Impact of Intensive Gait Training With and Without Electromechanical Assistance in the Chronic Phase After Stroke-A Multi-Arm Randomized Controlled Trial With a 6 and 12 Months Follow Up

Susanne Palmcrantz, Anneli Wall, Katarina Skough Vreede, Påvel Lindberg, Anna Danielsson, Katharina S Sunnerhagen, Charlotte K Häger, Jörgen Borg, Susanne Palmcrantz, Anneli Wall, Katarina Skough Vreede, Påvel Lindberg, Anna Danielsson, Katharina S Sunnerhagen, Charlotte K Häger, Jörgen Borg

Abstract

Introduction: Movement related impairments and limitations in walking are common long-term after stroke. This multi-arm randomized controlled trial explored the impact of training with an electromechanically assisted gait training (EAGT) system, i.e., the Hybrid Assistive Limb® (HAL), when integrated with conventional rehabilitation focused on gait and mobility. Material and Methods: Participants, aged 18-70 years with lower extremity paresis but able to walk with manual support or supervision 1-10 years after stroke, were randomized to (A) HAL-training on a treadmill, combined with conventional rehabilitation interventions (HAL-group), or (B) conventional rehabilitation interventions only (Conventional group), 3 days/week for 6 weeks, or (C) no intervention (Control group). Participants in the Control group were interviewed weekly regarding their scheduled training. Primary outcome was endurance in walking quantified by the 6 Minute Walk Test (6MWT). A rater blinded to treatment allocation performed assessments pre- and post-intervention and at follow-ups at 6 and 12 months. Baseline assessment included the National Institute of Health Stroke Scale (NIHSS) and the Modified Ranking Scale (MRS). Secondary outcomes included the Fugl Meyer Assessment- Lower Extremity, 10 Meter Walk Test, Berg Balance Scale (BBS), Barthel Index (BI) and perceived mobility with the Stroke Impact Scale. Results: A total of 48 participants completed the intervention period. The HAL-group walked twice as far as the Conventional group during the intervention. Post-intervention, both groups exhibited improved 6 MWT results, while the Control group had declined. A significant improvement was only found in the Conventional group and when compared to the Control group (Tukey HSD p = 0.022), and not between the HAL group and Conventional group (Tukey HSD p = 0.258) or the HAL- group and the Control group (Tukey HSD p = 0.447). There was also a significant decline in the Conventional group from post-intervention to 6 months follow up (p = 0.043). The best fitting model to predict outcome included initial balance (BBS), followed by stroke severity (NIHSS), and dependence in activity and participation (BI and MRS). Conclusion: Intensive conventional gait training induced significant improvements long-term after stroke while integrating treadmill based EAGT had no additional value in this study sample. The results may support cost effective evidence-based interventions for gait training long-term after stroke and further development of EAGT. Trial registration: Published on clinicaltrials.gov (NCT02545088) August 24, 2015.

Keywords: ambulation; robotics; stroke rehabilitation; treadmill; walking.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Palmcrantz, Wall, Vreede, Lindberg, Danielsson, Sunnerhagen, Häger and Borg.

Figures

FIGURE 1
FIGURE 1
HAL used on a treadmill with body weight support (BWS). Consent for publication was obtained from the persons in the pictures (photo: Johan Adelgren).
FIGURE 2
FIGURE 2
Participant flow diagram.
FIGURE 3
FIGURE 3
Six minute walk test, in meters, presented as estimated marginal means (±1 Standard deviation) at each time point M1 (baseline), M2 (post intervention), M3 (6 month follow up), M4 (12 months follow-up).

References

    1. Alguren B., Lundgren-Nilsson A., Sunnerhagen K. S. (2010). Functioning of stroke survivors-A validation of the ICF core set for stroke in Sweden. Disabil. Rehabil. 32 551–559. 10.3109/09638280903186335
    1. Awad L. N., Esquenazi A., Francisco G. E., Nolan K. J., Jayaraman A. (2020). The ReWalk ReStore (TM) soft robotic exosuit: a multi-site clinical trial of the safety, reliability, and feasibility of exosuit-augmented post-stroke gait rehabilitation. J. Neuroeng. Rehabil. 17:80.
    1. Berg K., Wood-Dauphinee S., Williams J. I. (1995). The Balance Scale: reliability assessment with elderly residents and patients with an acute stroke. Scand. J. Rehabil. Med. 27 27–36.
    1. Borg G. A. (1982). Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 14 377–381.
    1. Bowden M. G., Balasubramanian C. K., Behrman A. L., Kautz S. A. (2008). Validation of a speed-based classification system using quantitative measures of walking performance poststroke. Neurorehabil. Neural Repair 22 672–675. 10.1177/1545968308318837
    1. Bruni M. F., Melegari C., De Cola M. C., Bramanti A., Bramanti P., Calabro R. S. (2018). What does best evidence tell us about robotic gait rehabilitation in stroke patients: a systematic review and meta-analysis. J. Clin. Neurosci. 48 11–17. 10.1016/j.jocn.2017.10.048
    1. Chen B., Ma H., Qin L. Y., Gao F., Chan K. M., Law S. W., et al. (2016). Recent developments and challenges of lower extremity exoskeletons. J. Orthop. Transl. 5 26–37. 10.1016/j.jot.2015.09.007
    1. Chen G., Chan C. K., Guo Z., Yu H. (2013). A review of lower extremity assistive robotic exoskeletons in rehabilitation therapy. Crit. Rev. Biomed. Eng. 41 343–363. 10.1615/critrevbiomedeng.2014010453
    1. Kirtley C. (2005). Clinical Gait Analysis Theory and Practice. Edinburgh: Elsevier Churchill Livingstone.
    1. Duncan P. W., Bode R. K., Min Lai S., Perera S. (2003). Glycine Antagonist in Neuroprotection Americans I. Rasch analysis of a new stroke-specific outcome scale: the Stroke Impact Scale. Arch. Phys. Med. Rehabil. 84 950–963. 10.1016/s0003-9993(03)00035-2
    1. Duncan P. W., Wallace D., Lai S. M., Johnson D., Embretson S., Laster L. J. (1999). The stroke impact scale version 2.0. Evaluation of reliability, validity, and sensitivity to change. Stroke 30 2131–2140. 10.1161/01.str.30.10.2131
    1. Feigin V. L., Nguyen G., Cercy K., Johnson C. O., Alam T., Parmar P. G., et al. (2018). Global, regional, and country-specific lifetime risks of stroke, 1990 and 2016. N. Engl. J. Med. 379 2429–2437. 10.1056/nejmoa1804492
    1. Fugl-Meyer A. R., Jaasko L., Leyman I., Olsson S., Steglind S. (1975). The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand. J. Rehabil. Med. 7 13–31.
    1. Ghatnekar O., Persson U., Glader E. L., Terent A. (2004). Cost of stroke in Sweden: an incidence estimate. Int. J. Technol. Assess. Health Care 20 375–380. 10.1017/s0266462304001217
    1. Globas C., Becker C., Cerny J., Lam J. M., Lindemann U., Forrester L. W., et al. (2012). Chronic stroke survivors benefit from high-intensity aerobic treadmill exercise: a randomized control trial. Neurorehabil. Neural Repair 26 85–95. 10.1177/1545968311418675
    1. Holden M. K., Gill K. M., Magliozzi M. R., Nathan J., Piehl-Baker L. (1984). Clinical gait assessment in the neurologically impaired. Reliability and meaningfulness. Phys. Ther. 64 35–40. 10.1093/ptj/64.1.35
    1. Hornby T. G., Reisman D. S., Ward I. G., Scheets P. L., Miller A., Haddad D., et al. (2020). Clinical practice guideline to improve locomotor function following chronic stroke, incomplete spinal cord injury, and brain injury. J. Neurol. Phys. Ther. 44 49–100. 10.1097/npt.0000000000000303
    1. Jorgensen H. S., Nakayama H., Raaschou H. O., Olsen T. S. (1995). Recovery of walking function in stroke patients: the Copenhagen Stroke Study. Arch. Phys. Med. Rehabil. 76 27–32. 10.1016/s0003-9993(95)80038-7
    1. Kawamoto H., Kamibayashi K., Nakata Y., Yamawaki K., Ariyasu R., Sankai Y., et al. (2013). Pilot study of locomotion improvement using hybrid assistive limb in chronic stroke patients. BMC Neurol. 13:141. 10.1186/1471-2377-13-141
    1. Kawamoto H., Sankai Y. (2002). “Power assist system HAL-3 for gait disorder person,” in Lecture Notes in Computer Science, ICCHP 2002, eds Miesenberger K., Klaus J., Zagler W. (Berlin: Springer-Verlag; ), 196–203. 10.1007/3-540-45491-8_43
    1. Kawamoto H., Taal S., Niniss H., Hayashi T., Kamibayashi K., Eguchi K., et al. (2010). “Voluntary motion support control of Robot Suit HAL triggered by bioelectrical signal for hemiplegia,” in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual Conference, Vol. 2010 Piscataway, NJ, 462–466.
    1. Kim J., Thayabaranathan T., Donnan G. A., Howard G., Howard V. J., Rothwell P. M., et al. (2020). Global stroke statistics 2019. Int. J. Stroke 15 819–838. 10.1177/1747493020909545
    1. Kosak M., Smith T. (2005). Comparison of the 2-, 6-, and 12-minute walk tests in patients with stroke. J. Rehabil. Res. Dev. 42 103–107. 10.1682/jrrd.2003.11.0171
    1. Langhorne P., Bernhardt J., Kwakkel G. (2011). Stroke rehabilitation. Lancet 377 1693–1702.
    1. Lin K. C., Fu T., Wu C. Y., Wang Y. H., Liu J. S., Hsieh C. J., et al. (2010). Minimal detectable change and clinically important difference of the Stroke Impact Scale in stroke patients. Neurorehabil. Neural Repair 24 486–492. 10.1177/1545968309356295
    1. Lyden P., Brott T., Tilley B., Welch K. M., Mascha E. J., Levine S., et al. (1994). Improved reliability of the NIH Stroke Scale using video training. NINDS TPA Stroke Study Group. Stroke 25 2220–2226. 10.1161/01.str.25.11.2220
    1. Mahoney F. I., Barthel D. W. (1965). Functional evaluation: the barthel index. Md. State Med. J. 14 61–65.
    1. Mehrholz J., Thomas S., Elsner B. (2017a). Treadmill training and body weight support for walking after stroke. Cochrane Database Syst. Rev. 2017:CD002840.
    1. Mehrholz J., Thomas S., Werner C., Kugler J., Pohl M., Elsner B. (2017b). Electromechanical-assisted training for walking after stroke. Cochrane Database Syst. Rev. 5:CD006185.
    1. Molteni F., Gasperini G., Cannaviello G., Guanziroli E. (2018). Exoskeleton and end-effector robots for upper and lower limbs rehabilitation: narrative review. PM R. 10 (9 Suppl. 2) S174–S188.
    1. Nankaku M., Tanaka H., Ikeguchi R., Kikuchi T., Miyamoto S., Matsuda S. (2020). Effects of walking distance over robot-assisted training on walking ability in chronic stroke patients. J. Clin. Neurosci. 81 279–283. 10.1016/j.jocn.2020.09.067
    1. Nilsson A., Vreede K. S., Haglund V., Kawamoto H., Sankai Y., Borg J. (2014). Gait training early after stroke with a new exoskeleton–the hybrid assistive limb: a study of safety and feasibility. J. Neuroeng. Rehabil. 11:92. 10.1186/1743-0003-11-92
    1. Perry J., Garrett M., Gronley J. K., Mulroy S. J. (1995). Classification of walking handicap in the stroke population. Stroke 26 982–989. 10.1161/01.str.26.6.982
    1. Persson J., Ferraz-Nunes J., Karlberg I. (2012). Economic burden of stroke in a large county in Sweden. BMC Health Serv. Res. 12:341. 10.1186/1472-6963-12-341
    1. Rankin J. (1957). Cerebral vascular accidents in patients over the age of 60. II. Prognosis. Scott. Med. J. 2 200–215. 10.1177/003693305700200504
    1. Sanchez-Villamanan M. D., Gonzalez-Vargas J., Torricelli D., Moreno J. C., Pons J. L. (2019). Compliant lower limb exoskeletons: a comprehensive review on mechanical design principles. J. Neuroeng. Rehabil. 16:55.
    1. Sawicki G. S., Beck O. N., Kang I., Young A. J. (2020). The exoskeleton expansion: improving walking and running economy. J. Neuroeng. Rehabil. 17:25.
    1. Sczesny-Kaiser M., Trost R., Aach M., Schildhauer T. A., Schwenkreis P., Tegenthoff M. A. (2019). Randomized and controlled crossover study investigating the improvement of walking and posture functions in chronic stroke patients using HAL Exoskeleton - The HALESTRO Study (HAL-Exoskeleton STROke Study). Front. Neurosci. 13:259. 10.3389/fnins.2019.00259
    1. Suzuki K., Mito G., Kawamoto H., Hasegawa Y., Sankai Y. (2007). Intention-based walking support for paraplegia patients with Robot Suit HAL. Adv. Robot. 21 1441–1469. 10.1163/156855307781746061
    1. Tang A., Eng J. J., Rand D. (2012). Relationship between perceived and measured changes in walking after stroke. J. Neurol. Phys. Ther. 36 115–121. 10.1097/npt.0b013e318262dbd0
    1. Tedla J. S., Dixit S., Gular K., Abohashrh M. (2019). Robotic-assisted gait training effect on function and gait speed in subacute and chronic stroke population: a systematic review and meta-analysis of randomized controlled trials. Eur. Neurol. 81 103–111. 10.1159/000500747
    1. The Swedish Stroke Register Riksstroke (2018). Available online at: (accessed January 27, 2021).
    1. van Swieten J. C., Koudstaal P. J., Visser M. C., Schouten H. J., van Gijn J. (1988). Interobserver agreement for the assessment of handicap in stroke patients. Stroke 19 604–607. 10.1161/01.str.19.5.604
    1. Wade D. T., Wood V. A., Heller A., Maggs J., Langton Hewer R. (1987). Walking after stroke. Measurement and recovery over the first 3 months. Scand. J. Rehabil. Med. 19 25–30.
    1. Wall A., Borg J., Palmcrantz S. (2015). Clinical application of the Hybrid Assistive Limb (HAL) for gait training-a systematic review. Front. Syst. Neurosci. 9:48. 10.3389/fnsys.2015.00048
    1. Wall A., Borg J., Vreede K., Palmcrantz S. (2020). A randomized controlled study incorporating an electromechanical gait machine, the Hybrid Assistive Limb, in gait training of patients with severe limitations in walking in the subacute phase after stroke. PLoS One 15:e0229707. 10.1371/journal.pone.0229707
    1. Watanabe H., Tanaka N., Inuta T., Saitou H., Yanagi H. (2014). Locomotion improvement using a hybrid assistive limb in recovery phase stroke patients: a randomized controlled pilot study. Arch. Phys. Med. Rehabil. 95 2006–2012. 10.1016/j.apmr.2014.07.002
    1. Yoshimoto T., Shimizu I., Hiroi Y., Kawaki M., Sato D., Nagasawa M. (2015). Feasibility and efficacy of high-speed gait training with a voluntary driven exoskeleton robot for gait and balance dysfunction in patients with chronic stroke: nonrandomized pilot study with concurrent control. Int. J. Rehabil. Res. 38 338–343. 10.1097/mrr.0000000000000132

Source: PubMed

3
Předplatit