Non-Invasive Strategies for Nose-to-Brain Drug Delivery

J T Trevino, R C Quispe, F Khan, V Novak, J T Trevino, R C Quispe, F Khan, V Novak

Abstract

Intranasal drug administration is a promising method for delivering drugs directly to the brain. Animal studies have described pathways and potential brain targets, but nose-to-brain delivery and treatment efficacy in humans remains debated. We describe the proposed pathways and barriers for nose-to-brain drug delivery in humans, drug properties that influence central nervous system delivery, clinically tested methods to enhance absorption, and the devices used in clinical trials. This review compiles the available evidence for nose-to-brain drug delivery in humans and summarizes the factors involved in nose-to-brain drug delivery.

Keywords: Bioavailability; Biodistribution; Devices; Intranasal administration; Nose-to-brain.

Figures

Figure 1:
Figure 1:
Nose-to-brain delivery pathways. The target region for effective nose-to-brain drug delivery is the olfactory epithelium in the upper nasal cavity. This region contains olfactory nerve cells which bypass the BBB & provide direct access to the brain & CSF. Nose-to-brain transport is depicted by the solid lines; clearance is depicted by the dotted lines. The box shows transport through the following routes: perivascular pump, bulk flow, lymphatic drainage, & endoneural transport through the olfactory & trigeminal nerves. Minimal amounts of intranasally administered drug may enter the CNS via carotid artery branches; the main limiting barrier for this route is vascular endothelium permeability. Systemic absorption through the nasal mucosa is not significant.

References

    1. GBD 2016 neurology collaborators. Global, regional, and national burden of neurological disorders, 1990–2016: A systematic analysis for the global burden of disease study 2016. Lancet Neurol 2019;18(5):459–480.
    1. Dong X Current strategies for brain drug delivery. Theranostics. 2018;8(6):1481–1493.
    1. Erdő F, Bors LA, Farkas D, Bajza Á, Gizurarson S. Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res Bull. 2018;143:155–170.
    1. Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton A, et al. Intranasal insulin therapy for alzheimer disease and amnestic mild cognitive impairment: A pilot clinical trial. AMA. 2012; 69(1):29–38.
    1. Dhuria SV, Hanson LR, Frey WH II. Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci. 2010;99(4):1654–1673.
    1. Lioutas VA, Alfaro-Martinez F, Bedoya F, Chung CC, Pimentel DA, Novak V. Intranasal insulin and insulin-like growth factor 1 as neuroprotectants in acute ischemic stroke. Transl Stroke Res. 2015;6(4):264–275.
    1. Explanation of the 2011 OCEBM Levels of Evidence — Centre for Evidence-Based Medicine (CEBM), University of Oxford. 2011.
    1. Jones N The nose and paranasal sinuses physiology and anatomy. Adv Drug Deliv Rev. 2001;519(1–3):5–19.
    1. Warnken ZN, Smyth HDC, Watts AB, Weitman SD, Kuhn JG, Williams RO. Formulation and device design to increase nose to brain drug delivery. J Drug Deliv Sci Technol. 2016;3:213–222.
    1. Crowe TP, Greenlee MHW, Kanthasamy AG, Hsu WH. Mechanism of intranasal drug delivery directly to the brain. Life Sciences. 2018;195:44–52.
    1. Lochhead L, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev. 2011;64:614–628.
    1. Lochhead JJ, Kellohen KL, Ronaldson PT, Davis TP. Distribution of insulin in trigeminal nerve and brain after intranasal administration. Scientific reports. 2019;9(1):1–9.
    1. Thorne RG, Hanson LR, Ross TM, Tung D, Frey Ii WH. Delivery of interferon-ő to the monkey nervous system following intranasal administration. Neurosci. 2008;152(3):785–797.
    1. Pardeshi CV, Belgamwar VS. Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood–brain barrier: An excellent platform for brain targeting. Expert opinion drug del. 2013;10(7):957–972.
    1. Illum L Is nose-to-brain transport of drugs in man a reality. J Pharm Pharmacol. 2004;56:3–17.
    1. Lochhead JJ, Wolak DJ, Pizzo ME, Thorne RG. Rapid transport within cerebral perivascular spaces underlies widespread tracer distribution in the brain after intranasal administration. J Cereb Blood Flow Metab. 2015;35(3):371–381.
    1. Thorne RG, Pronk GJ, Padmanabhan V, Frey Ii WH. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neurosci. 2004;127(2):481–496.
    1. Gänger S, Schindowski K. Tailoring formulations for intranasal nose-to-brain delivery: A review on architecture, physico-chemical characteristics and mucociliary clearance of the nasal olfactory mucosa. Pharmaceutics. 2018;10(3):116.
    1. Bhise S, Yadav A, Avachat A, Malayandi R. Bioavailability of intranasal drug delivery system. Asian J Pharm. 2018; 2:201.
    1. Illum L Transport of drugs from the nasal cavity to the central nervous system, Eur J Pharm. 2000;11:1–18.
    1. Ruigrok MJ, De Lange EC. Emerging insights for translational pharmacokinetic and pharmacokinetic-pharmacodynamic studies: Towards prediction of nose-to-brain transport in humans. AAPS J. 2015;17(3):493–505.
    1. Wu H, Hu K, Jiang X. From nose to brain: Understanding transport capacity and transport rate of drugs. Expert Opin Drug Deliv. 2008;5:1159–1168.
    1. Kamei N, Okada N, Ikeda T, Choi H, Fujiwara Y, Okumura H, et al. Effective nose-to-brain delivery of exendin-4 via coadministration with cell-penetrating peptides for improving progressive cognitive dysfunction. Sci rep. 2018;8(1):1–4.
    1. Hinchcliffe M, Illum L. Intranasal insulin delivery and therapy. Adv Drug Deliv Rev. 1999;35:199–234.
    1. Vyas TK, Babbar AK, Sharma RK, Singh S, Misra A. Intranasal mucoadhesive microemulsions of clonazepam: Preliminary studies on brain targeting. J Pharm Sci. 2006;95(3):570–80.
    1. Jintapattanakit A, Peungvicha P, Sailasuta A, Kissel T, Junyaprasert VB. Nasal absorption and local tissue reaction of insulin nanocomplexes of trimethyl chitosan derivatives in rats. J Pharm Pharmacol. 2010;62(5):583–591.
    1. Khan MS, Patil K, Yeole P, Gaikwad R. Brain targeting studies on buspirone hydrochloride after intranasal administration of mucoadhesive formulation in rats. J Pharm Pharmacol. 2009;61(5):669–75.
    1. Yarragudi SB, Richter R, Lee H, Walker GF, Clarkson AN, Kumar H, et al. Formulation of olfactory-targeted microparticles with tamarind seed polysaccharide to improve nose-to-brain transport of drugs. Carbohydr Polym. 2017;163:216–226.
    1. Chaturvedi M, Kumar M, Pathak K. A review on mucoadhesive polymer used in nasal drug delivery system. J Adv Pharm Technol Res. 2011;2:215–222.
    1. Mittal D, Ali A, Md S, Baboota, Sahni JK, Ali J. Insights into direct nose to brain delivery: Current status and future perspective. Drug Delivery. 2014;21:75–86.
    1. Kulkarni AD, Vanjari YH, Sancheti KH, Belgamwar VS, Surana SJ, Pardeshi CV. Nanotechnology-mediated nose to brain drug delivery for parkinson’s disease: A mini review. J Drug Target. 2015;21:23(9):775–788.
    1. Selvaraj K, Gowthamarajan K. Karri VVSR. Nose to brain transport pathways an overview: Potential of nanostructured lipid carriers in nose to brain targeting. Artif Cells Nanomed Biotechnol. 2018;46:2088–2095.
    1. Pardeshi CV, Rajput PV, Belgamwar VS, Tekade AR, Surana SJ. Novel surface modified solid lipid nanoparticles as intranasal carriers for ropinirole hydrochloride: application of factorial design approach. Drug deliv 2013;20(1):47–56.
    1. Wong YC, Zuo Z. Intranasal delivery-modification of drug metabolism and brain disposition. Pharm Res. 2010;27:1208–1223.
    1. Xi J, Yuan JE, Zhang Y, Nevorski D, Wang Z, Zhou Y. Visualization and quantification of nasal and olfactory deposition in a sectional adult nasal airway cast. Pharm Res. 2016;33:1527–1541.
    1. Oleck J, Kassam S. Goldman JD, Commentary why was inhaled insulin a failure in the market. Diabetes Spectr. 2016;29:180–184
    1. Dong J, Shang Y, Inthavong K, Chan HK, Tu J. Numerical comparison of nasal aerosol administration systems for efficient nose-to-brain drug delivery. Pharm Res. 2018;35(1):5.
    1. Stützle M, Carle S, Engelhardt L, Simon U, Schafmeister A, Mavoungou C, et al. Protein aerosol for intranasal nose to brain (N2B) delivery. BMC Proc. 2015;9:11.
    1. Djupesland PG. Nasal drug delivery devices: Characteristics and performance in a clinical perspective-A review. Drug Deliv Transl Res. 2013;3:42–62.
    1. Musumeci T, Bonaccorso A, Puglisi G. Epilepsy disease and nose-to-brain delivery of polymeric nanoparticles: an overview. Pharmaceutics. 2019;11:118.
    1. Zhang H, Hao Y, Manor B, Novak P, Milberg W, Novak ZJ. Intranasal insulin enhanced resting-state functional connectivity of hippocampal regions in type 2 diabetes. Diabetes. 2015; 64:1025–1034.
    1. Akintola AA, Van Opstal AM, Westendorp RG, Postmus I, Van der Grond J, Van Heemst D. Effect of intranasally administered insulin on cerebral blood flow and perfusion; A randomized experiment in young and older adults. Aging (Albany NY). 2017;9(3):790.
    1. Novak V, Milberg W, Hao Y, Munshi M, Novak P, Galica A, et al. Enhancement of vasoreactivity and cognition by intranasal insulin in type 2 diabetes. Diabetes Care. 2014;37:751–759.
    1. Craft S, Claxton A, Baker LD, Hanson AJ, Cholerton B, Trittschuh EH, et al. Effects of regular and long-acting insulin on cognition and alzheimer’s disease biomarkers: A pilot clinical trial. J Alzheimers Dis. 2017;57:1325–1334.
    1. Reger MA, Watson G, Green PS, Baker LD, Cholerton B, Fishel MA, et al. Intranasal insulin administration dose-dependently modulates verbal memory and plasma amyloid-ő in memory-impaired older adults. J Alzheimers Dis. 2008;13(3):323–31.
    1. Craft S, Raman R, Chow TW, Rafii MS, Sun CK, Rissman RA, et al. Safety, efficacy, and feasibility of intranasal insulin for the treatment of mild cognitive impairment and alzheimer disease dementia: A randomized clinical trial. JAMA Neurol 2020;77(9):1099–109.
    1. Galindo-Mendez B, Trevino JA, McGlinchey R, Fortier C, Lioutas V, Novak P. Memory advancement by intranasal insulin in type 2 diabetes (MemAID) randomized controlled clinical trial: Design, methods and rationale, Contemp Clin Trials. 2020;89:105934.
    1. Hoekman JD, Hite D, Brunelle A, Relethford, Ho RJY. Nasal drug delivery device. 2017.
    1. Warnken ZN, Smyth HDC, Davis DA, Weitman S, Kuhn JG, Williams RO. Personalized medicine in nasal delivery: The use of patient-specific administration parameters to improve nasal drug targeting using 3d-printed nasal replica casts. Mol Pharm. 2018;15:1392–1402.
    1. Hoekman JD, Ho RJY. Effects of localized hydrophilic mannitol and hydrophobic nelfinavir administration targeted to olfactory epithelium on brain distribution. AAPS Pharm Sci Tech. 2011;12:534–543.
    1. Majgainya S, Soni S, Bhat P. Novel approach for nose-to-brain drug delivery bypassing blood brain barrier by pressurized olfactory delivery device. J Appl Pharm. 2015;7.
    1. Hallschmid M, Benedict C, Schultes B, Perras B, Fehm HL, Kern W. Towards the therapeutic use of intranasal neuropeptide administration in metabolic and cognitive disorders. Regul Pept. 2018;149:79–83.
    1. Benedict C, Hallschmid M, Schultes B, Born V, Kern W. Intranasal insulin to improve memory function in humans. Neuroendocrinol. 2017;86:136–142.
    1. Jauch-Chara K, Friedrich A, Rezmer M, Melchert UH, Scholand-Engler HG, Hallschmid M, et al. Intranasal insulin suppresses food intake via enhancement of brain energy levels in humans diabetes. 2012;61:2261–2268.
    1. Scherer T, Wolf A, Smajis S, Gaggini M, Hackl M, Gastaldelli A, et al. Chronic intranasal insulin does not affect hepatic lipids but lowers circulating bcaas in healthy male subjects. J Clin Endocrinol Metab. 2017;102:1325–1332.
    1. Schilling TM, Ferreira de Sá DS, Westerhausen R, Strelzyk F, Larra MF, Hallschmid M, et al. Intranasal insulin increases regional cerebral blood flow in the insular cortex in men independently of cortisol manipulation. Hum Brain Mapp. 2014;35:1944–1956.
    1. Brünner YF, Rodriguez-Raecke R, Mutic S, Benedict C, Freiherr J. Neural correlates of olfactory and visual memory performance in 3D-simulated mazes after intranasal insulin application. Neuro Learn Mem. 2016;34:256–263.
    1. Xiao C, Dash S, Stahel P, Lewis GF. Effects of intranasal insulin on triglyceride-rich lipoprotein particle production in healthy men. Arterioscler Thromb Vasc Biol. 2017;37(9):1776–1781.
    1. Dash S, Xiao C, Morgantini C, Koulajian K, Lewis GF. Intranasal insulin suppresses endogenous glucose production in humans compared with placebo in the presence of similar venous insulin concentrations. Diabetes. 2015;64(3):766–74.
    1. Stockhorst U, De Fries D, Steingrueber HJ, Scherbaum WA. Unconditioned and conditioned effects of intranasally administered insulin vs. placebo in healthy men: A randomised controlled trial. Diabetologia. 2011;54(6):1502–1506.
    1. Wingrove J, Swedrowska M, Scherließ R, Parry M, Ramjeeawon M, Taylor D, et al. Characterisation of nasal devices for delivery of insulin to the brain and evaluation in humans using functional magnetic resonance imaging. JCR. 2019;302:140–147.
    1. Djupesland PG, Skretting A, Winderen M, Holand T. Bi-directional nasal delivery of aerosols can prevent lung deposition. J Aerosol Med. 2004;117(3):249–59.
    1. Djupesland PG, Skretting A, Winderen M, Holand T. Breath actuated device improves delivery to target sites beyond the nasal valve. Laryngoscope. 2006;116(3):466–472.
    1. Dale O, Nilsen T, Loftsson T, Tønnesen HH, Klepstad P, Kaasa S, et al. Intranasal midazolam: A comparison of two delivery devices in human volunteers. J Pharm Pharmacol. 2006;58(10):1311–1.
    1. Djupesland PG, Doőekal P. Czech migraine investigators group. Intranasal sumatriptan powder delivered by a novel breath-actuated bi-directional device for the acute treatment of migraine: A randomised, placebo-controlled study. Cephalalgia. 2010;30(8):933–942.
    1. Merkus P, Guchelaar HJ, Bosch DA, Merkus FW. Direct access of drugs to the human brain after intranasal drug administration. Neurol. 2003; 60(10):1669–1671.
    1. Acute treatment trial in adult subjects with migraines. 2019.
    1. My blog-my word press Blog. 2020.
    1. Wang Z, Xiong G, Tsang WC, Schätzlein AG, Uchegbu IF. Nose-to-brain delivery. J Pharmacol Exp Ther. 2019;370:593–601.
    1. MET Nose-to-brain delivery. Nanomerics 2020.
    1. Salade L, Wauthoz N, Deleu M, Vermeersch M, Vriese CD, Amighi K, et al. Development of coated liposomes loaded with ghrelin for nose-to-brain delivery for the treatment of cachexia. Int J Nanomedicine. 2017;12:8531.
    1. Delivery platforms: Versidoser® and VRx2TM. 2020.
    1. Mystic pharmaceuticals receives us patent for novel nose to brain delivery of therapeutics to treat neurodegenerative disorders. 2016.
    1. Chou KJ, Donovan MD. The distribution of local anesthetics into the CSF following intranasal administration. Int J Pharmaceutics. 1998;168:137–145.
    1. Kozlovskaya L, Abou-Kaoud M, Stepensky D. Quantitative analysis of drug delivery to the brain via. nasal route. J Control Release. 2014;189:133–140.
    1. Stevens J, Ploeger BA, Van der Graaf PH, Danhof M, de Lange EC. Systemic and direct nose-to-brain transport pharmacokinetic model for remoxipride after intravenous and intranasal administration. Drug Metab Dispos. 2011;39(12):2275–2282.
    1. Wang D, Gao Y, Yun L. Study on brain targeting of raltitrexed following intranasal administration in rats. Cancer Chemother Pharmacol. 2006;57(1):97–104
    1. Kumar NN, Lochhead JJ, Pizzo ME, Nehra G, Boroumand S, Greene G, et al. Delivery of immunoglobulin G antibodies to the rat nervous system following intranasal administration: Distribution, dose-response, and mechanisms of delivery. J Control Release. 2018;286:467–484.
    1. De Lange EC, The mastermind approach to CNS drug therapy: Translational prediction of human brain distribution, target site kinetics, and therapeutic effects. Fluids Barriers CNS. 2013;10:12.
    1. Tian L, Shang Y, Chen R, Bai R, Chen C, Inthavong K, et al. Correlation of regional deposition dosage for inhaled nanoparticles in human and rat olfactory. Part Fibre Toxicol. 2019;16(1):1–7.
    1. Veronesi MC, Alhamami M, Miedema SB, Yun Y, Ruiz-Cardozo M, Vannier MW. Imaging of intranasal drug delivery to the brain. Am J Nucl Med Mol Imaging. 2020;10(1):1.
    1. Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton A, et al. Intranasal insulin therapy for alzheimer disease and amnestic mild cognitive impairment: A pilot clinical trial. Arch Neuro. 2012; 69(1):29–38.
    1. Kullmann S, Heni M, Veit R, Scheffler K, Machann J, Häring HU, et al. Selective insulin resistance in homeostatic and cognitive control brain areas in overweight and obese adults. Diabetes Care. 2015;38(6):1044–1050.
    1. Da Fonseca CO, Quirico-Santos T. Perillyl alcohol: A pharmacotherapeutic report, in: de Sousa DP (Ed), bioactive essential oils and cancer, springer international publishing, Cham. 2015:267–288.
    1. Mottolese R, Redouté J, Costes N, Le Bars D, Sirigu A. Switching brain serotonin with oxytocin. PNAS. 2014;111(23):8637–8642.
    1. Johansson J, Hirvonen J, Lovró Z, Ekblad L, Kaasinen V, Rajasilta O, et al. Intranasal naloxone rapidly occupies brain mu-opioid receptors in human subjects. Neuropsychopharmacol. 2019;44(9):1667–1673.
    1. Yates R, Sörensen J, Bergström M, Antoni G, Nairn K, Kemp J, et al. Distribution of intranasal 11C-zolmitriptan assessed by positron emission tomography. Cephalalgia. 2005;25(12):1103–1109.
    1. Born J, Lange T, Kern W, McGregor GP, Bickel U, Fehm HL. Sniffing neuropeptides: A transnasal approach to the human brain. Nat Neurosci. 2002;5(6):514–516.
    1. Merkus FWHM, Van den Berg MP. Can nasal drug delivery bypass the blood-brain barrier: Questioning the direct transport theory. Drugs R D. 2007;8:133–144.
    1. Fehm HL, Perras B, Smolnik R, Kern W, Born J. Manipulating neuropeptidergic pathways in humans: A novel approach to neuropharmacology. Eur J Pharmacol. 2000;405(1–3):43–54.
    1. Rhea EM, Rask Madsen C, Banks WA. Insulin transport across the blood–brain barrier can occur independently of the insulin receptor. J Physiol. 2018;596(19):4753–65.
    1. Barar J, Rafi MA, Pourseif MM, Omidi Y. Blood-brain barrier transport machineries and targeted therapy of brain diseases. BioImpacts: BI. 2016;6(4):225.
    1. Stockhorst U, de Fries D, Steingrueber HJ, Scherbaum WA. Insulin and the CNS: Effects on food intake, memory, and endocrine parameters and the role of intranasal insulin administration in humans. Physiol Behav. 2004;83(1):47–54.
    1. Kullmann S, Veit R, Peter A, Pohmann R, Scheffler K, Häring HU, et al. Dose-dependent effects of intranasal insulin on resting-state brain activity. J Clin Endocrinol Metab. 2018;103(1):253–262.
    1. Guthoff M, Grichisch Y, Canova C, Tschritter O, Veit R, Hallschmid M, et al. Insulin modulates food-related activity in the central nervous system. J Clin Endocrinol. 2010;95(2):748–755.
    1. Reger MA, Watson GS, Green PS, Wilkinson CW, Baker LD, Cholerton B, et al. Craft, Intranasal insulin improves cognition and modulates beta-amyloid in early AD, Neurol. 70;2008:440–448.
    1. Schmid V, Kullmann S, Gfrörer W, Hund V, Hallschmid M, Lipp HP, et al. Safety of intranasal human insulin: A review. Diabetes Obes Metab. 2018;20(7):1563–1577.
    1. Schneider R, Stöhr C, Pietrowsky R. Intranasally administered cholecystokinin decreases controlled memory. Biol Psychol. 2003;69:297–314.
    1. Schneider R, Osterburg J, Buchner A, Pietrowsky R. Effect of intranasally administered cholecystokinin on encoding of controlled and automatic memory processes. Psychopharmacol. 2009;202(4):559–567.
    1. Smolnik R, Fischer S, Hagenah J, Kis B, Born J, Vieregge P. Brain potential signs of slowed stimulus processing following cholecystokinin in parkinson’s disease. Psychopharmacol. 2002;161(1):70–76.
    1. Denecke H, Czehak N, Pietrowsky R. Dose-response relationships of intranasal cholecystokinin and the P300 event-related brain potential, Pharmacol Biochem Behav. 73;2002:593–600.
    1. Pietrowsky R, Thiemann A, Kern W, Fehm HL, Born J. A nose-brain pathway for psychotropic peptides: Evidence from a brain evoked potential study with cholecystokinin . Psychoneuroendocrinol.1996;559–572.
    1. Pietrowsky R, Claassen L, Frercks H, Fehm HL, Born J. Time course of intranasally administered cholecystokinin-8 on central nervous effects, Neuropsychobiol. 2001;43:254–259.
    1. Denecke H, Meyer F, Feldkamp J, Fritzen R, Pietrowsky R. Repetitive intranasal administration of cholecystokinin potentiates its central nervous effects. Physiol Behav. 83;39–45.
    1. Fletcher L, Kohli S, Sprague SM, Scranton RA, Lipton SA, Parra A, et al. Intranasal delivery of erythropoietin plus insulin-like growth factor-I for acute neuroprotection in stroke. Laboratory investigation. J Neurosurg. 2009;111:164–170.
    1. Garcia-Rodriguez JC, Sosa-Teste I. The nasal route as a potential pathway for delivery of erythropoietin in the treatment of acute ischemic stroke in humans, Sci World J 2009;9:970–981.
    1. Maurice T, Mustafa MH, Desrumaux C, Keller E, Naert G, De la C García-Barceló M, et al. Intranasal formulation of Erythropoietin (EPO) showed potent protective activity against amyloid toxicity in the A non-transgenic mouse model of Alzheimer’s disease. J Psychopharmacol. 2013;27:1044–1057.
    1. Parra AL, Rodriguez JCG. Nasal neuro EPO could be a reliable choice for neuroprotective stroke treatment. Cent Nerv Syst Agents Med Chem. 2012;12:60–68.
    1. Rodríguez Cruz Y, Strehaiano M, Rodríguez Obaya T, García Rodríguez JC, Maurice T. An intranasal formulation of erythropoietin (Neuro-EPO) prevents memory deficits and amyloid toxicity in the appswe transgenic mouse model of alzheimer’s disease. J Alzheimers Dis. 2017;55:231–248.
    1. Santos-Morales O, Díaz-Machado A, Jiménez-Rodríguez D, Pomares-Iturralde Y, Festary-Casanovas T, González-Delgado CA, et al. Nasal administration of the neuroprotective candidate NeuroEPO to healthy volunteers: A randomized, parallel, open-label safety study. BMC Neurol. 2017;17:129.
    1. Fehm HL, Smolnik R, Kern W, McGregor GP, Bickel U, Born J. The melanocortin melanocyte-stimulating hormone/adrenocorticotropin(4–10) decreases body fat in humans, J. Clin Endocrinol Metab. 2001;86;1144–1148.
    1. Nogueiras R, Wiedmer P, Perez-Tilve D, Veyrat-Durebex C, Keogh JM, Sutton GM, et al. The central melanocortin system directly controls peripheral lipid metabolism. J Clin Invest. 2007;117:3475–3488.
    1. Tian X, Switzer AG, Derose SA, Mishra RK, Solinsky MG, Mumin RN, et al. Discovery of orally bioavailable 1,3,4-trisubstituted 2-oxopiperazine-based melanocortin-4 receptor agonists as potential antiobesity agents. J Med Chem. 2008;51:6055–6066.
    1. Wellhöner P, Hörster R, Jacobs F, Sayk F, Lehnert H, Dodt C. Intranasal application of the melanocortin 4 receptor agonist MSH/ACTH(4–10) in humans causes lipolysis in white adipose tissue. Int J Obes 2012;36:703–708.
    1. Martin HL, Teismann P. Glutathione a review on its role and significance in parkinson’s disease. FASEB J. 2009:23:3263–3272.
    1. Mischley LK, Conley KE, Shankland EG, Kavanagh TJ, Rosenfeld ME, Duda JE, et al. Central nervous system uptake of intranasal glutathione in parkinson’s disease. NPJ Parkinsons Dis. 2016;2:16002.
    1. Mischley LK, Leverenz JB, Lau RC, Polissar NL, Neradilek MB, Samii A, et al. A randomized, double-blind phase i/iia study of intranasal glutathione in parkinson’s disease. Mov Disord. 2015;30:1696–1701.
    1. Mischley LK, Vespignani MF, Finnell JS. Safety survey of intranasal glutathione. J Altern Complement Med. 2013;19;459–463.
    1. Mischley LK, Lau RC, Shankland EG, Wilbur TK, Padowski JM. Phase IIb study of intranasal glutathione in parkinson’s disease. J Parkinsons Dis. 2017;7:289–299.
    1. Chen TC, Da Fonseca CO, Schönthal AH. Intranasal perillyl alcohol for glioma therapy: molecular mechanisms and clinical development. Int J Mol Sci. 2018;19.
    1. Hudes GR, Szarka CE, Adams A, Ranganathan S, McCauley RA, Weiner LM, et al. Phase I pharmacokinetic trial of perillyl alcohol (NSC 641066) in patients with refractory solid malignancies. Clin Cancer Res. 2000;6:3071–3080.
    1. Ripple GH, Gould MN, Arzoomanian RZ, Alberti D, Feierabend C, Simon K, et al. Phase I clinical and pharmacokinetic study of perillyl alcohol administered four times a day. Clin Cancer Res. 2000;6:390–396.
    1. Da Fonseca CO, Masini M, Futuro D, Caetano R, Gattass CR, Quirico-Santos T. Anaplastic oligodendroglioma responding favorably to intranasal delivery of perillyl alcohol: A case report and literature review. Surg Neurol. 2006;66:611–615.
    1. DA Fonseca CO, Teixeira RM, Silva JCT, DE Saldanha DA Gama Fischer J, Meirelles OC, Landeiro JA, et al. Long-term outcome in patients with recurrent malignant glioma treated with perillyl alcohol inhalation. Anticancer Res. 2013;33:5625–5631.
    1. Da Fonseca CO, Simão M, Lins IR, Caetano RO, Futuro D, Quirico-Santos T. Efficacy of monoterpene perillyl alcohol upon survival rate of patients with recurrent glioblastoma. J Cancer Res Clin Oncol. 2011;137:287–293.
    1. Da Fonseca CO, Schwartsmann G, Fischer J, Nagel J, Futuro D, Quirico-Santos T, et al. Preliminary results from a phase I/II study of perillyl alcohol intranasal administration in adults with recurrent malignant gliomas. Surg Neurol. 2008;70:259–266.
    1. Derad I, Willeke K, Pietrowsky R, Born J, Fehm HL. Intranasal angiotensin II directly influences central nervous regulation of blood pressure Am. J. Hypertens. 1998;11:971–977.
    1. Nakamura K, Shimizu T, Yanagita T, Nemoto T, Taniuchi. Angiotensin ii acting on brain at1 receptors induces adrenaline secretion and pressor responses in the rat. Sci Rep 2014;4.
    1. Speth RC, Vento PJ, Carrera EJ, Gonzalez-Reily L, Linares A, Santos K, et al. Acute repeated intracerebroventricular injections of angiotensin II reduce agonist and antagonist radioligand binding in the paraventricular nucleus of the hypothalamus and median preoptic nucleus in the rat brain. Brain Res. 2014;1583:132–140.
    1. Derad I, Sayk F, Lehnert H, Marshall L, Born J, Nitschke M. Intranasal angiotensin II in humans reduces blood pressure when angiotensin II type 1 receptors are blocked. Hypertension. 2014;63:762–767.
    1. Alcalá-Barraza SR, Lee MS, Hanson LR, McDonald AA, Frey WH, McLoon LK. Intranasal delivery of neurotrophic factors BDNF, CNTF, EPO, and NT-4 to the CNS. J Drug Target. 2010;18:179–190.
    1. Aloe L, Bianchi P, De Bellis A, Soligo M, Rocco ML. Intranasal nerve growth factor bypasses the blood-brain barrier and affects spinal cord neurons in spinal cord injury. Neural Regen Res. 2014;9:1025–1030.
    1. Chen XQ, Fawcett JR, Rahman YE, Ala TA, Frey WH. Delivery of nerve growth factor to the brain via the olfactory pathway. J Alzheimers Dis. 1998;1:35–44.
    1. Frey WH, Liu J, Chen X, Thorne RG, Fawcett JR, Ala TA, et al. Delivery of 125I-NGF to the Brain via the Olfactory Route. Drug Delivery. 1997;4:87–92.
    1. Fukuda Y, Katsunuma S, Uranagase A, Nota J, Nibu KI. Effect of intranasal administration of neurotrophic factors on regeneration of chemically degenerated olfactory epithelium in aging mice. Neuroreport. 2018;29:1400–1404.
    1. Jiang Y, Wei N, Lu T, Zhu J, Xu G, Liu X. Intranasal brain-derived neurotrophic factor protects brain from ischemic insult via modulating local inflammation in rats. Neuroscience. 2011;172:398–405.
    1. Sansevero G, Baroncelli L, Scali M, Sale A. Intranasal BDNF administration promotes visual function recovery in adult amblyopic rats. Neuropharmacol. 2019;145:114–122.
    1. Vaka SRK, Murthy SN, Balaji A, Repka MA. Delivery of brain derived neurotrophic factor via nose to brain pathway. Pharm Res. 2012;29:441–447.
    1. Bellis A, Bellis M, Aloe L. Long-term non-invasive treatment via intranasal administration of nerve growth factor protects the human brain in frontotemporal dementia associated with corticobasal syndrome: A pilot study. J Alzheimers Dis Rep. 2018;2:67–77.
    1. Chiaretti A, Conti G, Falsini B, Buonsenso D, Crasti M, Manni L, et al. Intranasal nerve growth factor administration improves cerebral functions in a child with severe traumatic brain injury: A case report. Brain Inj. 2017;31:1538–1547.
    1. Schmidt H, Kern W, Giese R, Hallschmid M, Enders A. Intranasal insulin to improve developmental delay in children with 22q13 deletion syndrome: An exploratory clinical trial. J Med Genet. 2009;46:217–222.
    1. Rodriguez-Raecke R, Brünner YF, Kofoet A, Mutic S, Benedict C, Freiherr J. odor sensitivity after intranasal insulin application is modulated by gender. Front Endocrinol (Lausanne). 2018;9.
    1. Stockhorst U, De Fries D, Steingrueber HJ, Scherbaum WA. Unconditioned and conditioned effects of intranasally administered insulin vs. placebo in healthy men: A randomised controlled trial. Diabetologia. 2011;54:1502–1506.
    1. Luthringer R, Djupesland PG, Sheldrake CD, Flint A, Boeijinga P, Danjou P, et al. Rapid absorption of sumatriptan powder and effects on glyceryl trinitrate model of headache following intranasal delivery using a novel bi-directional device. J Pharm Pharmacol. 2009;61:1219–1228.
    1. Kern W, Born J, Schreiber H, Fehm HL. Central nervous system effects of intranasally administered insulin during euglycemia in men. Diabetes. 1999;48:557–563.
    1. Benedict C Intranasal insulin improves memory in humans. Psychoneuroendocrinol. 2004;29:1326–1334.
    1. Hallschmid M, Benedict C, Schultes B, Fehm HL, Born J, Kern W. Intranasal insulin reduces body fat in men but not in women. Diabetes. 2004;53:3024–3029.
    1. Benedict C, Dodt C, Hallschmid M, Lepiorz M, Fehm HL, Born J, et al. Immediate but not long-term intranasal administration of insulin raises blood pressure in human beings. Metabolism. 2005;54:1356–1361.
    1. Reger MA, Watson GS, Frey WH, Baker LD, Cholerton B, Keeling ML, et al. Effects of intranasal insulin on cognition in memory-impaired older adults: Modulation by APOE genotype. Neurobiol Aging. 2006;27:451–458.
    1. Benedict C, Kern W, Schultes B, Born J, Hallschmid M. Differential sensitivity of men and women to anorexigenic and memory-improving effects of intranasal insulin, Clin Endocrinol Metab. 2008;93:1339–1344.
    1. Bohringer A, Schwabe L, Richter S, Schachinger H. Intranasal insulin attenuates the hypothalamic-pituitary-adrenal axis response to psychosocial stress. Psychoneuroendocrinol. 2008;33:1394–1400.
    1. Krug R, Benedict C, Born J, Hallschmid M. Comparable sensitivity of postmenopausal and young women to the effects of intranasal insulin on food intake and working memory. J Clin Endocrinol Metab. 2010;95:468–472.
    1. Stingl KT, Kullmann S, Guthoff M, Heni M, Fritsche A, Preissl H. Insulin modulation of magnetoencephalographic resting state dynamics in lean and obese subjects. Front Syst Neurosci. 2010;4.
    1. Benedict C, Frey WH, Schioth HB, Schultes B, Born J, Hallschmid M. Intranasal insulin as a therapeutic option in the treatment of cognitive impairments. Exp Gerontol. 2011;46:112–115.
    1. Fan X, Copeland PM, Liu EY, Chiang E, Freudenreich O, Goff DC, et al. No effect of single-dose intranasal insulin treatment on verbal memory and sustained attention in patients with schizophrenia. J Clin Psychopharmacol. 2011;31:231–234.
    1. Guthoff M, Stingl KT, Tschritter O, Rogic M, Heni M, Stingl K, et al. The insulin-mediated modulation of visually evoked magnetic fields is reduced in obese subjects. Plos One. 2011;6:19482.
    1. Stein MS, Scherer SC, Ladd KS, Harrison LC. A randomized controlled trial of high-dose vitamin D2 followed by intranasal insulin in Alzheimer’s disease. J Alzheimers Dis. 2011;26:477–484.
    1. Grichisch Y, Cavusoglu M, Preissl H, Uludag K, Hallschmid M, Birbaumer NH, et al. Differential effects of intranasal insulin and caffeine on cerebral blood flow. Hum Brain Mapp. 2012;33:280–287.
    1. Hallschmid M, Higgs S, Thienel M, Ott V, Lehnert H. Postprandial administration of intranasal insulin intensifies satiety and reduces intake of palatable snacks in women. Diabetes. 2012;61:782–789.
    1. Heni M, Kullmann S, Ketterer C, Guthoff M, Linder K, Wagner R, et al. Nasal insulin changes peripheral insulin sensitivity simultaneously with altered activity in homeostatic and reward-related human brain regions. Diabetologia. 2012;55:1773–1782.
    1. McIntyre RS. A randomized double-blind, controlled trial evaluating the effect of intranasal insulin on neurocognitive function in euthymic patients with bipolar disorder. Bipolar Disord. 2012;14:697–706.
    1. Brunner YF, Benedict C, Freiherr J. Intranasal insulin reduces olfactory sensitivity in normosmic humans. J Clin Endocrinol Metab. 2013;98:1626–1630.
    1. Claxton A, Baker LD, Wilkinson CW, Trittschuh EH, Chapman D, Watson GS, et al. Sex and ApoE genotype differences in treatment response to two doses of intranasal insulin in adults with mild cognitive impairment or Alzheimer’s disease. J Alzheimers Dis. 2013;35:789–797.
    1. Fan X, Liu E, Freudenreich O, Copeland P, Hayden D, Ghebremichael M, et al. No effect of adjunctive, repeated-dose intranasal insulin treatment on psychopathology and cognition in patients with schizophrenia. J Clin Psychopharmacol. 2013;33:226–230.
    1. Li J, Li X, Liu E, Copeland P, Freudenreich O, Goff DC, et al. Fan, No effect of adjunctive, repeated dose intranasal insulin treatment on body metabolic in patients with schizophrenia. Schizophr Res. 2013;146:40–45.
    1. Kullmann S, Pape AA, Heni M, Ketterer C, Schick F, Haring HU, et al. Functional network connectivity underlying food processing: disturbed salience and visual processing in overweight and obese adults. Cereb Cortex. 2013;23:1247–1256.
    1. Ferreira de Sá DS, Schulz A, Streit FE, Turner JD, Oitzl MS, Blumenthal TD, et al. Cortisol, but not intranasal insulin, affects the central processing of visual food cues. Psychoneuroendocrinol. 2014;50:311–320.
    1. Heni M, Schopfer P, Peter A, Sartorius T, Fritsche A, Synofzik M, et al. Evidence for altered transport of insulin across the blood-brain barrier in insulin-resistant humans. Acta Diabetol 2014;51:679–681.
    1. Iwen KA, Scherer T, Heni M, Sayk F, Wellnitz T, Machleidt F, et al. Intranasal insulin suppresses systemic but not subcutaneous lipolysis in healthy humans. J Clin Endocrinol Metab. 2014;99:246–251.
    1. Ketterer C, Tschritter O, Preissl H, Heni M, Haring HU, Fritsche A. Insulin sensitivity of the human brain. Diabetes Res Clin Pract. 2011;93:S47–S51.
    1. Brünner YF, Kofoet A, Benedict C, Freiherr J. Central insulin administration improves odor-cued reactivation of spatial memory in young men. J Clin Endocrinol Metab. 2015;100:212–219.
    1. Effects of intranasal insulin on hepatic fat accumulation and energy metabolism in humans diabetes. 202.
    1. Schöpf V, Kollndorfer K, Pollak M, Mueller CA, Freiherr J. Intranasal insulin influences the olfactory performance of patients with smell loss, dependent on the body mass index: A pilot study. Rhinol. 2015;53:371–378.
    1. Feld GB, Wilhem I, Benedict C, Rüdel B, Klameth C, Born J, et al. Central nervous insulin signaling in sleep-associated memory formation and neuroendocrine regulation. neuropsychopharmacol. 2016;41:1540–1550.
    1. Zwanenburg RJ, Bocca G, Ruiter SAJ, Dillingh JH, Flapper BCT, van den Heuvel ER. Is there an effect of intranasal insulin on development and behaviour in Phelan-McDermid syndrome? A randomized, double-blind, placebo-controlled trial. Eur J Hum Genet. 2016;24:1696–1701.
    1. Cha DS, Best MW, Bowie CR, Gallaugher LA, Woldeyohannes HO, Soczynska JK. A randomized, double-blind, placebo-controlled, crossover trial evaluating the effect of intranasal insulin on cognition and mood in individuals with treatment-resistant major depressive disorder. J Affect Disord. 2017;210:57–65.
    1. Heni M, Wagner R, Kullmann S, Gancheva S, Roden M, Peter A. Hypothalamic and striatal insulin action suppresses endogenous glucose production and may stimulate glucose uptake during hyperinsulinemia in lean but not in overweight men. Diabetes. 2017;66:1797–1806.
    1. Kullmann S, Heni M, Veit R, Scheffler K, Machann J, Haring H, et al. Intranasal insulin enhances brain functional connectivity mediating the relationship between adiposity and subjective feeling of hunger. Sci Rep. 2017;7.
    1. Kullmann S, Fritsche A, Wagner R, Schwab S, Häring HU, Preissl, et al. Hypothalamic insulin responsiveness is associated with pancreatic insulin secretion in humans. Physiol Behav. 2017;176:134–138.
    1. Rodriguez-Raecke R, Yang H, Bruenner YF, Freiherr J. Intranasal insulin boosts gustatory sensitivity. J Neuroendocrinol. 2017;29.
    1. Santiago JCP, Hallschmid M. Central nervous insulin administration before nocturnal sleep decreases breakfast intake in healthy young and elderly subjects. Front Neurosci. 2017;11.
    1. Thienel M, Wilhelm I, Benedict C, Born J, Hallschmid M. Intranasal insulin decreases circulating cortisol concentrations during early sleep in elderly humans. Neurobiol Aging. 2017;54:170–174.
    1. Van Opstal AM, Akintola AA, Van der Elst M, Westendorp RG, Pijl H, Van Heemst D, et al. Effects of intranasal insulin application on the hypothalamic BOLD response to glucose ingestion. Sci Rep 2017;7.
    1. Hamidovic A, Candelaria L, Rodriguez I, Yamada M, Nawarskas J, Burge M. Learning and memory performance following acute intranasal insulin administration in abstinent smokers. Hum Psychopharmacol 2018;33:2649.
    1. Ritze Y, Kern W, Ebner EM, Jahn S, Benedict C, Hallschmid M. Metabolic and cognitive outcomes of subchronic once-daily intranasal insulin administration in healthy men. Front Endocrinol (Lausanne). 2018;9.
    1. Pedroso I, Garcia M, Casabona E, Morales L, Bringas ML, Pérez L, et al. Protective activity of erythropoyetine in the cognition of patients with parkinson’s disease. Behav Sci. 2018;8.
    1. Faria GM, Soares IDP, D’Alincourt Salazar M, Amorim MR, Pessoa BL, Da Fonseca CO, et al. Intranasal perillyl alcohol therapy improves survival of patients with recurrent glioblastoma harboring mutant variant for MTHFR rs1801133 polymorphism. BMC Cancer. 2020:20.

Source: PubMed

3
Předplatit