Effects of four antiplatelet/statin combined strategies on immune and inflammatory responses in patients with acute myocardial infarction undergoing pharmacoinvasive strategy: Design and rationale of the B and T Types of Lymphocytes Evaluation in Acute Myocardial Infarction (BATTLE-AMI) study: study protocol for a randomized controlled trial

Francisco A H Fonseca, Maria Cristina Izar, Ieda M L Maugeri, Otavio Berwanger, Lucas P Damiani, Ibraim M Pinto, Gilberto Szarf, Carolina N França, Henrique T Bianco, Flavio T Moreira, Adriano Caixeta, Claudia M R Alves, Aline Soriano Lopes, Aline Klassen, Marina F M Tavares, Henrique A Fonseca, Antonio C C Carvalho, BATTLE-AMI Investigators, Francisco A H Fonseca, Maria Cristina Izar, Ieda M L Maugeri, Otavio Berwanger, Lucas P Damiani, Ibraim M Pinto, Gilberto Szarf, Carolina N França, Henrique T Bianco, Flavio T Moreira, Adriano Caixeta, Claudia M R Alves, Aline Soriano Lopes, Aline Klassen, Marina F M Tavares, Henrique A Fonseca, Antonio C C Carvalho, BATTLE-AMI Investigators

Abstract

Background: Early reperfusion of the occluded coronary artery during acute myocardial infarction is considered crucial for reduction of infarcted mass and recovery of ventricular function. Effective microcirculation and the balance between protective and harmful lymphocytes may have roles in reperfusion injury and may affect final ventricular remodeling.

Methods/design: BATTLE-AMI is an open-label, randomized trial comparing the effects of four therapeutic strategies (rosuvastatin/ticagrelor, rosuvastatin/clopidogrel, simvastatin plus ezetimibe/ticagrelor, or simvastatin plus ezetimibe/clopidogrel) on infarcted mass and left ventricular ejection fraction (LVEF) (blinded endpoints) in patients with ST-segment elevation myocardial infarction submitted to fibrinolytic therapy before coronary angiogram (pharmacoinvasive strategy). All patients (n = 300, 75 per arm) will be followed up for six months. The effects of treatment on subsets of B and T lymphocytes will be determined by flow-cytometry/ELISPOT and will be correlated with the infarcted mass, LVEF, and microcirculation perfusion obtained by cardiac magnetic resonance imaging. The primary hypothesis is that the combined rosuvastatin/ticagrelor therapy will be superior to other therapies (particularly for the comparison with simvastatin plus ezetimibe/clopidogrel) for the achievement of better LVEF at 30 days (primary endpoint) and smaller infarcted mass (secondary endpoint) at 30 days and six months. The trial will also evaluate the improvement in the immune/inflammatory responses mediated by B and T lymphocytes. Omics field (metabolomics and proteomics) will help to understand these responses by molecular events.

Discussion: BATTLE-AMI is aimed to (1) evaluate the role of subsets of lymphocytes on microcirculation improvement and (2) show how the choice of statin/antiplatelet therapy may affect cardiac remodeling after acute myocardial infarction with ST elevation.

Trial registration: ClinicalTrials.gov, NCT02428374 . Registered on 28 September 2014.

Keywords: Acute myocardial infarction; B lymphocytes; cardiac magnetic resonance imaging; metabolomics; proteomics.

Conflict of interest statement

Author’s information

Department of Medicine, Cardiology Division, Federal University of São Paulo, Rua Loefgren 1350, 04040-001, São Paulo, SP, Brazil.

Ethics approval and consent to participate

The BATTLE-AMI study has been approved by the local Ethics Committee (Universidade Federal de São Paulo – Hospital São Paulo) ethical approval reference number IRB:0297/2014 and CAEE: 38692514.1.1001.5505. Any important protocol modifications will be submitted and/or communicated to relevant parties.

Consent for publication

Not applicable.

Competing interests

FAH was a member of the Steering Committee of the JUPITER trial sponsored by Astra Zeneca. All the remaining authors declare that they have no competing interests for this trial.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
The BATTLE-AMI hypothesis – lymphocytes. After successful coronary reperfusion by a pharmacoinvasive strategy, patients with STEMI might have greater or smaller infarcted mass depending on the balance of B and T lymphocytes. B CD11b– and B memory cells seem to be related to smaller infarcted mass and better left ventricular ejection fraction (LVEF). Conversely, B CD11b + and B-naive cells are possibly related to greater infarcted mass. The role of B and T derived microparticles, extracellular vesicles, or exosomes in the ischemic tissue after coronary reperfusion is not yet established. PCI percutaneous coronary intervention
Fig. 2
Fig. 2
The BATTLE-AMI hypothesis – microcirculation. Microcirculation will be improved by adenosine and nitric oxide. Ticagrelor increases intra- and extracellular levels of adenosine by blocking the adenosine transporter ENT1. Rosuvastatin increases nitric oxide availability through the decrease in the intracellular signaling mediated by Rho GTPases. Decrease in Rho protein is followed by increased bioavailability of nitric oxide, promoting vasodilation. Thus, the synergism between rosuvastatin and ticagrelor will improve the microcirculation of the ischemic myocardium decreasing the final infarcted mass. The absence of effect in adenosine levels following clopidogrel use and the characteristics of simvastatin as a prodrug might have lower beneficial effect on the microcirculation
Fig. 3
Fig. 3
The BATTLE-AMI study flowchart. After fibrinolytic therapy performed in the 6 h after onset of symptoms, subjects with STEMI will be referred to the hospital for coronary angiography and PCI, if necessary. Those patients admitted to the hospital within 24 h of STEMI will be randomized to one of the four assignments in a 1:1:1:1 ratio (ticagrelor/rosuvastatin, ticagrelor/simvastatin plus ezetimibe, clopidogrel/rosuvastatin, or clopidogrel/simvastatin plus ezetimibe). Blood, urine, and feces samples will be collected at baseline, 30 days, and 180 days for metabolomics, proteomics, microbiota, and flow-cytometry studies. cMRI studies will be performed during peri-hospitalization period and at 30 and 180 days
Fig. 4
Fig. 4
Schedule of enrolment, interventions, and assessments. TICA ticagrelor, RSV rosuvastatin, Sinva simvastatin, CLO clopidogrel, EZE ezetimibe, cMRI cardiac magnetic resonance imaging

References

    1. Borgia F, Goodman SG, Halvorsen S, Cantor WJ, Piscione F, Le May MR, et al. Early routine percutaneous coronary intervention after fibrinolysis vs. standard therapy in ST-segment elevation myocardial infarction: a meta-analysis. Eur Heart J. 2010;31:2156–69. doi: 10.1093/eurheartj/ehq204.
    1. Madan M, Halvorsen S, Di Mario C, Tan M, Westerhout CM, Cantor WJ, et al. Relationship between time to invasive assessment and clinical outcomes of patients undergoing an early invasive strategy after fibrinolysis for ST-segment elevation myocardial infarction: a patient-level analysis of the randomized early routine invasive clinical trials. JACC Cardiovasc Interv. 2015;8:166–74. doi: 10.1016/j.jcin.2014.09.005.
    1. Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. 2007;357:1121–35. doi: 10.1056/NEJMra071667.
    1. Zhang M, Alicot EM, Chiu I, Li J, Verna N, Vorup-Jensen T, et al. Identification of the target self-antigens in reperfusion injury. J Exp Med. 2006;203:141–52. doi: 10.1084/jem.20050390.
    1. Zouggari Y, Ait-Oufella H, Bonnin P, Simon T, Sage AP, Guérin C, et al. B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nat Med. 2013;19:1273–80. doi: 10.1038/nm.3284.
    1. Boufenzer A, Lemarié J, Simon T, Derive M, Bouazza Y, Tran N, et al. TREM-1 mediates inflammatory injury and cardiac remodeling following myocardial infarction. Circ Res. 2015;116:1772–82. doi: 10.1161/CIRCRESAHA.116.305628.
    1. Chiva-Blanch G, Laake K, Myhre P, Bratseth V, Arnesen H, Solheim S, et al. Platelet-, monocyte-derived and tissue factor-carrying circulating microparticles are related to acute myocardial infarction severity. PLoS One. 2017;12:e0172558. doi: 10.1371/journal.pone.0172558.
    1. Boulanger CM, Loyer X, Rautou PE, Amabile N. Extracellular vesicles in coronary artery disease. Nat Rev Cardiol. 2017;14:259–72. doi: 10.1038/nrcardio.2017.7.
    1. Caligiuri G, Nicoletti A, Poirier B, Hansson GK. Protective immunity against atherosclerosis carried by B cells of hypercholesterolemic mice. J Clin Invest. 2002;109:745–53. doi: 10.1172/JCI7272.
    1. Ait-Oufella H, Herbin O, Bouaziz JD, Binder CJ, Uyttenhove C, Laurans L, et al. B cell depletion reduces the development of atherosclerosis in mice. J Exp Med. 2010;207:1579–87. doi: 10.1084/jem.20100155.
    1. Kyaw T, Tay C, Khan A, Dumouchel V, Cao A, To K, et al. Conventional B2 B cell depletion ameliorates whereas its adoptive transfer aggravates atherosclerosis. J Immunol. 2010;185:4410–9. doi: 10.4049/jimmunol.1000033.
    1. Tsiantoulas D, Diehl CJ, Witztum JL, Binder CJ. B cells and humoral immunity in atherosclerosis. Circ Res. 2014;114:1743–56. doi: 10.1161/CIRCRESAHA.113.301145.
    1. Michel JB, Virmani R, Arbustini E, Parterkamp G. Intraplaquehaemorrhages as the trigger of plaque vulnerability. Eur Heart J. 2011;32:1977–85. doi: 10.1093/eurheartj/ehr054.
    1. Camus SM, De Moraes JA, Bonnin P, Abbyad P, Le Jeune S, Lionnet F, et al. Circulating cell membrane microparticles transfer heme to endothelial cells and trigger vasoocclusions in sickle cell disease. Blood. 2015;125:3805–14. doi: 10.1182/blood-2014-07-589283.
    1. Moreira FT, Ramos SC, Monteiro AM, Helfenstein T, Gidlund M, Damasceno NR, et al. Effects of two lipid lowering therapies on immune responses in hyperlipidemic subjects. Life Sci. 2014;98:83–7. doi: 10.1016/j.lfs.2014.01.001.
    1. Bonello L, Laine M, Kipson N, Mancini J, Helal O, Fromonot J, et al. Ticagrelor increases adenosine plasma concentration in patients with an acute coronary syndrome. J Am Coll Cardiol. 2014;63:872–7. doi: 10.1016/j.jacc.2013.09.067.
    1. Cattaneo M, Schulz R, Nylander S. Adenosine-mediated effects of ticagrelor: evidence and potential clinical relevance. J Am Coll Cardiol. 2014;63:2503–9. doi: 10.1016/j.jacc.2014.03.031.
    1. Alexopoulos D, Moulias A, Koutsogiannis N, Xanthopoulou I, Kakkavas A, Mavronasiou E, et al. Differential effect of ticagrelor versus prasugrel on coronary blood flow velocity in patients with non-ST- elevation acute coronary syndrome undergoing percutaneous coronary intervention: an exploratory study. Circ Cardiovasc Interv. 2013;6:277–83. doi: 10.1161/CIRCINTERVENTIONS.113.000293.
    1. Rikitake Y, Liao JK. Rho GTPases, statins, and nitric oxide. Circ Res. 2005;97:1232–5. doi: 10.1161/01.RES.0000196564.18314.23.
    1. França CN, Pinheiro LF, Izar MC, Brunialti MK, Salomão R, Bianco HT, et al. Endothelial progenitor clopidogrel plasma levels in stable coronary artery disease. Circ J. 2012;76:729–36. doi: 10.1253/circj.CJ-11-1145.
    1. Pinheiro LF, França CN, Izar MC, Barbosa SP, Bianco HT, Kasmas SH, et al. Pharmacokinetic interactions between clopidogrel and rosuvastatin: effects on vascular protection in subjects with coronary heart disease. Int J Cardiol. 2012;158:125–9. doi: 10.1016/j.ijcard.2012.04.051.
    1. Di Sciascio G, Patti G, Pasceri V, Gaspardone A, Colonna G, Montinaro A. Efficacy of atorvastatin reload in patients on chronic statin therapy undergoing percutaneous coronary intervention: results of the ARMYDA-RECAPTURE (Atorvastatin for Reduction of Myocardial Damage During Angioplasty) randomized trial. J Am Coll Cardiol. 2009;54:558–65. doi: 10.1016/j.jacc.2009.05.028.
    1. Pan Y, Tan Y, Li B, Li X. Efficacy of high-dose rosuvastatin preloading in patients undergoing percutaneous coronary intervention: a meta-analysis of fourteen randomized controlled trials. Lipids Health Dis. 2015;14:97. doi: 10.1186/s12944-015-0095-1.
    1. Falcão FJ, Alves CM, Barbosa AH, Caixeta A, Sousa JM, Souza JA, et al. Predictors of in-hospital mortality in patients with ST-segment elevation myocardial infarction undergoing pharmacoinvasive treatment. Clinics (Sao Paulo) 2013;68:1516–20. doi: 10.6061/clinics/2013(12)07.
    1. Lins LC, França CN, Fonseca FA, Barbosa SP, Matos LN, Aguirre AC, et al. Effects of ezetimibe on endothelial progenitor cells and microparticles in high-risk patients. Cell Biochem Biophys. 2014;70:687–96. doi: 10.1007/s12013-014-9973-9.
    1. Camargo LM, França CN, Izar MC, Bianco HT, Lins LS, Barbosa SP, et al. Effects of simvastatin/ezetimibe on microparticles, endothelial progenitor cells and platelet aggregation in subjects with coronary heart disease under antiplatelet therapy. Braz J Med Biol Res. 2014;47:432–7. doi: 10.1590/1414-431X20143628.
    1. da Silva EF, Fonseca FA, França CN, Ferreira PR, Izar MC, Salomão R, et al. Imbalance between endothelial progenitors cells and microparticles in HIV-infected patients naive for antiretroviral therapy. AIDS. 2011;25:1595–601. doi: 10.1097/QAD.0b013e32834980f4.
    1. Scholzen A, Nahrendorf W, Langhorne J, Sauerwein RW. Expansion of IgG+ B-cells during mitogen stimulation for memory B-cell ELISpot analysis is influenced by size and composition of the B-cell pool. PLoS One. 2014;9:e102885. doi: 10.1371/journal.pone.0102885.
    1. Kinter M, Sherman NE. Protein sequencing and identification using tandem mass spectrometry. Chichester: John Wiley & Sons; 2000. The preparation of protein digests for mass spectrometric sequencing experiments; pp. 147–65.
    1. Lopes AS, Cruz EC, Sussulini A, Klassen A. Metabolomic strategies involving mass spectrometry combined with liquid and gas chromatography. Adv Exp Med Biol. 2017;965:77–98. doi: 10.1007/978-3-319-47656-8_4.
    1. de Souza AZ, Zambom AZ, Abboud KY, Reis SK, Tannihão F, Guadagnini D, et al. Oral supplementation with L-glutamine alters gut microbiota of obese and overweight adults: A pilot study. Nutrition. 2015;31:884–9. doi: 10.1016/j.nut.2015.01.004.
    1. The Thrombolysis in Myocardial Infarction (TIMI) trial Phase I findings. TIMI Study Group. N Engl J Med. 1985;312:932–6.
    1. Sianos G, Morel MA, Kappetein AP, Morice MC, Colombo A, Dawkins K, et al. The SYNTAX Score: an angiographic tool grading the complexity of coronary artery disease. EuroIntervention. 2005;1:219–27.
    1. Caixeta A, Généreux P, Palmerini T, Lansky AJ, Mehran R, Dangas GD, et al. Prognostic utility of the SYNTAX score in patients with single versus multivessel disease undergoing percutaneous coronary intervention (from the Acute Catheterization and Urgent Intervention Triage StrategY [ACUITY] trial) Am J Cardiol. 2014;113:203–10. doi: 10.1016/j.amjcard.2013.08.035.

Source: PubMed

3
Předplatit