Main differences between two highly effective lipid-lowering therapies in subclasses of lipoproteins in patients with acute myocardial infarction

Leticia C S Pinto, Ana P Q Mello, Maria C O Izar, Nagila R T Damasceno, Antonio M F Neto, Carolina N França, Adriano Caixeta, Henrique T Bianco, Rui M S Póvoa, Flavio T Moreira, Amanda S F Bacchin, Francisco A Fonseca, Leticia C S Pinto, Ana P Q Mello, Maria C O Izar, Nagila R T Damasceno, Antonio M F Neto, Carolina N França, Adriano Caixeta, Henrique T Bianco, Rui M S Póvoa, Flavio T Moreira, Amanda S F Bacchin, Francisco A Fonseca

Abstract

Background: Large observational studies have shown that small, dense LDL subfractions are related to atherosclerotic cardiovascular disease. This study assessed the effects of two highly effective lipid-lowering therapies in the atherogenic subclasses of lipoproteins in subjects with ST-segment elevation myocardial infarction (STEMI).

Methods: Patients of both sexes admitted with their first myocardial infarction and submitted to pharmacoinvasive strategy (N = 101) were included and randomized using a central computerized system to receive a daily dose of simvastatin 40 mg plus ezetimibe 10 mg or rosuvastatin 20 mg for 30 days. Intermediate-density lipoprotein (IDL) and low-density lipoprotein (LDL) subfractions were analysed by polyacrylamide gel electrophoresis (Lipoprint System) on the first (D1) and 30th days (D30) of lipid-lowering therapy. Changes in LDL and IDL subfractions between D1 and D30 were compared between the lipid-lowering therapies (Mann-Whitney U test).

Results: The classic lipid profile was similar in both therapy arms at D1 and D30. At D30, the achievement of lipid goals was comparable between lipid-lowering therapies. Cholesterol content in atherogenic subclasses of LDL (p = 0.043) and IDL (p = 0.047) decreased more efficiently with simvastatin plus ezetimibe than with rosuvastatin.

Conclusions: Lipid-lowering therapy with simvastatin plus ezetimibe was associated with a better pattern of lipoprotein subfractions than rosuvastatin monotherapy. This finding was noted despite similar effects in the classic lipid profile and may contribute to residual cardiovascular risk.

Trial registration: ClinicalTrials.gov , NCT02428374, registered on 28/09/2014.

Conflict of interest statement

Dr. FAH Fonseca declares receiving consulting fees from NovoNordisk, Novartis, and AstraZeneca, lecture fees from Novo Nordisk, Abbott, Ache, Biolab, Libbs, Ely Lilly, Sanofi Aventis, Amgen, and AstraZeneca, and travel support from Amgen, Bayer and NovoNordisk. MC Izar declares receiving consulting fees from Amgen, PTC, Amryt Pharma, Novartis, lecture fees from Amgen, PTC, Libbs, Ache, and travel support from Novo Nordisk and Amgen. The authors have no additional relevant financial or nonfinancial interests to disclose.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Flowchart. Only patients with a first myocardial infarction (STEMI) undergoing pharmacological thrombolysis during the first 6 h and coronary angiogram followed when necessary by percutaneous coronary intervention in the first 24 h were included. Patients receiving lipid-lowering or immunosuppressive therapy and those with clinical instability and contraindications or known intolerances for the lipid-lowering drugs of the study were excluded. One patient died during the first month after myocardial infarction
Fig. 2
Fig. 2
Delta (final minus initial content in cholesterol) of intermediate-density lipoprotein (IDL) subfractions by lipid-lowering therapies. A The delta of IDL-A (nonatherogenic) was similar after simvastatin plus ezetimibe or rosuvastatin treatment. B The delta of IDL-B plus IDL-C (atherogenic) showed higher effectiveness with simvastin plus ezetimibe than rosuvastatin monotherapy (*P = 0.047, Mann–Whitney U test)
Fig. 3
Fig. 3
Delta (final minus initial cholesterol content) in low-density lipoprotein (LDL) subfractions by lipid-lowering therapies. A The delta of LDL-1 plus LDL-2 (nonatherogenic) was similar after exposure to lipid-lowering therapies. B The delta of atherogenic LDL subfractions (LDL-3 to LDL-7) showed greater reduction by simvastatin plus ezetimibe in comparison with rosuvastatin (*P = 0.043, Mann–Whitney U test)
Fig. 4
Fig. 4
Effects of lipid-lowering therapies on the atherogenic and nonatherogenic subfractions of lipoproteins. Rosuvastatin monotherapy decreased endogenous cholesterol synthesis and augmented both LDL receptor (LDL-R) expression and intestinal cholesterol absorption. The higher expression of LDL-R facilitated the clearance of large and buoyant LDL particles, which had more affinity to LDL-R than small dense particles. Following the use of simvastatin plus ezetimibe, other mechanisms were involved, and the decrease in cholesterol absorption by ezetimibe increased cholesterol synthesis and LDL-R expression. Differences in LDLR expression and lower intestinal cholesterol absorption may contribute to differences in the residual lipoprotein subfraction pattern. Higher effectiveness in the clearance of atherogenic IDL particles was also observed following simvastatin plus ezetimibe therapy compared with rosuvastatin monotherapy

References

    1. Mach F, Baigent C, Catapano AL, Koskinas KC, Casula M, Badimon L, Chapman MJ, de Backer GG, Delgado V, Ference BA, Graham IM, Halliday A, Landmesser U, Mihaylova B, Pedersen TR, Riccardi G, Richter DJ, Sabatine MS, Taskinen MR, Tokgozoglu L, Wiklund O, ESC Scientific Document Group. Mueller C, Drexel H, Aboyans V, Corsini A, Doehner W, Farnier M, Gigante B, Kayikcioglu M, Krstacic G, Lambrinou E, Lewis BS, Masip J, Moulin P, Petersen S, Petronio AS, Piepoli MF, Pintó X, Räber L, Ray KK, Reiner Ž, Riesen WF, Roffi M, Schmid JP, Shlyakhto E, Simpson IA, Stroes E, Sudano I, Tselepis AD, Viigimaa M, Vindis C, Vonbank A, Vrablik M, Vrsalovic M, Zamorano JL, Collet JP, Koskinas KC, Casula M, Badimon L, John Chapman M, de Backer GG, Delgado V, Ference BA, Graham IM, Halliday A, Landmesser U, Mihaylova B, Pedersen TR, Riccardi G, Richter DJ, Sabatine MS, Taskinen MR, Tokgozoglu L, Wiklund O, Windecker S, Aboyans V, Baigent C, Collet JP, Dean V, Delgado V, Fitzsimons D, Gale CP, Grobbee D, Halvorsen S, Hindricks G, Iung B, Jüni P, Katus HA, Landmesser U, Leclercq C, Lettino M, Lewis BS, Merkely B, Mueller C, Petersen S, Petronio AS, Richter DJ, Roffi M, Shlyakhto E, Simpson IA, Sousa-Uva M, Touyz RM, Nibouche D, Zelveian PH, Siostrzonek P, Najafov R, van de Borne P, Pojskic B, Postadzhiyan A, Kypris L, Špinar J, Larsen ML, Eldin HS, Viigimaa M, Strandberg TE, Ferrières J, Agladze R, Laufs U, Rallidis L, Bajnok L, Gudjónsson T, Maher V, Henkin Y, Gulizia MM, Mussagaliyeva A, Bajraktari G, Kerimkulova A, Latkovskis G, Hamoui O, Slapikas R, Visser L, Dingli P, Ivanov V, Boskovic A, Nazzi M, Visseren F, Mitevska I, Retterstøl K, Jankowski P, Fontes-Carvalho R, Gaita D, Ezhov M, Foscoli M, Giga V, Pella D, Fras Z, de Isla LP, Hagström E, Lehmann R, Abid L, Ozdogan O, Mitchenko O, Patel RS. 2019 ESC/EAS guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020;41(1):111–188. doi: 10.1093/eurheartj/ehz455.
    1. Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, Braun LT, de Ferranti S, Faiella-Tommasino J, Forman DE, Goldberg R, Heidenreich PA, Hlatky MA, Jones DW, Lloyd-Jones D, Lopez-Pajares N, Ndumele CE, Orringer CE, Peralta CA, Saseen JJ, Smith SC Jr, Sperling L, Virani SS, Yeboah J. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the Management of Blood Cholesterol: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Circulation. 2019;139(25):e1046–e1081. doi: 10.1161/CIR.0000000000000624.
    1. Kini AS, Baber U, Kovacic JC, Limaye A, Ali ZA, Sweeny J, Maehara A, Mehran R, Dangas G, Mintz GS, Fuster V, Narula J, Sharma SK, Moreno PR. Changes in plaque lipid content after short-term intensive versus standard statin therapy: the YELLOW trial (reduction in yellow plaque by aggressive lipid-lowering therapy) J Am Coll Cardiol. 2013;62(1):21–29. doi: 10.1016/j.jacc.2013.03.058.
    1. Yano H, Horinaka S, Ishimitsu T. Effect of evolocumab therapy on coronary fibrous cap thickness assessed by optical coherence tomography in patients with acute coronary syndrome. J Cardiol. 2020;75(3):289–295. doi: 10.1016/j.jjcc.2019.08.002.
    1. Puri R, Nissen SE, Shao M, Ballantyne CM, Barter PJ, Chapman MJ, Erbel R, Libby P, Raichlen JS, Uno K, Kataoka Y, Nicholls SJ. Coronary atheroma volume and cardiovascular events during maximally intensive statin therapy. Eur Heart J. 2013;34(41):3182–3190. doi: 10.1093/eurheartj/eht260.
    1. Langlois MR, Chapman MJ, Cobbaert C, Mora S, Remaley AT, Ros E, Watts GF, Borén J, Baum H, Bruckert E, Catapano A, Descamps OS, von Eckardstein A, Kamstrup PR, Kolovou G, Kronenberg F, Langsted A, Pulkki K, Rifai N, Sypniewska G, Wiklund O, Nordestgaard BG, for the European Atherosclerosis Society (EAS) and the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) Joint Consensus Initiative Quantifying Atherogenic lipoproteins: current and future challenges in the era of personalized medicine and very low concentrations of LDL cholesterol. A consensus Statement from EAS and EFLM. Clin Chem. 2018;64(7):1006–1033. doi: 10.1373/clinchem.2018.287037.
    1. Higashioka M, Sakata S, Honda T, Hata J, Yoshida D, Hirakawa Y, Shibata M, Goto K, Kitazono T, Osawa H, Ninomiya T. Small dense low-density lipoprotein cholesterol and the risk of coronary heart disease in a Japanese community. J Atheroscler Thromb. 2020;27(7):669–682. doi: 10.5551/jat.51961.
    1. Liou L, Kaptoge S. Association of small, dense LDL-cholesterol concentration and lipoprotein particle characteristics with coronary heart disease: A systematic review and meta-analysis. PLoS One. 2020;15(11):e0241993. doi: 10.1371/journal.pone.0241993.
    1. Duan R, Xue W, Wang K, et al. Estimation of the LDL subclasses in ischemic stroke as a risk factor in a Chinese population. BioMed Central Neurol. 2020;20(1):414.
    1. Kanonidou C. Small dense low-density lipoprotein: analytical review. Clin Chim Acta. 2021;520:172–178. doi: 10.1016/j.cca.2021.06.012.
    1. Sampson M, Wolska A, Warnick R, Lucero D, Remaley AT. A new equation based on the standard lipid panel for calculating small dense low-density lipoprotein-cholesterol and its use as a risk-enhancer test. Clin Chem. 2021;67(7):987–997. doi: 10.1093/clinchem/hvab048.
    1. Yu M, Liang C, Kong Q, Wang Y, Li M. Efficacy of combination therapy with ezetimibe and statins versus a double dose of statin monotherapy in participants with hypercholesterolemia: a meta-analysis of literature. Lipids Health Dis. 2020;19(1):1. doi: 10.1186/s12944-019-1182-5.
    1. Othman RA, Myrie SB, Mymin D, Roullet JB, Steiner RD, Jones PJH. Effect of ezetimibe on low- and high-density lipoprotein subclasses in sitosterolemia. Atherosclerosis. 2017;260:27–33. doi: 10.1016/j.atherosclerosis.2017.03.015.
    1. Tribble DL, Farnier M, Macdonell G, Perevozskaya I, Davies MJ, Gumbiner B, Musliner TA. Effects of fenofibrate and ezetimibe, both as monotherapy and in coadministration, on cholesterol mass within lipoprotein subfractions and low-density lipoprotein peak particle size in patients with mixed hyperlipidemia. Metabolism. 2008;57(6):796–801. doi: 10.1016/j.metabol.2008.01.026.
    1. Winkler K, Jacob S, Müller-Schewe T, Hoffmann MM, Konrad T. Ezetimibe alone and in combination lowers the concentration of small, dense low-density lipoproteins in type 2 diabetes mellitus. Atherosclerosis. 2012;220(1):189–193. doi: 10.1016/j.atherosclerosis.2011.10.043.
    1. Ose L, Reyes R, Johnson-Levonas AO, Sapre A, Tribble DL, Musliner T. Effects of ezetimibe/simvastatin on lipoprotein subfractions in patients with primary hypercholesterolemia: an exploratory analysis of archived samples using two commercially available techniques. Clin Ther. 2007;29(11):2419–2432. doi: 10.1016/j.clinthera.2007.10.004.
    1. Katsiki N, Athyros VG, Karagiannis A, Mikhailidis DP. Ezetimibe and low density lipoprotein subfractions: an ongoing debate. Curr Med Res Opin. 2011;27(3):693–695. doi: 10.1185/03007995.2011.554809.
    1. Berneis K, Rizzo M, Berthold HK, Spinas GA, Krone W, Gouni-Berthold I. Ezetimibe alone or in combination with simvastatin increases small dense low-density lipoproteins in healthy men: a randomized trial. Eur Heart J. 2010;31(13):1633–1639. doi: 10.1093/eurheartj/ehq181.
    1. Thongtang N, Diffenderfer MR, Ooi EMM, Barrett PHR, Turner SM, le NA, Brown WV, Schaefer EJ. Metabolism and proteomics of large and small dense LDL in combined hyperlipidemia: effects of rosuvastatin. J Lipid Res. 2017;58(7):1315–1324. doi: 10.1194/jlr.M073882.
    1. Ridker PM, Danielson E, Fonseca FA, Genest J, Gotto AM, Jr, Kastelein JJP, Koenig W, Libby P, Lorenzatti AJ, MacFadyen JG, Nordestgaard BG, Shepherd J, Willerson JT, Glynn RJ. Reduction in C-reactive protein and LDL cholesterol and cardiovascular event rates after initiation of rosuvastatin: a prospective study of the JUPITER trial. Lancet. 2009;373(9670):1175–1182. doi: 10.1016/S0140-6736(09)60447-5.
    1. Bohula EA, Giugliano RP, Cannon CP, Zhou J, Murphy SA, White JA, Tershakovec AM, Blazing MA, Braunwald E. Achievement of dual low-density lipoprotein cholesterol and high-sensitivity C-reactive protein targets more frequent with the addition of ezetimibe to simvastatin and associated with better outcomes in IMPROVE-IT. Circulation. 2015;132(13):1224–1233. doi: 10.1161/CIRCULATIONAHA.115.018381.
    1. Bhagavathula AS, Aldhaleei WA, Al Matrooshi NO, Rahmani J. Efficacy of statin/Ezetimibe for secondary prevention of atherosclerotic cardiovascular disease in Asian populations: a systematic review and Meta-analysis of randomized controlled trials. Clin Drug Investig. 2020;40(9):809–826. doi: 10.1007/s40261-020-00951-1.
    1. Fonseca FAH, Izar MC, Maugeri IML, et al. Effects of four antiplatelet/statin combined strategies on immune and inflammatory responses in patients with acute myocardial infarction undergoing pharmacoinvasive strategy: Design and rationale of the B and T Types of Lymphocytes Evaluation in Acute Myocardial Infarction (BATTLE-AMI) study: study protocol for a randomized controlled trial. Trials. 2017;18(1):601. doi: 10.1186/s13063-017-2361-1.
    1. Hoefner DM, Hodel SD, O’Brien JF, Branum EL, Sun D, Meissner I, McConnell JP. Development of a rapid, quantitative method for LDL subfractionation with use of the Quantimetrix Lipoprint LDL system. Clin Chem. 2001;47(2):266–274. doi: 10.1093/clinchem/47.2.266.
    1. Varady KA, Lamarche B. Lipoprint adequately estimates LDL size distribution, but not absolute size, versus polyacrylamide gradient gel electrophoresis. Lipids. 2011;46(12):1163–1167. doi: 10.1007/s11745-011-3611-8.
    1. Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, Fonseca F, Nicolau J, Koenig W, Anker SD, Kastelein JJP, Cornel JH, Pais P, Pella D, Genest J, Cifkova R, Lorenzatti A, Forster T, Kobalava Z, Vida-Simiti L, Flather M, Shimokawa H, Ogawa H, Dellborg M, Rossi PRF, Troquay RPT, Libby P, Glynn RJ. Antiinflammatory therapy with Canakinumab for atherosclerotic disease. N Engl J Med. 2017;377(12):1119–1131. doi: 10.1056/NEJMoa1707914.
    1. Carrero JJ, Franko MA, Obergfell A, Gabrielsen A, Jernberg T. hsCRP Level and the Risk of Death or Recurrent Cardiovascular Events in Patients With Myocardial Infarction: a Healthcare-Based Study. J Am Heart Assoc. 2019;8(11):e012638. doi: 10.1161/JAHA.119.012638.
    1. Ai M, Otokozawa S, Asztalos BF, Ito Y, Nakajima K, White CC, Cupples LA, Wilson PW, Schaefer EJ. Small dense LDL cholesterol and coronary heart disease: results from the Framingham offspring study. Clin Chem. 2010;56(6):967–976. doi: 10.1373/clinchem.2009.137489.
    1. Tsai MY, Steffen BT, Guan W, McClelland RL, Warnick R, McConnell J, Hoefner DM, Remaley AT. New automated assay of small dense low-density lipoprotein cholesterol identifies risk of coronary heart disease: the multi-ethnic study of atherosclerosis. Arterioscler Thromb Vasc Biol. 2014;34(1):196–201. doi: 10.1161/ATVBAHA.113.302401.
    1. Hoogeveen RC, Gaubatz JW, Sun W, Dodge RC, Crosby JR, Jiang J, Couper D, Virani SS, Kathiresan S, Boerwinkle E, Ballantyne CM. Small dense low-density lipoprotein-cholesterol concentrations predict risk for coronary heart disease: the atherosclerosis risk in communities (ARIC) study. Arterioscler Thromb Vasc Biol. 2014;34(5):1069–1077. doi: 10.1161/ATVBAHA.114.303284.
    1. Mora S, Caulfield MP, Wohlgemuth J, Chen Z, Superko HR, Rowland CM, Glynn RJ, Ridker PM, Krauss RM. Atherogenic lipoprotein subfractions determined by ion mobility and first cardiovascular events after random allocation to high-intensity statin or placebo: the justification for the use of statins in prevention: an intervention trial evaluating Rosuvastatin (JUPITER) trial. Circulation. 2015;132(23):2220–2229. doi: 10.1161/CIRCULATIONAHA.115.016857.
    1. Baruch A, Mosesova S, Davis JD, Budha N, Vilimovskij A, Kahn R, Peng K, Cowan KJ, Harris LP, Gelzleichter T, Lehrer J, Davis JC, Jr, Tingley WG. Effects of RG7652, a monoclonal antibody against PCSK9, on LDL-C, LDL-C subfractions, and inflammatory biomarkers in patients at high risk of or with established coronary heart disease (from the phase 2 EQUATOR study) Am J Cardiol. 2017;119(10):1576–1583. doi: 10.1016/j.amjcard.2017.02.020.
    1. Bays H, Conard S, Leiter LA, Bird S, Jensen E, Hanson ME, Shah A, Tershakovec AM. Are post-treatment low-density lipoprotein subclass pattern analyses potentially misleading? Lipids Health Dis. 2010;9(1):136. doi: 10.1186/1476-511X-9-136.
    1. Xu RX, Liu J, Li XL, Li S, Zhang Y, Jia YJ, Sun J, Li JJ. Impacts of ezetimibe on PCSK9 in rats: study on the expression in different organs and the potential mechanisms. J Transl Med. 2015;13(1):87. doi: 10.1186/s12967-015-0452-x.
    1. Klassen A, Faccio AT, Picossi CRC, et al. Evaluation of two highly effective lipid-lowering therapies in subjects with acute myocardial infarction. Sci Rep. 2021;11(1):15973. doi: 10.1038/s41598-021-95455-z.
    1. Xue Y, Shen J, Hong W, et al. Risk stratification of ST-segment elevation myocardial infarction (STEMI) patients using machine learning based on lipid profiles. Lipids Health Dis. 2021;20(1):48. doi: 10.1186/s12944-021-01475-z.
    1. Pokharel Y, Sharma PP, Qintar M, Lu Y, Tang Y, Jones P, Dreyer RP, Spertus JA. High-sensitivity C-reactive protein levels and health status outcomes after myocardial infarction. Atherosclerosis. 2017;266:16–23. doi: 10.1016/j.atherosclerosis.2017.09.019.
    1. Ridker PM, Morrow DA, Rose LM, Rifai N, Cannon CP, Braunwald E. Relative efficacy of atorvastatin 80 mg and pravastatin 40 mg in achieving the dual goals of low-density lipoprotein cholesterol <70 mg/dl and C-reactive protein <2 mg/l: an analysis of the PROVE-IT TIMI-22 trial. J Am Coll Cardiol. 2005;45(10):1644–1648. doi: 10.1016/j.jacc.2005.02.080.
    1. Ridker PM, Libby P, MacFadyen JG, Thuren T, Ballantyne C, Fonseca F, Koenig W, Shimokawa H, Everett BM, Glynn RJ. Modulation of the interleukin-6 signalling pathway and incidence rates of atherosclerotic events and all-cause mortality: analyses from the Canakinumab anti-inflammatory thrombosis outcomes study (CANTOS) Eur Heart J. 2018;39(38):3499–3507. doi: 10.1093/eurheartj/ehy310.
    1. Tardif JC, Kouz S, Waters DD, Bertrand OF, Diaz R, Maggioni AP, Pinto FJ, Ibrahim R, Gamra H, Kiwan GS, Berry C, López-Sendón J, Ostadal P, Koenig W, Angoulvant D, Grégoire JC, Lavoie MA, Dubé MP, Rhainds D, Provencher M, Blondeau L, Orfanos A, L’Allier PL, Guertin MC, Roubille F. Efficacy and safety of low-dose colchicine after myocardial infarction. N Engl J Med. 2019;381(26):2497–2505. doi: 10.1056/NEJMoa1912388.
    1. Bouabdallaoui N, Tardif JC, Waters DD, Pinto FJ, Maggioni AP, Diaz R, Berry C, Koenig W, Lopez-Sendon J, Gamra H, Kiwan GS, Blondeau L, Orfanos A, Ibrahim R, Grégoire JC, Dubé MP, Samuel M, Morel O, Lim P, Bertrand OF, Kouz S, Guertin MC, L’Allier PL, Roubille F. Time-to-treatment initiation of colchicine and cardiovascular outcomes after myocardial infarction in the colchicine cardiovascular outcomes trial (COLCOT) Eur Heart J. 2020;41(42):4092–4099. doi: 10.1093/eurheartj/ehaa659.
    1. Schwartz GG, Steg PG, Szarek M, Bhatt DL, Bittner VA, Diaz R, Edelberg JM, Goodman SG, Hanotin C, Harrington RA, Jukema JW, Lecorps G, Mahaffey KW, Moryusef A, Pordy R, Quintero K, Roe MT, Sasiela WJ, Tamby JF, Tricoci P, White HD, Zeiher AM. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med. 2018;379(22):2097–2107. doi: 10.1056/NEJMoa1801174.
    1. Bohula EA, Giugliano RP, Leiter LA, Verma S, Park JG, Sever PS, Lira Pineda A, Honarpour N, Wang H, Murphy SA, Keech A, Pedersen TR, Sabatine MS. Inflammatory and cholesterol risk in the FOURIER trial. Circulation. 2018;138(2):131–140. doi: 10.1161/CIRCULATIONAHA.118.034032.
    1. Sposito AC, Faria Neto JR, Carvalho LS, Lorenzatti A, Cafferata A, Elikir G, Esteban E, Morales Villegas EC, Bodanese LC, Alonso R, Ruiz AJ, Rocha VZ, Faludi AA, Xavier HT, Coelho OR, Assad MH, Izar MC, Santos RD, Fonseca FA, Mello E Silva A, Silva PM, Bertolami MC, on behalf of the Luso-Latin American Consortium on Statin-Associated Muscle Symptoms Statin-associated muscle symptoms: position paper from the Luso-Latin American consortium. Curr Med Res Opin. 2017;33(2):239–251. doi: 10.1080/03007995.2016.1252740.

Source: PubMed

3
Předplatit