control (SAR) and MBN-incorporated SAR. Labels with the same letters indicate no statistically significant difference between the groups. One-way ANOVA was performed (n = 20).
Figure 7
Figure 7
Anti-bacterial effect test of the control (SAR) and MBN-incorporated SAR groups. Labels with the same letters indicate no statistically significant difference between the groups. One-way ANOVA was performed (n = 3). (a) S. mutans, (b) P. gingivalis.
Figure 8
Figure 8
FTIR spectra of SAR and SAR + 1, 3, and 5% MBN; (a) 4000–400 cm−1; (b) 1800–1550 cm−1; and (c) degree of conversion value of the control (SAR) and MBN-incorporated SAR groups (n = 5).
Figure 9
Figure 9
Anti-demineralization test result on the control (SAR) and MBN-incorporated SAR groups. Labels with the same letters indicate no statistically significant difference between the groups. One-way ANOVA was performed (n = 5).

References

    1. Latta M.A., Radniecki S.M. Bond Strength of Self-Adhesive Restorative Materials Affected by Smear Layer Thickness but not Dentin Desiccation. J. Adhes. Dent. 2020;22:79–84.
    1. Chantchaimongkol S., Sirivimol Srisawasdi D. Microtensile Bond. Strength of Self-Adhesive Resin Composite to Dentin. Chulalongkorn University; Bangkok, Thailand: 2013.
    1. Van Meerbeek B., De Munck J., Yoshida Y., Inoue S., Vargas M., Vijay P., Van Landuyt K., Lambrechts P., Vanherle G. Buonocore memorial lecture. Adhesion to enamel and dentin: Current status and future challenges. Oper. Dent. 2003;28:215–235.
    1. Poitevin A., De Munck J., Van Ende A., Suyama Y., Mine A., Peumans M., Van Meerbeek B. Bonding effectiveness of self-adhesive composites to dentin and enamel. Dent. Mater. 2013;29:221–230. doi: 10.1016/j.dental.2012.10.001.
    1. Rodrigues D.S., Buciumeanu M., Martinelli A.E., Nascimento R.M.D., Henriques B., Silva F., Souza J.C.M. Mechanical Strength and Wear of Dental Glass-Ionomer and Resin Composites Affected by Porosity and Chemical Composition. J. Bio- Tribo-Corros. 2015;1:24. doi: 10.1007/s40735-015-0025-9.
    1. Chen Q., Zhao Y., Wu W., Xu T., Fong H. Fabrication and evaluation of Bis-GMA/TEGDMA dental resins/composites containing halloysite nanotubes. Dent. Mater. 2012;28:1071–1079. doi: 10.1016/j.dental.2012.06.007.
    1. Van Meerbeek B., Yoshihara K., Yoshida Y., Mine A., De Munk J., Van Landuyt K.L. State of the art of self-etch adhesives. Dent. Mater. 2011;27:17–28. doi: 10.1016/j.dental.2010.10.023.
    1. Latta M.A., Tsujimoto A., Takamizawa T., Barkmeier W.W. In Vitro Wear Resistance of Self-Adhesive Restorative Materials. J. Adhes. Dent. 2020;22:59–64.
    1. Hosseinipour Z.S., Heidari A., Shahrabi M., Poorzandpoush K. Microleakage of a Self-Adhesive Flowable Composite, a Self-Adhesive Fissure Sealant and a Conventional Fissure Sealant in Permanent Teeth with/without Saliva Contamination. Front. Dent. 2019;16:239.
    1. El-Fiqi A., Lee J.H., Lee E.-J., Kim H.-W. Collagen hydrogels incorporated with surface-aminated mesoporous nanobioactive glass: Improvement of physicochemical stability and mechanical properties is effective for hard tissue engineering. Acta Biomater. 2013;9:9508–9521. doi: 10.1016/j.actbio.2013.07.036.
    1. Jang J.-H., Lee M.G., Ferracane J.L., Davis H., Bae H.E., Choi D., Kim D.-S. Effect of bioactive glass-containing resin composite on dentin remineralization. J. Dent. 2018;75:58–64. doi: 10.1016/j.jdent.2018.05.017.
    1. Thompson I.D., Hench L.L. Mechanical properties of bioactive glasses, glass-ceramics and composites. Proc. Inst. Mech. Eng. Part. H J. Eng. Med. 1998;212:127–136. doi: 10.1243/0954411981533908.
    1. Hench L.L. The story of Bioglass. J. Mater. Sci. Mater. Med. 2006;17:967–978. doi: 10.1007/s10856-006-0432-z.
    1. Vidor M.M., Felix R., Marchioro E.M., Hahn L. Enamel surface evaluation after bracket debonding and different resin removal methods. Dent. Press J. Orthod. 2015;20:61–67. doi: 10.1590/2176-9451.20.2.061-067.oar.
    1. Xia W., Chang J. Preparation and characterization of nano-bioactive-glasses (NBG) by a quick alkali-mediated sol–gel method. Mater. Lett. 2007;61:3251–3253. doi: 10.1016/j.matlet.2006.11.048.
    1. Park S.Y., Yoo K.-H., Yoon S.-Y., Son W.-S., Kim Y.-I. Synergetic Effect of 2-Methacryloyloxyethyl Phosphorylcholine and Mesoporous Bioactive Glass Nanoparticles on Antibacterial and Anti-Demineralisation Properties in Orthodontic Bonding Agents. Nanomaterials. 2020;10:1282. doi: 10.3390/nano10071282.
    1. Collares F.M., Portella F.F., Leitune V.C.B., Samuel S.M.W. Discrepancies in degree of conversion measurements by FTIR. Braz. Oral Res. 2014;28:9–15.
    1. Cui T., Luo W., Xu L., Yang B., Zhao W., Cang H. Progress of Antimicrobial Discovery Against the Major Cariogenic Pathogen Streptococcus mutans. Curr. Issues Mol. Biol. 2019;32:601–644. doi: 10.21775/cimb.032.601.
    1. Hajishengallis G., Darveau R.P., Curtis M.A. The keystone-pathogen hypothesis. Nat. Rev. Microbiol. 2012;10:717–725. doi: 10.1038/nrmicro2873.
    1. Bishara S.E., Ajlouni R., Laffoon J.F., Warren J.J. Comparison of shear bond strength of two self-etch primer/adhesive sys-tems. Angle Orthod. 2006;76:123–126.
    1. Stookey G.K., Featherstone J.D.B., Rapozo-Hilo M., Schemehorn B.R., Williams R.A., Baker R.A., Barker M.L., Kaminski M.A., McQueen C.M., Amburgey J.S., et al. The Featherstone laboratory pH cycling model: A prospective, multi-site validation exercise. Am. J. Dent. 2011;24:322.
    1. Bae J., Son W.S., Yoo K.H., Yoon S.Y., Bae M.K., Lee D.J., Ko C.-C., Choi Y.K., Kim Y.I. Effects of Poly (Am-idoamine) Dendrimer-Coated Mesoporous Bioactive Glass Nanoparticles on Dentin Remineralization. Nanomaterials. 2019;9:591. doi: 10.3390/nano9040591.
    1. Son S.-A., Kim D.-H., Yoo K.-H., Yoon S.-Y., Kim Y.-I. Mesoporous Bioactive Glass Combined with Graphene Oxide Quantum Dot as a New Material for a New Treatment Option for Dentin Hypersensitivity. Nanomaterials. 2020;10:621. doi: 10.3390/nano10040621.
    1. Antony G.J.M., Raja S., Aruna S.T., Jarali C.S. Effect of the addition of diurethane dimethacrylate on the chemical and mechanical properties of tBA-PEGDMA acrylate based shape memory polymer network. J. Mech. Behav. Biomed. Mater. 2020;110:103951. doi: 10.1016/j.jmbbm.2020.103951.
    1. Shapinko Y., Eleftheriadi I., Brosh T., Adler-Abramovich L., Davidovitch M., Sella-Tunis T., Sarig R., Shpack N. Evaluation of an Orthodontic Adhesive with Combined Primer and Composite. Open J. Stomatol. 2018;08:205–216. doi: 10.4236/ojst.2018.86020.
    1. Khvostenko D., Mitchell J., Hilton T., Ferracane J., Kruzic J. Mechanical performance of novel bioactive glass containing dental restorative composites. Dent. Mater. 2013;29:1139–1148. doi: 10.1016/j.dental.2013.08.207.
    1. Tiskaya M., Shahid S., Gillam D., Hill R. The use of bioactive glass (BAG) in dental composites: A critical review. Dent. Mater. 2021;37:296–310. doi: 10.1016/j.dental.2020.11.015.
    1. Par M., Spanovic N., Tauböck T.T., Attin T., Tarle Z. Degree of conversion of experimental resin composites containing bioactive glass 45S5: The effect of post-cure heating. Sci. Rep. 2019;9:17245. doi: 10.1038/s41598-019-54035-y.
    1. Drago L., Toscano M., Bottagisio M. Recent Evidence on Bioactive Glass Antimicrobial and Antibiofilm Activity: A Mini-Review. Materials. 2018;11:326. doi: 10.3390/ma11020326.
    1. Zhang D., Leppäranta O., Munukka E., Ylänen H., Viljanen M.K., Eerola E., Hupa M., Hupa L. Antibacterial effects and dissolution behavior of six bioactive glasses. J. Biomed. Mater. Res. Part A. 2009;93:475–483. doi: 10.1002/jbm.a.32564.
    1. Liu R., Memarzadeh K., Chang B., Zhang Y., Ma Z., Allaker R.P., Ren L., Yang K. Antibacterial effect of copper-bearing titanium alloy (Ti-Cu) against Streptococcus mutans and Porphyromonas gingivalis. Sci. Rep. 2016;6:29985. doi: 10.1038/srep29985.
    1. Martins C.H.G., Carvalho T.C., Souza M.G.M., Ravagnani C., Peitl O., Zanotto E.D., Panzeri H., Casemiro L.A. As-sessment of antimicrobial effect of Biosilicate® against anaerobic, microaerophilic and facultative anaerobic microorganisms. J. Mater. Sci. Mater. Med. 2011;22:1439–1446. doi: 10.1007/s10856-011-4330-7.
    1. Prabhakar A., Jibi Paul M., Basappa N. Comparative evaluation of the remineralizing effects and surface micro hardness of glass ionomer cements containing bioactive glass (S53P4): An in vitro study. Int. J. Clin. Pediatr. Dent. 2010;3:69. doi: 10.5005/jp-journals-10005-1057.
    1. Hassanein O.E., El-Brolossy T. An Investigation about the Reminerlization Potential of Bio-active glass on Artificially Carious Enamel and Dentin using Raman Spectroscopy. Egypt. Dent. J. 2003;49:381–392.
    1. Nam H.-J., Kim Y.-M., Kwon Y.H., Yoo K.-H., Yoon S.-Y., Kim I.-R., Park B.-S., Son W.-S., Lee S.-M., Kim Y.-I. Fluorinated Bioactive Glass Nanoparticles: Enamel Demineralization Prevention and Antibacterial Effect of Orthodontic Bonding Resin. Materials. 2019;12:1813. doi: 10.3390/ma12111813.
    1. Lee S.-M., Yoo K.-H., Yoon S.-Y., Kim I.-R., Park B.-S., Son W.-S., Ko C.-C., Son S.-A., Kim Y.-I. Enamel Anti-Demineralization Effect of Orthodontic Adhesive Containing Bioactive Glass and Graphene Oxide: An In-Vitro Study. Materials. 2018;11:1728. doi: 10.3390/ma11091728.
    1. Song H.-K., Yoo K.-H., Yoon S.-Y., Na H.S., Chung J., Son W.-S., Lee S.-M., Kim Y.-I. In Vitro Effect of Gallium-Doped Bioactive Glass on Enamel Anti-Demineralization and Bond Strength of Orthodontic Resins. Appl. Sci. 2019;9:4918. doi: 10.3390/app9224918.

Source: PubMed

3
Předplatit