A Preliminary Investigation of Individual Differences in Subjective Responses to D-Amphetamine, Alcohol, and Delta-9-Tetrahydrocannabinol Using a Within-Subjects Randomized Trial

Margaret C Wardle, Benjamin A Marcus, Harriet de Wit, Margaret C Wardle, Benjamin A Marcus, Harriet de Wit

Abstract

Polydrug use is common, and might occur because certain individuals experience positive effects from several different drugs during early stages of use. This study examined individual differences in subjective responses to single oral doses of d-amphetamine, alcohol, and delta-9-tetrahydrocannabinol (THC) in healthy social drinkers. Each of these drugs produces feelings of well-being in at least some individuals, and we hypothesized that subjective responses to these drugs would be positively correlated. We also examined participants' drug responses in relation to personality traits associated with drug use. In this initial, exploratory study, 24 healthy, light drug users (12 male, 12 female), aged 21-31 years, participated in a fully within-subject, randomized, counterbalanced design with six 5.5-hour sessions in which they received d-amphetamine (20mg), alcohol (0.8 g/kg), or THC (7.5 mg), each paired with a placebo session. Participants rated the drugs' effects on both global measures (e.g. feeling a drug effect at all) and drug-specific measures. In general, participants' responses to the three drugs were unrelated. Unexpectedly, "wanting more" alcohol was inversely correlated with "wanting more" THC. Additionally, in women, but not in men, "disliking" alcohol was negatively correlated with "disliking" THC. Positive alcohol and amphetamine responses were related, but only in individuals who experienced a stimulant effect of alcohol. Finally, high trait constraint (or lack of impulsivity) was associated with lower reports of liking alcohol. No personality traits predicted responses across multiple drug types. Generally, these findings do not support the idea that certain individuals experience greater positive effects across multiple drug classes, but instead provide some evidence for a "drug of choice" model, in which individuals respond positively to certain classes of drugs that share similar subjective effects, and dislike other types of drugs.

Trial registration: ClinicalTrials.gov NCT02485158.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1. CONSORT Diagram.
Fig 1. CONSORT Diagram.
Number of participants screened, randomized and completing the study, with reasons for exclusion and discontinuation.
Fig 2. Changes from pre-capsule/drink ratings in…
Fig 2. Changes from pre-capsule/drink ratings in DEQ scales.
Mean changes for “Feel Drug” (top row), “Like Drug” (middle row), and “Dislike Drug” (bottom row) following AMP (left column), ALC (middle column) and THC (right column) relative to their corresponding placebos across the session. Vertical dashed lines indicate time of capsule or drink administration. The values represent the mean ± s.e.m for each timepoint. %P<0.05, #P<0.01, *P<0.001.
Fig 3. Mean peak changes from pre-capsule/drink…
Fig 3. Mean peak changes from pre-capsule/drink in DEQ and ARCI scales.
Left: Mean peak change from pre-capsule in DEQ “Feel,” “Like,” “Dislike,” “High,” and “Want More” scores by drug. Right: Mean peak change in ARCI A, MBG, LSD, BG, PCAG, and M scores by drug. The values represent the mean ± s.e.m at timepoint 3. %P<0.05, #P<0.01, *P<0.001, &P = .051.
Fig 4. Scatter-plot of peak effects of…
Fig 4. Scatter-plot of peak effects of ALC and THC on the DEQ "Want More" scale.
Subjects who wanted more ALC reported wanting less THC (r = -.47, p = 0.02).

References

    1. Earleywine M, Newcomb MD. Concurrent versus simultaneous polydrug use: prevalence, correlates, discriminant validity, and prospective effects on health outcomes. Exp Clin Psychopharmacol. 1997;5(4):353–64. Epub 1997/12/05. .
    1. Darke S, Hall W. Levels and correlates of polydrug use among heroin users and regular amphetamine users. Drug Alcohol Depend. 1995;39(3):231–5. Epub 1995/10/01. .
    1. McCabe SE, West BT, Schepis TS, Teter CJ. Simultaneous co-ingestion of prescription stimulants, alcohol and other drugs: a multi-cohort national study of US adolescents. Hum Psychopharmacol. 2015;30(1):42–51. Epub 2014/11/06. 10.1002/hup.2449
    1. Terry-McElrath YM, O'Malley PM, Johnston LD. Simultaneous alcohol and marijuana use among U.S. high school seniors from 1976 to 2011: trends, reasons, and situations. Drug Alcohol Depend. 2013;133(1):71–9. Epub 2013/06/29. 10.1016/j.drugalcdep.2013.05.031
    1. Vanyukov MM, Tarter RE, Kirillova GP, Kirisci L, Reynolds MD, Kreek MJ, et al. Common liability to addiction and "gateway hypothesis": theoretical, empirical and evolutionary perspective. Drug Alcohol Depend. 2012;123 Suppl 1:S3–17. Epub 2012/01/21. 10.1016/j.drugalcdep.2011.12.018
    1. de Wit H, Phillips TJ. Do initial responses to drugs predict future use or abuse? Neurosci Biobehav Rev. 2012;36(6):1565–76. Epub 2012/05/01. 10.1016/j.neubiorev.2012.04.005
    1. Fergusson DM, Horwood LJ, Lynskey MT, Madden PA. Early reactions to cannabis predict later dependence. Arch Gen Psychiatry. 2003;60(10):1033–9. Epub 2003/10/15. 10.1001/archpsyc.60.10.1033 .
    1. Grant JD, Scherrer JF, Lyons MJ, Tsuang M, True WR, Bucholz KK. Subjective reactions to cocaine and marijuana are associated with abuse and dependence. Addict Behav. 2005;30(8):1574–86. Epub 2005/08/27. 10.1016/j.addbeh.2005.02.007 .
    1. King AC, McNamara PJ, Hasin DS, Cao D. Alcohol challenge responses predict future alcohol use disorder symptoms: a 6-year prospective study. Biol Psychiatry. 2014;75(10):798–806. Epub 2013/10/08. 10.1016/j.biopsych.2013.08.001
    1. Le Strat Y, Ramoz N, Horwood J, Falissard B, Hassler C, Romo L, et al. First positive reactions to cannabis constitute a priority risk factor for cannabis dependence. Addiction. 2009;104(10):1710–7. Epub 2009/08/12. 10.1111/j.1360-0443.2009.02680.x .
    1. Bolin BL, Reynolds AR, Stoops WW, Rush CR. Relationship between oral D-amphetamine self-administration and ratings of subjective effects: do subjective-effects ratings correspond with a progressive-ratio measure of drug-taking behavior? Behav Pharmacol. 2013;24(5–6):533–42. Epub 2013/07/25. 10.1097/FBP.0b013e3283645047
    1. Chutuape MA, de Wit H. Relationship between subjective effects and drug preferences: ethanol and diazepam. Drug Alcohol Depend. 1994;34(3):243–51. Epub 1994/02/01. .
    1. de Wit H, Uhlenhuth EH, Johanson CE. Individual differences in the reinforcing and subjective effects of amphetamine and diazepam. Drug Alcohol Depend. 1986;16(4):341–60. Epub 1986/02/01. .
    1. de Wit H, Uhlenhuth EH, Pierri J, Johanson CE. Individual differences in behavioral and subjective responses to alcohol. Alcohol Clin Exp Res. 1987;11(1):52–9. Epub 1987/02/01. .
    1. de Wit H, Doty P. Preference for ethanol and diazepam in light and moderate social drinkers: a within-subjects study. Psychopharmacology (Berl). 1994;115(4):529–38. Epub 1994/08/01. .
    1. Holdstock L, de Wit H. Individual differences in subjective responses to ethanol and triazolam. Behav Pharmacol. 1999;10(3):283–95. Epub 2000/04/26. .
    1. Holdstock L, de Wit H. Individual differences in responses to ethanol and d-amphetamine: a within-subject study. Alcohol Clin Exp Res. 2001;25(4):540–8. Epub 2001/05/01. .
    1. Perkins KA, Fonte C, Ashcom J, Broge M, Wilson A. Subjective responses to nicotine in smokers may be associated with responses to caffeine and to alcohol. Exp Clin Psychopharmacol. 2001;9(1):91–100. Epub 2001/08/25. .
    1. Zeiger JS, Haberstick BC, Corley RP, Ehringer MA, Crowley TJ, Hewitt JK, et al. Subjective effects for alcohol, tobacco, and marijuana association with cross-drug outcomes. Drug Alcohol Depend. 2012;123 Suppl 1:S52–8. Epub 2012/03/27. 10.1016/j.drugalcdep.2012.02.014
    1. Ashton CH. Pharmacology and effects of cannabis: a brief review. Br J Psychiatry. 2001;178:101–6. Epub 2001/02/07. .
    1. Creese I, Iversen SD. The pharmacological and anatomical substrates of the amphetamine response in the rat. Brain Res. 1975;83(3):419–36. Epub 1975/01/17. .
    1. Ticku MK. Alcohol and GABA-benzodiazepine receptor function. Ann Med. 1990;22(4):241–6. Epub 1990/01/01. .
    1. Nestler EJ. Is there a common molecular pathway for addiction? Nat Neurosci. 2005;8(11):1445–9. Epub 2005/10/28. 10.1038/nn1578 .
    1. McCabe SE, Knight JR, Teter CJ, Wechsler H. Non-medical use of prescription stimulants among US college students: prevalence and correlates from a national survey. Addiction. 2005;100(1):96–106. Epub 2004/12/16. 10.1111/j.1360-0443.2005.00944.x .
    1. Martin CS, Clifford PR, Clapper RL. Patterns and predictors of simultaneous and concurrent use of alcohol, tobacco, marijuana, and hallucinogens in first-year college students. J Subst Abuse. 1992;4(3):319–26. Epub 1992/01/01. .
    1. Martin CS, Kaczynski NA, Maisto SA, Tarter RE. Polydrug use in adolescent drinkers with and without DSM-IV alcohol abuse and dependence. Alcohol Clin Exp Res. 1996;20(6):1099–108. Epub 1996/09/01. .
    1. Kirkpatrick MG, Johanson CE, de Wit H. Personality and the acute subjective effects of d-amphetamine in humans. J Psychopharmacol. 2013;27(3):256–64. Epub 2013/01/25. 10.1177/0269881112472564
    1. Leeman RF, Ralevski E, Limoncelli D, Pittman B, O'Malley SS, Petrakis IL. Relationships between impulsivity and subjective response in an IV ethanol paradigm. Psychopharmacology (Berl). 2014;231(14):2867–76. Epub 2014/02/21. 10.1007/s00213-014-3458-9
    1. Vangsness L, Bry BH, LaBouvie EW. Impulsivity, negative expectancies, and marijuana use: a test of the acquired preparedness model. Addict Behav. 2005;30(5):1071–6. Epub 2005/05/17. 10.1016/j.addbeh.2004.11.003 .
    1. Adams ZW, Kaiser AJ, Lynam DR, Charnigo RJ, Milich R. Drinking motives as mediators of the impulsivity-substance use relation: pathways for negative urgency, lack of premeditation, and sensation seeking. Addict Behav. 2012;37(7):848–55. Epub 2012/04/05. 10.1016/j.addbeh.2012.03.016
    1. Galera C, Bouvard MP, Melchior M, Chastang JF, Lagarde E, Michel G, et al. Disruptive symptoms in childhood and adolescence and early initiation of tobacco and cannabis use: the Gazel Youth study. Eur Psychiatry. 2010;25(7):402–8. Epub 2010/09/04. 10.1016/j.eurpsy.2010.06.002 .
    1. James LM, Taylor J. Impulsivity and negative emotionality associated with substance use problems and Cluster B personality in college students. Addict Behav. 2007;32(4):714–27. Epub 2006/07/18. 10.1016/j.addbeh.2006.06.012 .
    1. First MB, Spitzer RL, Gibbon M, Williams JB. Strutured clinical interview for DSM-IV axis I disorders. New York: Biometrics Research Department; 1996.
    1. White TL, Justice AJ, de Wit H. Differential subjective effects of D-amphetamine by gender, hormone levels and menstrual cycle phase. Pharmacol Biochem Behav. 2002;73(4):729–41. Epub 2002/09/06. .
    1. Hart AB, Engelhardt BE, Wardle MC, Sokoloff G, Stephens M, de Wit H, et al. Genome-wide association study of d-amphetamine response in healthy volunteers identifies putative associations, including cadherin 13 (CDH13). PLoS One. 2012;7(8):e42646 Epub 2012/09/07. 10.1371/journal.pone.0042646
    1. Wardle MC, de Wit H. Effects of amphetamine on reactivity to emotional stimuli. Psychopharmacology (Berl). 2012;220(1):143–53. Epub 2011/09/29. 10.1007/s00213-011-2498-7
    1. White TL, Lejuez CW, de Wit H. Personality and gender differences in effects of d-amphetamine on risk taking. Exp Clin Psychopharmacol. 2007;15(6):599–609. Epub 2008/01/09. 10.1037/1064-1297.15.6.599 .
    1. Ballard ME, Bedi G, de Wit H. Effects of delta-9-tetrahydrocannabinol on evaluation of emotional images. J Psychopharmacol. 2012;26(10):1289–98. Epub 2012/05/16. 10.1177/0269881112446530
    1. Ballard ME, Gallo DA, de Wit H. Psychoactive drugs and false memory: comparison of dextroamphetamine and delta-9-tetrahydrocannabinol on false recognition. Psychopharmacology (Berl). 2012;219(1):15–24. Epub 2011/06/08. 10.1007/s00213-011-2374-5
    1. Perez-Reyes M. Marijuana smoking: factors that influence the bioavailability of tetrahydrocannabinol. NIDA Res Monogr. 1990;99:42–62. Epub 1990/01/01. .
    1. Hart CL, Ward AS, Haney M, Comer SD, Foltin RW, Fischman MW. Comparison of smoked marijuana and oral Delta(9)-tetrahydrocannabinol in humans. Psychopharmacology (Berl). 2002;164(4):407–15. Epub 2002/11/29. 10.1007/s00213-002-1231-y .
    1. Wachtel SR, ElSohly MA, Ross SA, Ambre J, de Wit H. Comparison of the subjective effects of Delta(9)-tetrahydrocannabinol and marijuana in humans. Psychopharmacology (Berl). 2002;161(4):331–9. Epub 2002/06/20. 10.1007/s00213-002-1033-2 .
    1. Cooper ZD, Haney M. Actions of delta-9-tetrahydrocannabinol in cannabis: relation to use, abuse, dependence. Int Rev Psychiatry. 2009;21(2):104–12. Epub 2009/04/16. 10.1080/09540260902782752
    1. Sutker PB, Tabakoff B, Goist KC Jr,Randall CL. Acute alcohol intoxication, mood states and alcohol metabolism in women and men. Pharmacol Biochem Behav. 1983;18 Suppl 1:349–54. Epub 1983/01/01. .
    1. Kirkpatrick MG, de Wit H. In the company of others: social factors alter acute alcohol effects. Psychopharmacology (Berl). 2013;230(2):215–26. Epub 2013/05/29. 10.1007/s00213-013-3147-0
    1. Reynolds B, Richards JB, de Wit H. Acute-alcohol effects on the Experiential Discounting Task (EDT) and a question-based measure of delay discounting. Pharmacol Biochem Behav. 2006;83(2):194–202. Epub 2006/03/07. 10.1016/j.pbb.2006.01.007 .
    1. Doty P, de Wit H. Effect of setting on the reinforcing and subjective effects of ethanol in social drinkers. Psychopharmacology (Berl). 1995;118(1):19–27. Epub 1995/03/01. .
    1. Foltin RW, Fischman MW. Methods for the assessment of abuse liability of psychomotor stimulants and anorectic agents in humans. Br J Addict. 1991;86(12):1633–40. Epub 1991/12/01. .
    1. Morean ME, de Wit H, King AC, Sofuoglu M, Rueger SY, O'Malley SS. The drug effects questionnaire: psychometric support across three drug types. Psychopharmacology (Berl). 2013;227(1):177–92. Epub 2012/12/29. 10.1007/s00213-012-2954-z
    1. Martin WR, Sloan JW, Sapira JD, Jasinski DR. Physiologic, subjective, and behavioral effects of amphetamine, methamphetamine, ephedrine, phenmetrazine, and methylphenidate in man. Clin Pharmacol Ther. 1971;12(2):245–58. Epub 1971/03/01. .
    1. Chait LD, Fischman MW, Schuster CR. 'Hangover' effects the morning after marijuana smoking. Drug Alcohol Depend. 1985;15(3):229–38. Epub 1985/06/01. .
    1. Patrick CJ, Curtin JJ, Tellegen A. Development and validation of a brief form of the Multidimensional Personality Questionnaire. Psychol Assess. 2002;14(2):150–63. Epub 2002/06/12. .
    1. Martin CS, Earleywine M, Musty RE, Perrine MW, Swift RM. Development and validation of the Biphasic Alcohol Effects Scale. Alcohol Clin Exp Res. 1993;17(1):140–6. Epub 1993/02/01. .
    1. Haberstick BC, Zeiger JS, Corley RP, Hopfer CJ, Stallings MC, Rhee SH, et al. Common and drug-specific genetic influences on subjective effects to alcohol, tobacco and marijuana use. Addiction. 2011;106(1):215–24. Epub 2010/10/20. 10.1111/j.1360-0443.2010.03129.x
    1. Bhattacharyya S, Morrison PD, Fusar-Poli P, Martin-Santos R, Borgwardt S, Winton-Brown T, et al. Opposite effects of delta-9-tetrahydrocannabinol and cannabidiol on human brain function and psychopathology. Neuropsychopharmacology. 2010;35(3):764–74. Epub 2009/11/20. 10.1038/npp.2009.184
    1. El-Alfy AT, Ivey K, Robinson K, Ahmed S, Radwan M, Slade D, et al. Antidepressant-like effect of delta9-tetrahydrocannabinol and other cannabinoids isolated from Cannabis sativa L. Pharmacol Biochem Behav. 2010;95(4):434–42. Epub 2010/03/25. 10.1016/j.pbb.2010.03.004
    1. Cooper ZD, Haney M. Investigation of sex-dependent effects of cannabis in daily cannabis smokers. Drug and Alcohol Dependence. 2014;136:85–91. 10.1016/j.drugalcdep.2013.12.013
    1. Khan SS, Secades-Villa R, Okuda M, Wang S, Pérez-Fuentes G, Kerridge BT, et al. Gender differences in cannabis use disorders: Results from the National Epidemiologic Survey of Alcohol and Related Conditions.Drug and Alcohol Dependence. 2013;130(1–3):101–8. 10.1016/j.drugalcdep.2012.10.015
    1. Kirk JM, Doty P, De Wit H. Effects of expectancies on subjective responses to oral delta9-tetrahydrocannabinol. Pharmacol Biochem Behav. 1998;59(2):287–93. Epub 1998/02/26. .
    1. Kirk JM, de Wit H. Responses to oral delta9-tetrahydrocannabinol in frequent and infrequent marijuana users. Pharmacol Biochem Behav. 1999;63(1):137–42. Epub 1999/05/26. .

Source: PubMed

3
Předplatit