Important Flavonoids and Their Role as a Therapeutic Agent

Asad Ullah, Sidra Munir, Syed Lal Badshah, Noreen Khan, Lubna Ghani, Benjamin Gabriel Poulson, Abdul-Hamid Emwas, Mariusz Jaremko, Asad Ullah, Sidra Munir, Syed Lal Badshah, Noreen Khan, Lubna Ghani, Benjamin Gabriel Poulson, Abdul-Hamid Emwas, Mariusz Jaremko

Abstract

Flavonoids are phytochemical compounds present in many plants, fruits, vegetables, and leaves, with potential applications in medicinal chemistry. Flavonoids possess a number of medicinal benefits, including anticancer, antioxidant, anti-inflammatory, and antiviral properties. They also have neuroprotective and cardio-protective effects. These biological activities depend upon the type of flavonoid, its (possible) mode of action, and its bioavailability. These cost-effective medicinal components have significant biological activities, and their effectiveness has been proved for a variety of diseases. The most recent work is focused on their isolation, synthesis of their analogs, and their effects on human health using a variety of techniques and animal models. Thousands of flavonoids have been successfully isolated, and this number increases steadily. We have therefore made an effort to summarize the isolated flavonoids with useful activities in order to gain a better understanding of their effects on human health.

Keywords: antioxidative; flavonoids; neuroprotective; polyphenols; quercetin.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Chemical structure of flavonoids and its different types.
Figure 2
Figure 2
Flavonoid compound isolated from Sinopodophylli fructus.
Figure 3
Figure 3
Chemical structure of 4′-hydroxy-6,7-methylenedioxy-3-methoxyflavone.
Figure 4
Figure 4
Chemical structure of dihydroxy-8-methoxyflavone (wogonin).
Figure 5
Figure 5
Chemical structure of luteolin.
Figure 6
Figure 6
Lead compound of flavonolignan exhibiting antioxidant and antidiabetic activity.
Figure 7
Figure 7
Quercetin-3-O-glucoside (Left side) and luteolin-7-O-β-d-glucuronide (Right side).
Figure 8
Figure 8
Kaempferol identified in Stachys cretica.
Figure 9
Figure 9
Chemical structures of glabranine and 7-O-methyl-glabranine.
Figure 10
Figure 10
Flavonoids of Bridelia extract.
Figure 11
Figure 11
Chemical structure of 2′,4′-dihydroxy-5′-(1‴,1‴-dimethylallyl)-8-prenyl pinocembrin (8PP).

References

    1. Cavalcante G.M., da Silva Cabral A.E., Silva C.C. Leishmanicidal Activity of Flavonoids Natural and Synthetic: A Minireview. Mintage J. Pharm. Med. Sci. 2018;7:25–34.
    1. Shan X., Cheng J., Chen K.l., Liu Y.M., Juan L. Comparison of Lipoxygenase, Cyclooxygenase, Xanthine Oxidase Inhibitory Effects and Cytotoxic Activities of Selected Flavonoids. DEStech Trans. Environ. Energy Earth Sci. 2017 doi: 10.12783/dteees/gmee2017/16624.
    1. Feliciano R.P., Pritzel S., Heiss C., Rodriguez-Mateos A. Flavonoid intake and cardiovascular disease risk. Curr. Opin. Food Sci. 2015;2:92–99. doi: 10.1016/j.cofs.2015.02.006.
    1. Thilakarathna S., Rupasinghe H. Flavonoid Bioavailability and Attempts for Bioavailability Enhancement. Nutrients. 2013;5:3367–3387. doi: 10.3390/nu5093367.
    1. Aleksandra Kozłowska D.S.-W. Flavonoids-food sources and health benefits. Rocz. Panstw. Zakl. Hig. 2014;65:65.
    1. Shkondrov A., Krasteva I., Pavlova D., Zdraveva P. Determination of flavonoids in related Astragalus species (Sect. Incani) occurring in Bulgaria. Comptes rendus de l’Académie Bulg. des Sci. 2017;70:363–366.
    1. Pandey K.B., Rizvi S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell Longev. 2009;2:270–278. doi: 10.4161/oxim.2.5.9498.
    1. Villela A., van Vuuren M.S., Willemen H.M., Derksen G.C., van Beek T.A. Photo-stability of a flavonoid dye in presence of aluminium ions. Dyes Pigment. 2019;162:222–231. doi: 10.1016/j.dyepig.2018.10.021.
    1. Paramita V., Kusumayanti H., Amalia R., Leviana W., Nisa Q.A. Application of Flavonoid and Anthocyanin Contents from Rambutan (Nephelium lappaceum) Peel as Natural Dyes on Cotton Fabric. Adv. Sci. Lett. 2018;24:9853–9855. doi: 10.1166/asl.2018.13160.
    1. Lanzendörfer G., Stäb F., Untiedt S. Cosmetic and Dermatological Preparations with Flavonoids. WO/1996/018379. 1996 Jun 20;
    1. Danihelová M., Viskupičová J., Šturdík E. Lipophilization of flavonoids for their food, therapeutic and cosmetic applications. Acta Chim. Slovaca. 2012;5:59–69. doi: 10.2478/v10188-012-0010-6.
    1. Chuarienthong P., Lourith N., Leelapornpisid P. Clinical efficacy comparison of anti-wrinkle cosmetics containing herbal flavonoids. Int. J. Cosmet. Sci. 2010;32:99–106. doi: 10.1111/j.1468-2494.2010.00522.x.
    1. Zhao L., Yuan X., Wang J., Feng Y., Ji F., Li Z., Bian J. A review on flavones targeting serine/threonine protein kinases for potential anticancer drugs. Bioorganic Med. Chem. 2019;27:677–685. doi: 10.1016/j.bmc.2019.01.027.
    1. Zhao K., Yuan Y., Lin B., Miao Z., Li Z., Guo Q., Lu N. LW-215, a newly synthesized flavonoid, exhibits potent anti-angiogenic activity in vitro and in vivo. Gene. 2018;642:533–541. doi: 10.1016/j.gene.2017.11.065.
    1. Camero C.M., Germanò M.P., Rapisarda A., D’Angelo V., Amira S., Benchikh F., Braca A., De Leo M. Anti-angiogenic activity of iridoids from Galium tunetanum. Rev. Bras. de Farmacogn. 2018;28:374–377. doi: 10.1016/j.bjp.2018.03.010.
    1. Patel K., Kumar V., Rahman M., Verma A., Patel D.K. New insights into the medicinal importance, physiological functions and bioanalytical aspects of an important bioactive compound of foods ‘Hyperin’: Health benefits of the past, the present, the future. Beni-Suef Univ. J. Basic Appl. Sci. 2018;7:31–42. doi: 10.1016/j.bjbas.2017.05.009.
    1. Balasuriya N., Rupasinghe H.V. Antihypertensive properties of flavonoid-rich apple peel extract. Food Chem. 2012;135:2320–2325. doi: 10.1016/j.foodchem.2012.07.023.
    1. Xue Z., Wang J., Chen Z., Ma Q., Guo Q., Gao X., Chen H. Antioxidant, antihypertensive, and anticancer activities of the flavonoid fractions from green, oolong, and black tea infusion waste. J. Food Biochem. 2018;42:e12690. doi: 10.1111/jfbc.12690.
    1. Khan S., Khan T., Shah A.J. Total phenolic and flavonoid contents and antihypertensive effect of the crude extract and fractions of Calamintha vulgaris. Phytomedicine. 2018;47:174–183. doi: 10.1016/j.phymed.2018.04.046.
    1. Lagunas-Herrera H., Tortoriello J., Herrera-Ruiz M., Martínez-Henández G.B., Zamilpa A., Santamaría L.A., Lorenzana M.G., Lombardo-Earl G., Jiménez-Ferrer E. Acute and Chronic Antihypertensive Effect of Fractions, Tiliroside and Scopoletin from Malva parviflora. Biol. Pharm. Bull. 2019;42:18–25. doi: 10.1248/bpb.b18-00355.
    1. Mazidi M., Katsiki N., Banach M. A higher flavonoid intake is associated with less likelihood of nonalcoholic fatty liver disease: Results from a multiethnic study. J. Nutr. Biochem. 2019;65:66–71. doi: 10.1016/j.jnutbio.2018.10.001.
    1. Aguiar L.M., Geraldi M.V., Cazarin C.B.B., Junior M.R.M. Functional Food Consumption and Its Physiological Effects. In: Campos M.R.S., editor. Bioactive Compounds. Woodhead Publishing; Sawston, UK: 2019. pp. 205–225.
    1. Panche A., Diwan A., Chandra S. Flavonoids: An overview. J. Nutr. Sci. 2016;5:e47. doi: 10.1017/jns.2016.41.
    1. Bondonno N.P., Lewis J.R., Blekkenhorst L.C., Bondonno C.P., Shin J.H., Croft K.D., Woodman R.J., Wong G., Lim W.H., Gopinath B. Association of flavonoids and flavonoid-rich foods with all-cause mortality: The Blue Mountains Eye Study. Clin. Nutr. 2019;39:141–150. doi: 10.1016/j.clnu.2019.01.004.
    1. Khan M.K., Zill E.H., Dangles O. A comprehensive review on flavanones, the major citrus polyphenols. J. Food Compos. Anal. 2014;33:85–104. doi: 10.1016/j.jfca.2013.11.004.
    1. Khalifa I., Zhu W., Li K.-k., Li C.-m. Polyphenols of mulberry fruits as multifaceted compounds: Compositions, metabolism, health benefits, and stability—A structural review. J. Funct. Foods. 2018;40:28–43. doi: 10.1016/j.jff.2017.10.041.
    1. Wagner C.E., Jurutka P.W., Marshall P.A., Groy T.L., Van Der Vaart A., Ziller J.W., Furmick J.K., Graeber M.E., Matro E., Miguel B.V. Modeling, synthesis and biological evaluation of potential retinoid X receptor (RXR) selective agonists: Novel analogues of 4-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl) ethynyl] benzoic acid (bexarotene) J. Med. Chem. 2009;52:5950–5966. doi: 10.1021/jm900496b.
    1. Wang T.Y., Li Q., Bi K.-S. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J. Pharm. Sci. 2017 doi: 10.1016/j.ajps.2017.08.004.
    1. Patil V.M., Masand N. Anticancer Potential of Flavonoids: Chemistry, Biological Activities, and Future Perspectives. In: Rahman A., editor. Studies in Natural Products Chemistry. 1st ed. Volume 59. Elsevier; Amsterdam, The Netherlands: 2019. pp. 401–430.
    1. Silalahi J. Anticancer and health protective properties of citrus fruit components. Asia Pacific J. Clin. Nutr. 2002;11:79–84. doi: 10.1046/j.1440-6047.2002.00271.x.
    1. Devi K.P., Rajavel T., Nabavi S.F., Setzer W.N., Ahmadi A., Mansouri K., Nabavi S.M. Hesperidin: A promising anticancer agent from nature. Ind. Crops Prod. 2015;76:582–589. doi: 10.1016/j.indcrop.2015.07.051.
    1. Ersoz M., Erdemir A., Duranoglu D., Uzunoglu D., Arasoglu T., Derman S., Mansuroglu B. Comparative evaluation of hesperetin loaded nanoparticles for anticancer activity against C6 glioma cancer cells. Artificial Cells Nanomed. Biotechnol. 2019;47:319–329. doi: 10.1080/21691401.2018.1556213.
    1. Alsayari A., Muhsinah A.B., Hassan M.Z., Ahsan M.J., Alshehri J.A., Begum N. Aurone: A biologically attractive scaffold as anticancer agent. European J. Med. Chem. 2019;166:417–431. doi: 10.1016/j.ejmech.2019.01.078.
    1. Darband S.G., Kaviani M., Yousefi B., Sadighparvar S., Pakdel F.G., Attari J.A., Mohebbi I., Naderi S., Majidinia M. Quercetin: A functional dietary flavonoid with potential chemo-preventive properties in colorectal cancer. J. Cell. Physiol. 2018;233:6544–6560. doi: 10.1002/jcp.26595.
    1. Yang P.-W., Lu Z.-Y., Pan Q., Chen T.-T., Feng X.-J., Wang S.-M., Pan Y.-C., Zhu M.-H., Zhang S.-H. MicroRNA-6809–5p mediates luteolin-induced anticancer effects against hepatoma by targeting flotillin 1. Phytomedicine. 2019;57:18–29. doi: 10.1016/j.phymed.2018.10.027.
    1. Chen A.Y., Chen Y.C. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem. 2013;138:2099–2107. doi: 10.1016/j.foodchem.2012.11.139.
    1. Devi K.P., Rajavel T., Habtemariam S., Nabavi S.F., Nabavi S.M. Molecular mechanisms underlying anticancer effects of myricetin. Life Sci. 2015;142:19–25. doi: 10.1016/j.lfs.2015.10.004.
    1. Al-Dabbagh B., Elhaty I.A., Elhaw M., Murali C., Al Mansoori A., Awad B., Amin A. Antioxidant and anticancer activities of chamomile (Matricaria recutita L.) BMC Res. Notes. 2019;12:3. doi: 10.1186/s13104-018-3960-y.
    1. Shahat A.A., Hidayathulla S., Khan A.A., Alanazi A.M., Al Meanazel O.T., Alqahtani A.S., Alsaid M.S., Hussein A.A. Phytochemical profiling, Antioxidant and Anticancer activities of Gastrocotyle hispida growing in Saudi Arabia. Acta Trop. 2019;191:243–247. doi: 10.1016/j.actatropica.2019.01.013.
    1. Venturelli S., Burkard M., Biendl M., Lauer U.M., Frank J., Busch C. Prenylated chalcones and flavonoids for the prevention and treatment of cancer. Nutrition. 2016;32:1171–1178. doi: 10.1016/j.nut.2016.03.020.
    1. Wang Q.-H., Guo S., Yang X.-Y., Zhang Y.-F., Shang M.-Y., Shang Y.-H., Xiao J.-J., Cai S.-Q. Flavonoids isolated from Sinopodophylli Fructus and their bioactivities against human breast cancer cells. Chin. J. Nat. Med. 2017;15:225–233. doi: 10.1016/S1875-5364(17)30039-0.
    1. Bondonno N.P., Bondonno C.P., Ward N.C., Hodgson J.M., Croft K.D. The cardiovascular health benefits of apples: Whole fruit vs. isolated compounds. Trends Food Sci. Technol. 2017 doi: 10.1016/j.tifs.2017.04.012.
    1. Hyson D.A. A comprehensive review of apples and apple components and their relationship to human health. Adv. Nutr. 2011;2:408–420. doi: 10.3945/an.111.000513.
    1. Tu S.-H., Chen L.-C., Ho Y.-S. An apple a day to prevent cancer formation: Reducing cancer risk with flavonoids. J. Food Drug Anal. 2017;25:119–124. doi: 10.1016/j.jfda.2016.10.016.
    1. Karabin M., Hudcova T., Jelinek L., Dostalek P. Biotransformations and biological activities of hop flavonoids. Biotechnol. Adv. 2015;33:1063–1090. doi: 10.1016/j.biotechadv.2015.02.009.
    1. Yadav S.S., Singh M.K., Singh P.K., Kumar V. Traditional knowledge to clinical trials: A review on therapeutic actions of Emblica officinalis. Biomed. Pharmacother. 2017;93:1292–1302. doi: 10.1016/j.biopha.2017.07.065.
    1. Huntley A.L. The health benefits of berry flavonoids for menopausal women: Cardiovascular disease, cancer and cognition. Maturitas. 2009;63:297–301. doi: 10.1016/j.maturitas.2009.05.005.
    1. Walle T. Methoxylated flavones, a superior cancer chemopreventive flavonoid subclass? Semin. Cancer Biology. 2007;17:354–362. doi: 10.1016/j.semcancer.2007.05.002.
    1. Andujar I., Recio M.C., Giner R.M., Rios J.L. Cocoa polyphenols and their potential benefits for human health. Oxid. Med. Cell Longev. 2012;2012:906252. doi: 10.1155/2012/906252.
    1. Zhao M., Yang B., Wang J., Liu Y., Yu L., Jiang Y. Immunomodulatory and anticancer activities of flavonoids extracted from litchi (Litchi chinensis Sonn) pericarp. Int. Immunopharmacol. 2007;7:162–166. doi: 10.1016/j.intimp.2006.09.003.
    1. Mahmoud A.M., Yang W., Bosland M.C. Soy isoflavones and prostate cancer: A review of molecular mechanisms. J. Steroid Biochem. Mol. Biol. 2014;140:116–132. doi: 10.1016/j.jsbmb.2013.12.010.
    1. McKay D.L., Blumberg J.B. The Role of Tea in Human Health: An Update. J. Am. Coll. Nutr. 2002;21:1–13. doi: 10.1080/07315724.2002.10719187.
    1. Amjadi M., Khoshraj J.M., Majidi M.R., Baradaran B., de la Guardia M. Evaluation of Flavonoid Derivative and Doxorubicin Effects in Lung Cancer Cells (A549) Using Differential Pulse Voltammetry Method. Adv. Pharm. Bull. 2018;8:637. doi: 10.15171/apb.2018.072.
    1. Aleksandar P., Dragana M.-Ć., Nebojša J., Biljana N., Nataša S., Branka V., Jelena K.-V. Wild edible onions—Allium flavum and Allium carinatum—successfully prevent adverse effects of chemotherapeutic drug doxorubicin. Biomed. Pharmacother. 2019;109:2482–2491. doi: 10.1016/j.biopha.2018.11.106.
    1. de Novais L.M., de Arueira C.C., Ferreira L.F., Ribeiro T.A., Sousa Jr P.T., Jacinto M.J., de Carvalho M.G., Judice W.A., Jesus L.O., de Souza A.A. 4′-Hydroxy-6, 7-methylenedioxy-3-methoxyflavone: A novel flavonoid from Dulacia egleri with potential inhibitory activity against cathepsins B and L. Fitoterapia. 2019;132:26–29. doi: 10.1016/j.fitote.2018.08.005.
    1. Yang R., Wang L.-q., Liu Y. Antitumor Activities of Widely-used Chinese Herb—Licorice. Chin. Herbal Med. 2014;6:274–281. doi: 10.1016/S1674-6384(14)60042-3.
    1. Gong W.-Y., Zhao Z.-X., Liu B.-J., Lu L.-W., Dong J.-C. Exploring the chemopreventive properties and perspectives of baicalin and its aglycone baicalein in solid tumors. Eur. J. Med. Chem. 2017;126:844–852. doi: 10.1016/j.ejmech.2016.11.058.
    1. Li S., Cheng X., Wang C. A review on traditional uses, phytochemistry, pharmacology, pharmacokinetics and toxicology of the genus Peganum. J. Ethnopharmacol. 2017;203:127–162. doi: 10.1016/j.jep.2017.03.049.
    1. Fidelis Q.C., Ribeiro T.A.N., Araújo M.F., de Carvalho M.G. Ouratea genus: Chemical and pharmacological aspects. Rev. Bras. Farmacogn. 2014;24:1–19. doi: 10.1590/0102-695X20142413361.
    1. Li-Weber M. New therapeutic aspects of flavones: The anticancer properties of Scutellaria and its main active constituents Wogonin, Baicalein and Baicalin. Cancer Treat. Rev. 2009;35:57–68. doi: 10.1016/j.ctrv.2008.09.005.
    1. McGown A., Ragazzon-Smith A., Hadfield J.A., Potgetier H., Ragazzon P.A. Microwave-Assisted Synthesis of Novel Bis-Flavone Dimers as New Anticancer Agents. Lett. Org. Chem. 2019;16:66–75. doi: 10.2174/1570178615666180621094529.
    1. Bailly C. Molecular and cellular basis of the anticancer activity of the prenylated flavonoid icaritin in hepatocellular carcinoma. Chem. Interact. 2020;325:109124. doi: 10.1016/j.cbi.2020.109124.
    1. Zhao H., Xie P., Li X., Zhu W., Sun X., Sun X., Chen X., Xing L., Yu J. A prospective phase II trial of EGCG in treatment of acute radiation-induced esophagitis for stage III lung cancer. Radiother. Oncol. 2015;114:351–356. doi: 10.1016/j.radonc.2015.02.014.
    1. Zwicker J. Targeting protein disulfide isomerase with the flavonoid isoquercetin to improve hypercoagulability in advanced cancer. JCI Insight. 2019;4:4. doi: 10.1172/jci.insight.125851.
    1. Garcia-Maceira P., Mateo J. Silibinin inhibits hypoxia-inducible factor-1α and mTOR/p70S6K/4E-BP1 signalling pathway in human cervical and hepatoma cancer cells: Implications for anticancer therapy. Oncogene. 2009;28:313. doi: 10.1038/onc.2008.398.
    1. Agarwal C., Wadhwa R., Deep G., Biedermann D., Gažák R., Křen V., Agarwal R. Anti-cancer efficacy of silybin derivatives-a structure-activity relationship. PLoS ONE. 2013;8:e60074. doi: 10.1371/journal.pone.0060074.
    1. Zheng D., Wang Y., Zhang D., Liu Z., Duan C., Jia L., Wang F., Liu Y., Liu G., Hao L. In vitro antitumor activity of silybin nanosuspension in PC-3 cells. Cancer Lett. 2011;307:158–164. doi: 10.1016/j.canlet.2011.03.028.
    1. Lin C.-J., Sukarieh R., Pelletier J. Silibinin inhibits translation initiation: Implications for anticancer therapy. Mol. Cancer Ther. 2009;8:1535–7163. doi: 10.1158/1535-7163.MCT-08-1152.
    1. Júnior R.G.O., Ferraz C.A.A., Pereira E.C.V., Sampaio P.A., Silva M.F.S., Pessoa C.O., Rolim L.A., da Silva Almeida J.R.G. Phytochemical analysis and cytotoxic activity of Cnidoscolus quercifolius Pohl (Euphorbiaceae) against prostate (PC3 and PC3-M) and breast (MCF-7) cancer cells. Pharmacogn. Mag. 2019;15:24.
    1. Durgawale P.P., Patil M.N., Joshi S.A., Korabu K.S., Datkhile K.D. Studies on phytoconstituents, in vitro antioxidant, antibacterial, antiparasitic, antimicrobial, and anticancer potential of medicinal plant Lasiosiphon eriocephalus decne (Family: Thymelaeaceae) J. Nat. Sci. Biol. Med. 2019;10:38.
    1. Teekaraman D., Elayapillai S.P., Viswanathan M.P., Jagadeesan A. Quercetin inhibits human metastatic ovarian cancer cell growth by modulating intrinsic apoptotic pathway in PA-1 cell line. Chem. Interact. 2019;300:91–100. doi: 10.1016/j.cbi.2019.01.008.
    1. Elfalleh W., Kirkan B., Sarikurkcu C. Antioxidant potential and phenolic composition of extracts from Stachys tmolea: An endemic plant from Turkey. Ind. Crops Prod. 2019;127:212–216. doi: 10.1016/j.indcrop.2018.10.078.
    1. Kamble S.S., Gacche R.N. Evaluation of anti-breast cancer, anti-angiogenic and antioxidant properties of selected medicinal plants. Eur. J. Integr. Med. 2019;25:13–19. doi: 10.1016/j.eujim.2018.11.006.
    1. Wang B., Zhang X. Inhibitory effects of Broccolini leaf flavonoids on human cancer cells. Scanning. 2012;34:1–5. doi: 10.1002/sca.20278.
    1. Jaidee W., Andersen R.J., Chavez M.A., Wang Y.A., Patrick B.O., Pyne S.G., Muanprasat C., Borwornpinyo S., Laphookhieo S. Amides and Flavonoids from the Fruit and Leaf Extracts of Melodorum siamensis. J. Nat. Prod. 2019;82:283–292. doi: 10.1021/acs.jnatprod.8b00696.
    1. Brunetti C., Di Ferdinando M., Fini A., Pollastri S., Tattini M. Flavonoids as antioxidants and developmental regulators: Relative significance in plants and humans. Int. J. Mol. Sci. 2013;14:3540–3555. doi: 10.3390/ijms14023540.
    1. Nijveldt R.J., Van Nood E., Van Hoorn D.E., Boelens P.G., Van Norren K., Van Leeuwen P.A. Flavonoids: A review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr. 2001;74:418–425. doi: 10.1093/ajcn/74.4.418.
    1. Kumar S., Pandey A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013;2013:1–16. doi: 10.1155/2013/162750.
    1. Zheng Y.-Z., Deng G., Chen D.-F., Liang Q., Guo R., Fu Z.-M. Theoretical studies on the antioxidant activity of pinobanksin and its ester derivatives: Effects of the chain length and solvent. Food Chem. 2018;240:323–329. doi: 10.1016/j.foodchem.2017.07.133.
    1. Zheng Y.-Z., Deng G., Guo R., Fu Z.-M., Chen D.-F. The influence of the H5⋯OC4 intramolecular hydrogen-bond (IHB) on the antioxidative activity of flavonoid. Phytochemistry. 2019;160:19–24. doi: 10.1016/j.phytochem.2019.01.011.
    1. Prochazkova D., Bousova I., Wilhelmova N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia. 2011;82:513–523. doi: 10.1016/j.fitote.2011.01.018.
    1. Preethi Soundarya S., Sanjay V., Haritha Menon A., Dhivya S., Selvamurugan N. Effects of flavonoids incorporated biological macromolecules based scaffolds in bone tissue engineering. Int. J. Biol. Macromol. 2017 doi: 10.1016/j.ijbiomac.2017.09.014.
    1. Terao J. Factors modulating bioavailability of quercetin-related flavonoids and the consequences of their vascular function. Biochem. Pharmacol. 2017;139:15–23. doi: 10.1016/j.bcp.2017.03.021.
    1. Roohbakhsh A., Parhiz H., Soltani F., Rezaee R., Iranshahi M. Molecular mechanisms behind the biological effects of hesperidin and hesperetin for the prevention of cancer and cardiovascular diseases. Life Sci. 2015;124:64–74. doi: 10.1016/j.lfs.2014.12.030.
    1. Rufatto L.C., dos Santos D.A., Marinho F., Henriques J.A.P., Roesch Ely M., Moura S. Red propolis: Chemical composition and pharmacological activity. Asian Pacific J. Trop. Biomed. 2017;7:591–598. doi: 10.1016/j.apjtb.2017.06.009.
    1. Ganeshpurkar A., Saluja A.K. The Pharmacological Potential of Rutin. Saudi Pharm. J. 2017;25:149–164. doi: 10.1016/j.jsps.2016.04.025.
    1. Awika J.M., Rooney L.W. Sorghum phytochemicals and their potential impact on human health. Phytochemistry. 2004;65:1199–1221. doi: 10.1016/j.phytochem.2004.04.001.
    1. Dykes L., Rooney L.W. Sorghum and millet phenols and antioxidants. J. Cereal Sci. 2006;44:236–251. doi: 10.1016/j.jcs.2006.06.007.
    1. Svensson L., Sekwati-Monang B., Lutz D.L., Schieber A., Ganzle M.G. Phenolic acids and flavonoids in nonfermented and fermented red sorghum (Sorghum bicolor (L.) Moench) J. Agric. Food Chem. 2010;58:9214–9220. doi: 10.1021/jf101504v.
    1. Luzardo-Ocampo I., Ramírez-Jiménez A.K., Cabrera-Ramírez Á.H., Rodríguez-Castillo N., Campos-Vega R., Loarca-Piña G., Gaytán-Martínez M. Impact of cooking and nixtamalization on the bioaccessibility and antioxidant capacity of phenolic compounds from two sorghum varieties. Food Chem. 2020;309:125684. doi: 10.1016/j.foodchem.2019.125684.
    1. Van den Eynde M.D., Geleijnse J.M., Scheijen J.L., Hanssen N.M., Dower J.I., Afman L.A., Stehouwer C.D., Hollman P.C., Schalkwijk C.G. Quercetin, but not epicatechin, decreases plasma concentrations of methylglyoxal in adults in a randomized, double-blind, placebo-controlled, crossover trial with pure flavonoids. J. Nutr. 2018;148:1911–1916. doi: 10.1093/jn/nxy236.
    1. Woodside J.V., McGrath A.J., Lyner N., McKinley M.C. Carotenoids and health in older people. Maturitas. 2015;80:63–68. doi: 10.1016/j.maturitas.2014.10.012.
    1. Naeimi A.F., Alizadeh M. Antioxidant properties of the flavonoid fisetin: An updated review of in vivo and in vitro studies. Trends Food Sci. Technol. 2017;70:34–44. doi: 10.1016/j.tifs.2017.10.003.
    1. Shi P., Du W., Wang Y., Teng X., Chen X., Ye L. Total phenolic, flavonoid content, and antioxidant activity of bulbs, leaves, and flowers made from Eleutherine bulbosa (Mill.) Urb. Food Sci. Nutr. 2019;7:148–154. doi: 10.1002/fsn3.834.
    1. Amiri M., Jelodar G., Erjaee H., Nazifi S. The effects of different doses of onion (Allium cepa. L) extract on leptin, ghrelin, total antioxidant capacity, and performance of suckling lambs. Comp. Clin. Pathol. 2019;28:1–6. doi: 10.1007/s00580-019-02910-5.
    1. Saleh H.A.-R., El-Nashar Y.I., Serag-El-Din M.F., Dewir Y.H. Plant growth, yield and bioactive compounds of two culinary herbs as affected by substrate type. Sci. Hortic. 2019;243:464–471. doi: 10.1016/j.scienta.2018.08.047.
    1. Ielciu I., Mouithys-Mickalad A., Franck T., Angenot L., Ledoux A., Păltinean R., Cieckiewicz E., Etienne D., Tits M., Crişan G. Flavonoid composition, cellular antioxidant activity and (myelo) peroxidase inhibition of a Bryonia alba L.(Cucurbitaceae) leaves extract. J. Pharm. Pharmacol. 2019;71:230–239. doi: 10.1111/jphp.13025.
    1. Wei Y.-q., Sun M.-m., Fang H.-y. Dienzyme-assisted salting-out extraction of flavonoids from the seeds of Cuscuta chinensis Lam. Ind. Crops Prod. 2019;127:232–236. doi: 10.1016/j.indcrop.2018.10.068.
    1. Das S., Ray A., Nasim N., Nayak S., Mohanty S. Effect of different extraction techniques on total phenolic and flavonoid contents, and antioxidant activity of betelvine and quantification of its phenolic constituents by validated HPTLC method. 3 Biotech. 2019;9:37. doi: 10.1007/s13205-018-1565-8.
    1. Jamzad M., Emadi E. Total Phenolic and Flavonoid Contents, and Antioxidant Activity of Salvia Aristata Aucher ex Benth Extracts. Green Nat. Chem. Res. 2019;1:20–23.
    1. Krishna S., Chandrasekaran S., Dhanasekar D., Perumal A. GCMS analysis, antioxidant and antibacterial activities of ethanol extract of Anisomeles malabarica (L.) R. Br. ex. Sims leaves. Asian J. Pharm. Pharmacol. 2019;5:180–187. doi: 10.31024/ajpp.2019.5.1.26.
    1. Nile S.H., Keum Y.S., Nile A.S., Jalde S.S., Patel R.V. Antioxidant, anti-inflammatory, and enzyme inhibitory activity of natural plant flavonoids and their synthesized derivatives. J. Biochem. Mol. Toxicol. 2018;32:e22002. doi: 10.1002/jbt.22002.
    1. Worawalai W., Phuwapraisirisan P. Samin-derived flavonolignans, a new series of antidiabetic agents having dual inhibition against α-glucosidase and free radicals. Nat. Prod. Res. 2019:1–7. doi: 10.1080/14786419.2018.1553169.
    1. Li A.-L., Li G.-H., Li Y.-R., Wu X.-Y., Ren D.-M., Lou H.-X., Wang X.-N., Shen T. Lignan and flavonoid support the prevention of cinnamon against oxidative stress related diseases. Phytomedicine. 2019;53:143–153. doi: 10.1016/j.phymed.2018.09.022.
    1. Ali M., Alhazmi H.A., Ansari S., Hussain A., Ahmad S., Alam M.S., Ali M.S., El-Sharkawy K.A., Hakeem K.R. Tamarix aphylla (L.) Karst. Phytochemical and Bioactive Profile Compilations of Less Discussed but Effective Naturally Growing Saudi Plant. In: Ozturk M., Hakeem K., editors. Plant and Human Health. Springer; Cham, Switzerland: 2019. pp. 343–352.
    1. Kartikawati M., Purnomo H. Improving meatball quality using different varieties of rice bran as natural antioxidant. Food Res. 2019;3:79–85. doi: 10.26656/fr.2017.3(1).220.
    1. Hwang I.-W., Chung S.-K. Isolation and Identification of Myricitrin, an Antioxidant Flavonoid, from Daebong Persimmon Peel. Prev. Nutr. Food Sci. 2018;23:341. doi: 10.3746/pnf.2018.23.4.341.
    1. Sari N., Kuspradini H., Amirta R., Kusuma I. Antioxidant activity of an invasive plant, Melastoma malabathricum and its potential as herbal tea product; Proceedings of the IOP Conference Series: Earth and Environmental Science; Samarinda, East Kalimantan, Indonesia. 9 November 2017.
    1. Abidi S., Shaheen N., Azher I., Mahmood Z.A. Photoprotective and antioxidant activities along with phytochemical investigation of rose water. Int. J. Pharm. Sci. Res. 2018;9:5320–5326.
    1. Mishra A., Sharma A.K., Kumar S., Saxena A.K., Pandey A.K. Bauhinia variegata leaf extracts exhibit considerable antibacterial, antioxidant, and anticancer activities. Bio. Med. Res. Int. 2013;2013:1–10.
    1. Kumar S., Gupta A., Pandey A.K. Calotropis procera root extract has the capability to combat free radical mediated damage. ISRN Pharmacol. 2013;2013:1–8. doi: 10.1155/2013/691372.
    1. Kumar V., Singh S., Singh A., Dixit A.K., Srivastava B., Sidhu G.K., Singh R., Meena A.K., Singh R.P., Subhose V. Phytochemical, Antioxidant, Antimicrobial, and Protein Binding Qualities of Hydro-ethanolic Extract of Tinospora cordifolia. J. Biol. Active Prod. Nat. 2018;8:192–200. doi: 10.1080/22311866.2018.1485513.
    1. Mahmood W., Saleem H., Shahid W., Ahmad I., Zengin G., Mahomoodally M.F., Ashraf M., Ahemad N. Clinical enzymes inhibitory activities, antioxidant potential and phytochemical profile of Vernonia oligocephala (DC.) Sch. Bip. ex Walp roots. Biocatal. Agric. Biotechnol. 2019;18:101039. doi: 10.1016/j.bcab.2019.101039.
    1. Slavin J.L., Lloyd B. Health benefits of fruits and vegetables. Adv. Nutr. 2012;3:506–516. doi: 10.3945/an.112.002154.
    1. Faggio C., Sureda A., Morabito S., Sanches-Silva A., Mocan A., Nabavi S.F., Nabavi S.M. Flavonoids and platelet aggregation: A brief review. Eur. J. Pharmacol. 2017;807:91–101. doi: 10.1016/j.ejphar.2017.04.009.
    1. Xie J., Xiong J., Ding L.-S., Chen L., Zhou H., Liu L., Zhang Z.-F., Hu X.-M., Luo P., Qing L.-S. A efficient method to identify cardioprotective components of Astragali Radix using a combination of molecularly imprinted polymers-based knockout extract and activity evaluation. J. Chromatogr. A. 2018;1576:10–18. doi: 10.1016/j.chroma.2018.09.027.
    1. Williams R.J., Spencer J.P.E., Rice-Evans C. Flavonoids: Antioxidants or signalling molecules? Free Radic. Biol. Med. 2004;36:838–849. doi: 10.1016/j.freeradbiomed.2004.01.001.
    1. Hodgson J.M., Croft K.D. Tea flavonoids and cardiovascular health. Mol. Asp. Med. 2010;31:495–502. doi: 10.1016/j.mam.2010.09.004.
    1. Kruger M.J., Davies N., Myburgh K.H., Lecour S. Proanthocyanidins, anthocyanins and cardiovascular diseases. Food Res. Int. 2014;59:41–52. doi: 10.1016/j.foodres.2014.01.046.
    1. Cassidy A. Berry anthocyanin intake and cardiovascular health. Mol. Asp. Med. 2017 doi: 10.1016/j.mam.2017.05.002.
    1. Corti R., Flammer A.J., Hollenberg N.K., Luscher T.F. Cocoa and cardiovascular health. Circulation. 2009;119:1433–1441. doi: 10.1161/CIRCULATIONAHA.108.827022.
    1. Van Dam R.M., Naidoo N., Landberg R. Dietary flavonoids and the development of type 2 diabetes and cardiovascular diseases. Curr. Opin. Lipidol. 2013;24:25–33. doi: 10.1097/MOL.0b013e32835bcdff.
    1. Lilamand M., Kelaiditi E., Guyonnet S., Antonelli Incalzi R., Raynaud-Simon A., Vellas B., Cesari M. Flavonoids and arterial stiffness: Promising perspectives. Nutr. Metab. Cardiovasc. Dis. 2014;24:698–704. doi: 10.1016/j.numecd.2014.01.015.
    1. Olas B. Sea buckthorn as a source of important bioactive compounds in cardiovascular diseases. Food Chem. Toxicol. 2016;97:199–204. doi: 10.1016/j.fct.2016.09.008.
    1. Venu Gopal J. Morin Hydrate: Botanical origin, pharmacological activity and its applications: A mini-review. Pharmacogn. J. 2013;5:123–126. doi: 10.1016/j.phcgj.2013.04.006.
    1. Yang J. Brazil nuts and associated health benefits: A review. LWT Food Sci. Technol. 2009;42:1573–1580. doi: 10.1016/j.lwt.2009.05.019.
    1. Nabavi S.F., Braidy N., Habtemariam S., Orhan I.E., Daglia M., Manayi A., Gortzi O., Nabavi S.M. Neuroprotective effects of chrysin: From chemistry to medicine. Neurochem. Int. 2015;90:224–231. doi: 10.1016/j.neuint.2015.09.006.
    1. Latypova G., Bychenkova M., Katayev V., Perfilova V., Tyurenkov I., Mokrousov I., Prokofiev I., Salikhov S.M., Iksanova G. Composition and cardioprotective effects of Primula veris L. solid herbal extract in experimental chronic heart failure. Phytomedicine. 2019;54:17–26. doi: 10.1016/j.phymed.2018.09.015.
    1. Nissler L., Gebhardt R., Berger S. Flavonoid binding to a multi-drug-resistance transporter protein: An STD-NMR study. Anal. Bioanal. Chem. 2004;379:1045–1049. doi: 10.1007/s00216-004-2701-3.
    1. Scotti L., Fernandes M.B., Muramatsu E., Emereciano V.d.P., Tavares J.F., Silva M.S.d., Scotti M.T. 13C NMR spectral data and molecular descriptors to predict the antioxidant activity of flavonoids. Braz. J. Pharm. Sci. 2011;47:241–249. doi: 10.1590/S1984-82502011000200005.
    1. Blunder M., Orthaber A., Bauer R., Bucar F., Kunert O. Efficient identification of flavones, flavanones and their glycosides in routine analysis via off-line combination of sensitive NMR and HPLC experiments. Food Chem. 2017;218:600–609. doi: 10.1016/j.foodchem.2016.09.077.
    1. Verma V.K., Malik S., Narayanan S.P., Mutneja E., Sahu A.K., Bhatia J., Arya D.S. Role of MAPK/NF-κB pathway in cardioprotective effect of Morin in isoproterenol induced myocardial injury in rats. Mol. Biol. Rep. 2019;46:1139–1148. doi: 10.1007/s11033-018-04575-9.
    1. Gvozdjakova A., Singh R., Singh R.B., Takahashi T., Fedacko J., Hristova K., Wilczynska A., Mojtová M., Mojto V. Cocoa Consumption and Prevention of Cardiometabolic Diseases and Other Chronic Diseases. In: Watson R., Singh R., Takahashi T., editors. The Role of Functional Food Security in Global Health. Elsevier; Amsterdam, The Netherlands: 2018. pp. 317–345.
    1. Zięba K., Makarewicz-Wujec M., Kozłowska-Wojciechowska M. Cardioprotective Mechanisms of Cocoa. J. Am. Coll. Nutr. 2019;38:564–575. doi: 10.1080/07315724.2018.1557087.
    1. Shu Z., Yang Y., Yang L., Jiang H., Yu X., Wang Y. Cardioprotective effects of dihydroquercetin against ischemia reperfusion injury by inhibiting oxidative stress and endoplasmic reticulum stress-induced apoptosis via the PI3K/Akt pathway. Food Funct. 2019;10:203–215. doi: 10.1039/C8FO01256C.
    1. Petruzzellis V., Troccoli T., Candiani C., Guarisco R., Lospalluti M., Belcaro G., Dugall M. Oxerutins (Venoruton®): Efficacy in Chronic Venous Insufficiency: A Double-Blind, Randomized, Controlled Study. Angiology. 2002;53:257–263. doi: 10.1177/000331970205300302.
    1. Massimo C., Alunni F.D., Giuseppe P., Spedale V.M.D., Italia C.A. Comparison of Centella with Flavonoids for Treatment of Symptoms in Hemorrhoidal Disease and After Surgical Intervention: A Randomized Clinical Trial. Sci. Rep. 2020;10:1–14.
    1. Corsale I., Carrieri P., Martellucci J., Piccolomini A., Verre L., Rigutini M., Panicucci S. Flavonoid mixture (diosmin, troxerutin, rutin, hesperidin, quercetin) in the treatment of I–III degree hemorroidal disease: A double-blind multicenter prospective comparative study. Int. J. Colorectal Dis. 2018;33:1595–1600. doi: 10.1007/s00384-018-3102-y.
    1. Di Visconte M.S., Nicolì F., Del Giudice R., Cipolat Mis T. Effect of a mixture of diosmin, coumarin glycosides, and triterpenes on bleeding, thrombosis, and pain after stapled anopexy: A prospective, randomized, placebo-controlled clinical trial. Int. J. Colorectal Dis. 2016;32:425–431. doi: 10.1007/s00384-016-2698-z.
    1. Cheng Y., Tan J., Li H., Kong X., Liu Y., Guo R., Li G., Yang B., Pei M. Cardioprotective effects of total flavonoids from Jinhe Yangxin prescription by activating the PI3K/Akt signaling pathway in myocardial ischemia injury. Biomed. Pharmacother. 2018;98:308–317. doi: 10.1016/j.biopha.2017.12.052.
    1. Zeng C., Jiang W., Yang X., He C., Wang W., Xing J. Pretreatment with Total Flavonoid Extract from Dracocephalum Moldavica L. Attenuates Ischemia Reperfusion-induced Apoptosis. Sci. Rep. 2018;8:17491. doi: 10.1038/s41598-018-35726-4.
    1. Lin Q., Chen X.-Y., Zhang J., Yuan Y.-L., Zhao W., Wei B. Upregulation of SIRT1 contributes to the cardioprotective effect of Rutin against myocardial ischemia-reperfusion injury in rats. J. Funct. Foods. 2018;46:227–236. doi: 10.1016/j.jff.2018.05.007.
    1. Mohamed M.K., Anaytulla P.A., Rahman M.M., Malik T.K., Hasan M.M., Azad A.K. Evaluation of Ex-Vivo Cardioprotective and Anti-inflammatory Investigation of Bangladeshi Plants Extract. J. Sci. Res. Rep. 2015;7:58–66. doi: 10.9734/JSRR/2015/17258.
    1. Kammoun I., Ben Salah H., Ben Saad H., Cherif B., Droguet M., Magné C., Kallel C., Boudawara O., Hakim A., Gharsallah N. Hypolipidemic and cardioprotective effects of Ulva lactuca ethanolic extract in hypercholesterolemic mice. Arch. Physiol. Biochem. 2018;124:313–325. doi: 10.1080/13813455.2017.1401641.
    1. Zhang H.-J., Chen R.-C., Sun G.-B., Yang L.-P., Xu X.-D., Sun X.-B. Protective effects of total flavonoids from Clinopodium chinense (Benth.) O. Ktze on myocardial injury in vivo and in vitro via regulation of Akt/Nrf2/HO-1 pathway. Phytomedicine. 2018;40:88–97. doi: 10.1016/j.phymed.2018.01.004.
    1. Jiang R., Guo Y., Chen N., Gao C., Ding Z., Jin B. Total Flavonoids from Carya cathayensis Sarg. Leaves Alleviate H9c2 Cells Hypoxia/Reoxygenation Injury via Effects on miR-21 Expression, PTEN/Akt, and the Bcl-2/Bax Pathway. Evid. Based Complementary Altern. Med. 2018;2018:1–13. doi: 10.1155/2018/8617314.
    1. Meng Y., Du Z., Li Y., Wang L., Gao P., Gao X., Li C., Zhao M., Jiang Y., Tu P. Integration of metabolomics with pharmacodynamics to elucidate the anti-myocardial ischemia effects of combination of notoginseng total saponins and safflower total flavonoids. Front. Pharmacol. 2018;9:667. doi: 10.3389/fphar.2018.00667.
    1. Luo S.-Y., Xu Q.-H., Peng G., Chen Z.-W. The protective effect of total flavones from Rhododendron simsii Planch. on myocardial ischemia/reperfusion injury and its underlying mechanism. Evid. Based Complementary Altern. Med. 2018;2018:1–13. doi: 10.1155/2018/6139372.
    1. Enayati A., Yassa N., Mazaheri Z., Rajaei M., Pourabouk M., Ghorghanlu S., Basiri S., Khori V. Cardioprotective and anti-apoptotic effects of Potentilla reptans L. root via Nrf2 pathway in an isolated rat heart ischemia/reperfusion model. Life Sci. 2018;215:216–226. doi: 10.1016/j.lfs.2018.11.021.
    1. Pradeepkumar B., Sudheer A., Reddy T.S., Reddy K.S., Narayana G., Veerabhadrappa K. Cardioprotective Activity of Flavonoid Fraction of Gymnema Sylvestre Leaves on Doxorubicin Induced Cardiac Damage. J. Young Pharm. 2018;10:422–426. doi: 10.5530/jyp.2018.10.93.
    1. Orhan I., Daglia M., Nabavi S., Loizzo M., Sobarzo-Sánchez E., Nabavi S. Flavonoids and dementia: An update. Curr. Med. Chem. 2015;22:1004–1015. doi: 10.2174/0929867322666141212122352.
    1. Nakajima A., Ohizumi Y., Yamada K. Anti-dementia activity of nobiletin, a citrus flavonoid: A review of animal studies. Clin. Psychopharmacol. Neurosci. 2014;12:75. doi: 10.9758/cpn.2014.12.2.75.
    1. Datla K.P., Christidou M., Widmer W.W., Rooprai H.K., Dexter D.T. Tissue distribution and neuroprotective effects of citrus flavonoid tangeretin in a rat model of Parkinson’s disease. Neuroreport. 2001;12:3871–3875. doi: 10.1097/00001756-200112040-00053.
    1. Gao X., Cassidy A., Schwarzschild M., Rimm E., Ascherio A. Habitual intake of dietary flavonoids and risk of Parkinson disease. Neurology. 2012;78:1138–1145. doi: 10.1212/WNL.0b013e31824f7fc4.
    1. Magalingam K.B., Radhakrishnan A.K., Haleagrahara N. Protective mechanisms of flavonoids in Parkinson’s disease. Oxidative Med. Cell. Longev. 2015;2015:1–14. doi: 10.1155/2015/314560.
    1. Bakhtiari M., Panahi Y., Ameli J., Darvishi B. Protective effects of flavonoids against Alzheimer’s disease-related neural dysfunctions. Biomed. Pharmacother. 2017;93:218–229. doi: 10.1016/j.biopha.2017.06.010.
    1. Ozcan T., Akpinar-Bayizit A., Yilmaz-Ersan L., Delikanli B. Phenolics in Human Health. Int. J. Chem. Eng. Appl. 2014;5:393–396. doi: 10.7763/IJCEA.2014.V5.416.
    1. Bursal E., Aras A., Kılıç Ö., Taslimi P., Gören A.C., Gülçin İ. Phytochemical content, antioxidant activity, and enzyme inhibition effect of Salvia eriophora Boiss. & Kotschy against acetylcholinesterase, α-amylase, butyrylcholinesterase, and α-glycosidase enzymes. J. Food Biochem. 2019;43:e12776.
    1. Gao Z., Gao W., Zeng S.-L., Li P., Liu E.H. Chemical structures, bioactivities and molecular mechanisms of citrus polymethoxyflavones. J. Funct. Foods. 2018;40:498–509. doi: 10.1016/j.jff.2017.11.036.
    1. Spencer J.P.E., Vafeiadou K., Williams R.J., Vauzour D. Neuroinflammation: Modulation by flavonoids and mechanisms of action. Mol. Asp. Med. 2012;33:83–97. doi: 10.1016/j.mam.2011.10.016.
    1. Roohbakhsh A., Parhiz H., Soltani F., Rezaee R., Iranshahi M. Neuropharmacological properties and pharmacokinetics of the citrus flavonoids hesperidin and hesperetin—A mini-review. Life Sci. 2014;113:1–6. doi: 10.1016/j.lfs.2014.07.029.
    1. Nile S.H., Park S.W. Edible berries: Bioactive components and their effect on human health. Nutrition. 2014;30:134–144. doi: 10.1016/j.nut.2013.04.007.
    1. Lamuela-Raventós R.M., Romero-Pérez A.I., Andrés-Lacueva C., Tornero A. Review: Health Effects of Cocoa Flavonoids. Food Sci. Technol. Int. 2016;11:159–176. doi: 10.1177/1082013205054498.
    1. Nabavi S.F., Braidy N., Gortzi O., Sobarzo-Sanchez E., Daglia M., Skalicka-Woźniak K., Nabavi S.M. Luteolin as an anti-inflammatory and neuroprotective agent: A brief review. Brain Res. Bull. 2015;119:1–11. doi: 10.1016/j.brainresbull.2015.09.002.
    1. Wei Q., Zhang R., Wang Q., Yan X.J., Yu Q.W., Yan F.X., Li C., Pei Y.H. Iridoid, phenylethanoid and flavonoid glycosides from Forsythia suspensa. Nat. Prod. Res. 2019;34:1320–1325. doi: 10.1080/14786419.2018.1560288.
    1. Botalova A., Bombela T., Zubov P., Segal M., Korkotian E. The flavonoid acetylpectolinarin counteracts the effects of low ethanol on spontaneous network activity in hippocampal cultures. J. Ethnopharmacol. 2019;229:22–28. doi: 10.1016/j.jep.2018.09.040.
    1. Narenjkar J., Roghani M., Alambeygi H., Sedaghati F. The effect of the flavonoid quercetin on pain sensation in diabetic rats. Basic Clin. Neurosci. 2011;2:51–57.
    1. Shahid M., Subhan F., Ahmad N., Sewell R.D. The flavonoid 6-methoxyflavone allays cisplatin-induced neuropathic allodynia and hypoalgesia. Biomed. Pharmacother. 2017;95:1725–1733. doi: 10.1016/j.biopha.2017.09.108.
    1. Cuello A.C. Intracellular and extracellular Aβ, a tale of two neuropathologies. Brain Pathol. 2005;15:66–71. doi: 10.1111/j.1750-3639.2005.tb00101.x.
    1. Cásedas G., Les F., González-Burgos E., Gómez-Serranillos M.P., Smith C., López V. Cyanidin-3-O-glucoside inhibits different enzymes involved in central nervous system pathologies and type-2 diabetes. South Afr. J. Bot. 2019;120:241–246. doi: 10.1016/j.sajb.2018.07.001.
    1. Pohanka M. Inhibitors of acetylcholinesterase and butyrylcholinesterase meet immunity. Int. J. Mol. Sci. 2014;15:9809–9825. doi: 10.3390/ijms15069809.
    1. Eruygur N., Ucar E., Akpulat H.A., Shahsavari K., Safavi S.M., Kahrizi D. In vitro antioxidant assessment, screening of enzyme inhibitory activities of methanol and water extracts and gene expression in Hypericum lydium. Mol. Biol. Rep. 2019;46:2121–2129. doi: 10.1007/s11033-019-04664-3.
    1. Zhao S., Zhang L., Yang C., Li Z., Rong S. Procyanidins and Alzheimer’s Disease. Mol. Neurobiol. 2019;56:5556–5567. doi: 10.1007/s12035-019-1469-6.
    1. Bahadori M.B., Kirkan B., Sarikurkcu C. Phenolic ingredients and therapeutic potential of Stachys cretica subsp. smyrnaea for the management of oxidative stress, Alzheimer’s disease, hyperglycemia, and melasma. Ind. Crops Prod. 2019;127:82–87. doi: 10.1016/j.indcrop.2018.10.066.
    1. Wojdyło A., Nowicka P. Anticholinergic effects of Actinidia arguta fruits and their polyphenol content determined by liquid chromatography-photodiode array detector-quadrupole/time of flight-mass spectrometry (LC-MS-PDA-Q/TOF) Food Chem. 2019;271:216–223. doi: 10.1016/j.foodchem.2018.07.084.
    1. Katalinić M., Rusak G., Barović J.D., Šinko G., Jelić D., Antolović R., Kovarik Z. Structural aspects of flavonoids as inhibitors of human butyrylcholinesterase. Eur. J. Med. Chem. 2010;45:186–192. doi: 10.1016/j.ejmech.2009.09.041.
    1. Luo W., Chen Y., Wang T., Hong C., Chang L.-P., Chang C.-C., Yang Y.-C., Xie S.-Q., Wang C.-J. Design, synthesis and evaluation of novel 7-aminoalkyl-substituted flavonoid derivatives with improved cholinesterase inhibitory activities. Bioorganic Med. Chem. 2016;24:672–680. doi: 10.1016/j.bmc.2015.12.031.
    1. Kubínová R., Gazdová M., Hanáková Z., Jurkaninová S., Dall’Acqua S., Cvačka J., Humpa O. New diterpenoid glucoside and flavonoids from Plectranthus scutellarioides (L.) R. Br. South Afr. J. Bot. 2019;120:286–290. doi: 10.1016/j.sajb.2018.08.023.
    1. Kobus-Cisowska J., Szymanowska D., Maciejewska P., Kmiecik D., Gramza-Michałowska A., Kulczyński B., Cielecka-Piontek J. In vitro screening for acetylcholinesterase and butyrylcholinesterase inhibition and antimicrobial activity of chia seeds (Salvia hispanica) Electron. J. Biotechnol. 2019;37:1–10. doi: 10.1016/j.ejbt.2018.10.002.
    1. Bose B., Tripathy D., Chatterjee A., Tandon P., Kumaria S. Secondary metabolite profiling, cytotoxicity, anti-inflammatory potential and in vitro inhibitory activities of Nardostachys jatamansi on key enzymes linked to hyperglycemia, hypertension and cognitive disorders. Phytomedicine. 2019;55:58–69. doi: 10.1016/j.phymed.2018.08.010.
    1. Karakaya S., Koca M., Sytar O., Duman H. The natural phenolic compounds and their antioxidant and anticholinesterase potential of herb Leiotulus dasyanthus (K. Koch) Pimenov & Ostr. Nat. Prod. Res. 2019;34:1303–1305.
    1. Orhan I.E., Akkol E.K., Suntar I., Yesilada E. Assessment of anticholinesterase and antioxidant properties of the extracts and (+)-catechin obtained from Arceuthobium oxycedri (DC) M. Bieb (dwarf mistletoe) S. Afr. J. Bot. 2019;120:309–312. doi: 10.1016/j.sajb.2018.09.023.
    1. Orhan I.E., Senol F.S., Ercetin T., Kahraman A., Celep F., Akaydin G., Sener B., Dogan M. Assessment of anticholinesterase and antioxidant properties of selected sage (Salvia) species with their total phenol and flavonoid contents. Ind. Crops Prod. 2013;41:21–30. doi: 10.1016/j.indcrop.2012.04.002.
    1. Lim E.Y., Kim Y.T. Food-derived natural compounds for pain relief in neuropathic pain. Bio. Med. Res. Int. 2016;2016:1–12. doi: 10.1155/2016/7917528.
    1. Blackburn K., Warren K. A Case of Peripheral Neuropathy Due to Pyridoxine Toxicity in Association with NOS Energy Drink Consumption (P4. 043) [(accessed on 18 April 2017)]; Available online: .
    1. Hasannejad F., Ansar M.M., Rostampour M., Fikijivar E.M., Taleghani B.K. Improvement of pyridoxine-induced peripheral neuropathy by Cichorium intybus hydroalcoholic extract through GABAergic system. J. Physiol. Sci. 2019;69:465–476. doi: 10.1007/s12576-019-00659-8.
    1. Testa R., Bonfigli A., Genovese S., De Nigris V., Ceriello A. The possible role of flavonoids in the prevention of diabetic complications. Nutrients. 2016;8:310. doi: 10.3390/nu8050310.
    1. Li R., Zhang Y., Rasool S., Geetha T., Babu J.R. Effects and Underlying Mechanisms of Bioactive Compounds on Type 2 Diabetes Mellitus and Alzheimer’s Disease. Oxidative Med. Cell. Longev. 2019;2019:1–25. doi: 10.1155/2019/8165707.
    1. Bayram E.H., Sezer A.D., Elçioğlu H.K.b. Diabetic Neuropathy and Treatment Strategy–New Challenges and Applications. In: Sezer A.D., editor. Smart Drug Delivery System. InTechOpen; Rijeka, Croatia: 2016.
    1. Visnagri A., Kandhare A.D., Chakravarty S., Ghosh P., Bodhankar S.L. Hesperidin, a flavanoglycone attenuates experimental diabetic neuropathy via modulation of cellular and biochemical marker to improve nerve functions. Pharm. Biol. 2014;52:814–828. doi: 10.3109/13880209.2013.870584.
    1. Nakajima A., Yamakuni T., Matsuzaki K., Nakata N., Onozuka H., Yokosuka A., Sashida Y., Mimaki Y., Ohizumi Y. Nobiletin, a citrus flavonoid, reverses learning impairment associated with N-methyl-D-aspartate receptor antagonism by activation of extracellular signal-regulated kinase signaling. J. Pharmacol. Exp. Ther. 2007;321:784–790. doi: 10.1124/jpet.106.117010.
    1. Nakajima A., Yamakuni T., Haraguchi M., Omae N., Song S.-Y., Kato C., Nakagawasai O., Tadano T., Yokosuka A., Mimaki Y. Nobiletin, a citrus flavonoid that improves memory impairment, rescues bulbectomy-induced cholinergic neurodegeneration in mice. J. Pharmacol. Sci. 2007;105:122–126. doi: 10.1254/jphs.SC0070155.
    1. Parkar N., Addepalli V. Effect of nobiletin on diabetic neuropathy in experimental rats. J. Pharmacol. Ther. 2014;2:1028.
    1. Rajkumari Sahane* P.N. Flavonoid Rich Fraction of Helicteres Isora Fruits Ameliorate Streptozotocin and High Fat Diet Induced Diabetic Neuropathy in Sprague Dawley Rats. J. Nat. Prod. Plant Resour. 2018;8:8–16.
    1. Azevedo M.I., Pereira A.F., Nogueira R.B., Rolim F.E., Brito G.A., Wong D.V.T., Lima-Júnior R.C., de Albuquerque Ribeiro R., Vale M.L. The antioxidant effects of the flavonoids rutin and quercetin inhibit oxaliplatin-induced chronic painful peripheral neuropathy. Mol. Pain. 2013;9:53. doi: 10.1186/1744-8069-9-53.
    1. Ishii N., Matsuoka Y., Omiya H., Taniguchi A., Kaku R., Morita K. The flavonoid quercetin suppreses the development of neuropathic pain behavior in rats: 14AP4-3. Eur. J. Anaesthesiol. (EJA) 2013;30:214. doi: 10.1097/00003643-201306001-00667.
    1. Wang J., Huang L., Cheng C., Li G., Xie J., Shen M., Chen Q., Li W., He W., Qiu P. Design, synthesis and biological evaluation of chalcone analogues with novel dual antioxidant mechanisms as potential anti-ischemic stroke agents. Acta Pharm. Sin. B. 2019;9:335–350. doi: 10.1016/j.apsb.2019.01.003.
    1. Acosta S.A., Lee J.Y., Nguyen H., Kaneko Y., Borlongan C.V. Endothelial Progenitor Cells Modulate Inflammation-Associated Stroke Vasculome. Stem Cell Rev. Rep. 2019;15:256–275. doi: 10.1007/s12015-019-9873-x.
    1. Gelderblom M., Leypoldt F., Lewerenz J., Birkenmayer G., Orozco D., Ludewig P., Thundyil J., Arumugam T.V., Gerloff C., Tolosa E. The flavonoid fisetin attenuates postischemic immune cell infiltration, activation and infarct size after transient cerebral middle artery occlusion in mice. J. Cereb. Blood Flow Metab. 2012;32:835–843. doi: 10.1038/jcbfm.2011.189.
    1. Rodrigues A.M.G., dos Santos Marcilio F., Muzitano M.F., Giraldi-Guimarães A. Therapeutic potential of treatment with the flavonoid rutin after cortical focal ischemia in rats. Brain Res. 2013;1503:53–61. doi: 10.1016/j.brainres.2013.01.039.
    1. Kim H., Yi J.-W., Sung Y.-H., Kim C.-J., Kim C.-S., Kang J.-M. Delayed preconditioning effect of isoflurane on spinal cord ischemia in rats. Neurosci. Lett. 2008;440:211–216. doi: 10.1016/j.neulet.2008.05.097.
    1. Uslusoy F., Nazıroğlu M., Övey İ.S., Sönmez T.T. Hypericum perforatum L. supplementation protects sciatic nerve injury-induced apoptotic, inflammatory and oxidative damage to muscle, blood and brain in rats. J. Pharm. Pharmacol. 2019;71:83–92. doi: 10.1111/jphp.12741.
    1. Song-Tao M., Dong-lian L., Jing-jing D., Yan-juan P. Protective effect of mulberry flavonoids on sciatic nerve in alloxan-induced diabetic rats. Brazilian J. Pharm. Sci. 2014;50:765–771. doi: 10.1590/S1984-82502014000400012.
    1. Valsecchi A.E., Franchi S., Panerai A.E., Sacerdote P., Trovato A.E., Colleoni M. Genistein, a natural phytoestrogen from soy, relieves neuropathic pain following chronic constriction sciatic nerve injury in mice: Anti-inflammatory and antioxidant activity. J. Neurochem. 2008;107:230–240. doi: 10.1111/j.1471-4159.2008.05614.x.
    1. Raafat K.M. Anti-inflammatory and anti-neuropathic effects of a novel quinic acid derivative from Acanthus syriacus. Avicenna J. Phytomedicine. 2019;9:221–236.
    1. Mojzis J., Varinska L., Mojzisova G., Kostova I., Mirossay L. Antiangiogenic effects of flavonoids and chalcones. Pharmacol. Res. 2008;57:259–265. doi: 10.1016/j.phrs.2008.02.005.
    1. Muhammad A., Khan B., Iqbal Z., Khan A.Z., Khan I., Khan K., Alamzeb M., Ahmad N., Khan K., Lal Badshah S. Viscosine as a Potent and Safe Antipyretic Agent Evaluated by Yeast-Induced Pyrexia Model and Molecular Docking Studies. ACS Omega. 2019;4:14188–14192. doi: 10.1021/acsomega.9b01041.
    1. Dinda B., Dinda S., DasSharma S., Banik R., Chakraborty A., Dinda M. Therapeutic potentials of baicalin and its aglycone, baicalein against inflammatory disorders. Eur. J. Med. Chem. 2017;131:68–80. doi: 10.1016/j.ejmech.2017.03.004.
    1. Zhao Q., Chen X.-Y., Martin C. Scutellaria baicalensis, the golden herb from the garden of Chinese medicinal plants. Sci. Bull. 2016;61:1391–1398. doi: 10.1007/s11434-016-1136-5.
    1. Devi K.P., Malar D.S., Nabavi S.F., Sureda A., Xiao J., Nabavi S.M., Daglia M. Kaempferol and inflammation: From chemistry to medicine. Pharmacol. Res. 2015;99:1–10. doi: 10.1016/j.phrs.2015.05.002.
    1. Calderon-Montano J.M., Burgos-Moron E., Perez-Guerrero C., Lopez-Lazaro M. A Review on the Dietary Flavonoid Kaempferol. Mini-Rev. Med. Chem. 2011;11:298–344. doi: 10.2174/138955711795305335.
    1. Zeinali M., Rezaee S.A., Hosseinzadeh H. An overview on immunoregulatory and anti-inflammatory properties of chrysin and flavonoids substances. Biomed. Pharmacother. 2017;92:998–1009. doi: 10.1016/j.biopha.2017.06.003.
    1. Fang J. Classification of fruits based on anthocyanin types and relevance to their health effects. Nutrition. 2015;31:1301–1306. doi: 10.1016/j.nut.2015.04.015.
    1. Van Q.T.T., Vien L.T., Hanh T.T.H., Huong P.T.T., Cuong N.T., Thao N.P., Thuan N.H., Dang N.H., Thanh N.V., Cuong N.X. Acylated flavonoid glycosides from Barringtonia racemosa. Nat. Prod. Res. 2019;34:1276–1281. doi: 10.1080/14786419.2018.1560290.
    1. Abu-Qatouseh L., Mallah E., Mansour K. Evaluation of Anti-Propionibacterium Acnes and Anti-Inflammatory Effects of Polyphenolic Extracts of Medicinal Herbs in Jordan. Biomed. Pharmacol. J. 2019;12:211–217. doi: 10.13005/bpj/1629.
    1. Chen G.-L., Fan M.-X., Wu J.-L., Li N., Guo M.-Q. Antioxidant and anti-inflammatory properties of flavonoids from lotus plumule. Food Chem. 2019;277:706–712. doi: 10.1016/j.foodchem.2018.11.040.
    1. Ma Q., Jiang J.-G., Yuan X., Qiu K., Zhu W. Comparative antitumor and anti-inflammatory effects of flavonoids, saponins, polysaccharides, essential oil, coumarin and alkaloids from Cirsium japonicum DC. Food Chem. Toxicol. 2019;125:422–429. doi: 10.1016/j.fct.2019.01.020.
    1. Dong X., Huang Y., Wang Y., He X. Anti-inflammatory and antioxidant jasmonates and flavonoids from lychee seeds. J. Funct. Foods. 2019;54:74–80. doi: 10.1016/j.jff.2018.12.040.
    1. Abubakar S., Al-Mansoub M.A., Murugaiyah V., Chan K.L. The phytochemical and anti-inflammatory studies of Dillenia suffruticosa leaves. Phytother. Res. 2019;33:660–675. doi: 10.1002/ptr.6255.
    1. Escribano-Ferrer E., Queralt Regué J., Garcia-Sala X., Boix Montañés A., Lamuela-Raventos R.M. In Vivo Anti-inflammatory and Antiallergic Activity of Pure Naringenin, Naringenin Chalcone, and Quercetin in Mice. J. Nat. Prod. 2019;82:177–182. doi: 10.1021/acs.jnatprod.8b00366.
    1. Truong D.-H., Nguyen D.H., Ta N.T.A., Bui A.V., Do T.H., Nguyen H.C. Evaluation of the Use of Different Solvents for Phytochemical Constituents, Antioxidants, and In Vitro Anti-Inflammatory Activities of Severinia buxifolia. J. Food Qual. 2019;2019:1–9. doi: 10.1155/2019/8178294.
    1. Han Q.-T., Ren Y., Li G.-S., Xiang K.-L., Dai S.-J. Flavonoid alkaloids from Scutellaria moniliorrhiza with anti-inflammatory activities and inhibitory activities against aldose reductase. Phytochemistry. 2018;152:91–96. doi: 10.1016/j.phytochem.2018.05.001.
    1. Chen X.-M., Tait A.R., Kitts D.D. Flavonoid composition of orange peel and its association with antioxidant and anti-inflammatory activities. Food Chem. 2017;218:15–21. doi: 10.1016/j.foodchem.2016.09.016.
    1. Chen H., Pu J., Liu D., Yu W., Shao Y., Yang G., Xiang Z., He N. Anti-inflammatory and antinociceptive properties of flavonoids from the fruits of black mulberry (Morus nigra L.) PLoS ONE. 2016;11:e0153080. doi: 10.1371/journal.pone.0153080.
    1. Impellizzeri D., Cordaro M., Campolo M., Gugliandolo E., Esposito E., Benedetto F., Cuzzocrea S., Navarra M. Anti-inflammatory and antioxidant effects of flavonoid-rich fraction of bergamot juice (BJe) in a mouse model of intestinal ischemia/reperfusion injury. Front. Pharmacol. 2016;7:203. doi: 10.3389/fphar.2016.00203.
    1. Muthaura C.N., Keriko J.M., Derese S., Yenesew A., Rukunga G.M. Investigation of some medicinal plants traditionally used for treatment of malaria in Kenya as potential sources of antimalarial drugs. Exp. Parasitol. 2011;127:609–626. doi: 10.1016/j.exppara.2010.11.004.
    1. Badshah S.L., Ullah A., Ahmad N., Almarhoon Z.M., Mabkhot Y. Increasing the strength and production of artemisinin and its derivatives. Molecules. 2018;23:100. doi: 10.3390/molecules23010100.
    1. Khan H., Amin H., Ullah A., Saba S., Rafique J., Khan K., Ahmad N., Badshah S.L. Antioxidant and antiplasmodial activities of bergenin and 11-O-galloylbergenin isolated from Mallotus philippensis. Oxidative Med. Cell. Longev. 2016;2016:1–6. doi: 10.1155/2016/1051925.
    1. Memvanga P.B., Tona G.L., Mesia G.K., Lusakibanza M.M., Cimanga R.K. Antimalarial activity of medicinal plants from the Democratic Republic of Congo: A review. J. Ethnopharmacol. 2015;169:76–98. doi: 10.1016/j.jep.2015.03.075.
    1. Henciya S., Seturaman P., James A.R., Tsai Y.-H., Nikam R., Wu Y.-C., Dahms H.-U., Chang F.R. Biopharmaceutical potentials of Prosopis spp. (Mimosaceae, Leguminosa) J. Food Drug Anal. 2017;25:187–196. doi: 10.1016/j.jfda.2016.11.001.
    1. Mahadeo K., Grondin I., Kodja H., Soulange Govinden J., Jhaumeer Laulloo S., Frederich M., Gauvin-Bialecki A. The genus Psiadia: Review of traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol. 2018;210:48–68. doi: 10.1016/j.jep.2017.08.023.
    1. Zongo F., Ribuot C., Boumendjel A., Guissou I. Botany, traditional uses, phytochemistry and pharmacology of Waltheria indica L. (syn. Waltheria americana): A review. J. Ethnopharmacol. 2013;148:14–26. doi: 10.1016/j.jep.2013.03.080.
    1. Yang X., Jiang Y., Yang J., He J., Sun J., Chen F., Zhang M., Yang B. Prenylated flavonoids, promising nutraceuticals with impressive biological activities. Trends Food Sci. Technol. 2015;44:93–104. doi: 10.1016/j.tifs.2015.03.007.
    1. Mina P.R., Kumar Y., Verma A.K., Khan F., Tandon S., Pal A., Darokar M.P. Silymarin, a polyphenolic flavonoid impede Plasmodium falciparum growth through interaction with heme. Nat. Prod. Res. 2019;34:2647–2651. doi: 10.1080/14786419.2018.1548449.
    1. Dkhil M.A., Al-Shaebi E.M., Al-Quraishy S. Effect of Indigofera oblongifolia on the Hepatic Oxidative Status and Expression of Inflammatory and Apoptotic Genes during Blood-Stage Murine Malaria. Oxidative Med. Cell. Longev. 2019;2019:8264861–8264867. doi: 10.1155/2019/8264861.
    1. Badshah S.L., Ullah A., Badshah S.H., Ahmad I. Spread of Novel Coronavirus by Returning Pilgrims from Iran to Pakistan. J. Travel Med. 2020;27 doi: 10.1093/jtm/taaa044.
    1. Villa T.G., Feijoo-Siota L., Rama J.L.R., Ageitos J.M. Antivirals against animal viruses. Biochem. Pharmacol. 2017;133:97–116. doi: 10.1016/j.bcp.2016.09.029.
    1. Chiow K.H., Phoon M.C., Putti T., Tan B.K.H., Chow V.T. Evaluation of antiviral activities of Houttuynia cordata Thunb. extract, quercetin, quercetrin and cinanserin on murine coronavirus and dengue virus infection. Asian Pacific J. Trop. Med. 2016;9:1–7. doi: 10.1016/j.apjtm.2015.12.002.
    1. Brodowska K.M. Natural flavonoids: Classification, potential role, and application of flavonoid analogues. Eur. J. Biol. Res. 2017;7:108–123.
    1. Sanchez I., Gómez-Garibay F., Taboada J., Ruiz B. Antiviral effect of flavonoids on the dengue virus. Phytother. Res. 2000;14:89–92. doi: 10.1002/(SICI)1099-1573(200003)14:2<89::AID-PTR569>;2-C.
    1. Song J.-M., Lee K.-H., Seong B.-L. Antiviral effect of catechins in green tea on influenza virus. Antivir. Res. 2005;68:66–74. doi: 10.1016/j.antiviral.2005.06.010.
    1. Gramza-Michałowska A., Sidor A., Kulczyński B. Berries as a potential anti-influenza factor–A review. J. Funct. Foods. 2017;37:116–137. doi: 10.1016/j.jff.2017.07.050.
    1. Lani R., Hassandarvish P., Shu M.-H., Phoon W.H., Chu J.J.H., Higgs S., Vanlandingham D., Abu Bakar S., Zandi K. Antiviral activity of selected flavonoids against Chikungunya virus. Antivir. Res. 2016;133:50–61. doi: 10.1016/j.antiviral.2016.07.009.
    1. Seo D.J., Jeon S.B., Oh H., Lee B.-H., Lee S.-Y., Oh S.H., Jung J.Y., Choi C. Comparison of the antiviral activity of flavonoids against murine norovirus and feline calicivirus. Food Control. 2016;60:25–30. doi: 10.1016/j.foodcont.2015.07.023.
    1. Wu Q., Yu C., Yan Y., Chen J., Zhang C., Wen X. Antiviral flavonoids from Mosla scabra. Fitoterapia. 2010;81:429–433. doi: 10.1016/j.fitote.2009.12.005.
    1. Kim N., Park S., Nhiem N.X., Song J.-H., Ko H.-J., Kim S.H. Cycloartane-type triterpenoid derivatives and a flavonoid glycoside from the burs of Castanea crenata. Phytochemistry. 2019;158:135–141. doi: 10.1016/j.phytochem.2018.11.001.
    1. Sadati S.M., Gheibi N., Ranjbar S., Hashemzadeh M.S. Docking study of flavonoid derivatives as potent inhibitors of influenza H1N1 virus neuraminidase. Biomed. Rep. 2019;10:33–38. doi: 10.3892/br.2018.1173.
    1. Khalil H., Abd El Maksoud A.I., Roshdey T., El-Masry S. Guava flavonoid glycosides prevent influenza A virus infection via rescue of P53 activity. J. Med. Virol. 2019;91:45–55. doi: 10.1002/jmv.25295.
    1. Zhi H.-J., Zhu H.-Y., Zhang Y.-Y., Lu Y., Li H., Chen D.-F. In vivo effect of quantified flavonoids-enriched extract of Scutellaria baicalensis root on acute lung injury induced by influenza A virus. Phytomedicine. 2019;57:105–116. doi: 10.1016/j.phymed.2018.12.009.
    1. Naeem A., Badshah S.L., Muska M., Ahmad N., Khan K. The current case of quinolones: Synthetic approaches and antibacterial activity. Molecules. 2016;21:268. doi: 10.3390/molecules21040268.
    1. Badshah S.L., Ullah A. New developments in non-quinolone-based antibiotics for the inhibiton of bacterial gyrase and topoisomerase IV. Eur. J. Med. Chem. 2018;152:393–400. doi: 10.1016/j.ejmech.2018.04.059.
    1. Ahmad A., Kaleem M., Ahmed Z., Shafiq H. Therapeutic potential of flavonoids and their mechanism of action against microbial and viral infections—A review. Food Res. Int. 2015;77:221–235. doi: 10.1016/j.foodres.2015.06.021.
    1. Ngueyem T.A., Brusotti G., Caccialanza G., Finzi P.V. The genus Bridelia: A phytochemical and ethnopharmacological review. J. Ethnopharmacol. 2009;124:339–349. doi: 10.1016/j.jep.2009.05.019.
    1. Chinsembu K.C. Tuberculosis and nature’s pharmacy of putative anti-tuberculosis agents. Acta Trop. 2016;153:46–56. doi: 10.1016/j.actatropica.2015.10.004.
    1. Iranshahi M., Rezaee R., Parhiz H., Roohbakhsh A., Soltani F. Protective effects of flavonoids against microbes and toxins: The cases of hesperidin and hesperetin. Life Sci. 2015;137:125–132. doi: 10.1016/j.lfs.2015.07.014.
    1. Ahmad A., Tandon S., Xuan T.D., Nooreen Z. A Review on Phytoconstituents and Biological activities of Cuscuta species. Biomed. Pharmacother. 2017;92:772–795. doi: 10.1016/j.biopha.2017.05.124.
    1. Ngankeu Pagning A.L., Tamokou J.-d.-D., Lateef M., Tapondjou L.A., Kuiate J.-R., Ngnokam D., Ali M.S. New triterpene and new flavone glucoside from Rhynchospora corymbosa (Cyperaceae) with their antimicrobial, tyrosinase and butyrylcholinesterase inhibitory activities. Phytochem. Lett. 2016;16:121–128. doi: 10.1016/j.phytol.2016.03.011.
    1. Loredana L., Giuseppina A., Filomena N., Florinda F., Donatella A. Biochemical, antioxidant properties and antimicrobial activity of different onion varieties in the Mediterranean area. J. Food Meas. Charact. 2019;13:1232–1241. doi: 10.1007/s11694-019-00038-2.
    1. Fathi H., Gholipour A., Ebrahimzadeh M.A., Yasari E., Ahanjan M., Parsi B. In-vitro evaluation of the antioxidant potential, total phenolic and flavonoid contents and antibacterial activity of lamium album extracts. Int. J. Pharm. Sci. Res. 2018;9:4210–4219.
    1. Al-Huqail A.A., Behiry S.I., Salem M.Z., Ali H.M., Siddiqui M.H., Salem A.Z. Antifungal, Antibacterial, and Antioxidant Activities of Acacia Saligna (Labill.) HL Wendl. Flower Extract: HPLC Analysis of Phenolic and Flavonoid Compounds. Molecules. 2019;24:700. doi: 10.3390/molecules24040700.
    1. Andriana Y., Xuan T.D., Quy T.N., Minh T.N., Van T.M., Viet T.D. Antihyperuricemia, Antioxidant, and Antibacterial Activities of Tridax procumbens L. Foods. 2019;8:21. doi: 10.3390/foods8010021.
    1. Metoui M., Essid A., Bouzoumita A., Ferchichi A. Chemical Composition, Antioxidant and Antibacterial Activity of Tunisian Date Palm Seed. Polish J. Environ. Stud. 2019;28:267–274. doi: 10.15244/pjoes/84918.
    1. Olleik H., Yahiaoui S., Roulier B., Courvoisier-Dezord E., Perrier J., Pérès B., Hijazi A., Baydoun E., Raymond J., Boumendjel A. Aurone derivatives as promising antibacterial agents against resistant Gram-positive pathogens. Eur. J. Med. Chem. 2019;165:133–141. doi: 10.1016/j.ejmech.2019.01.022.
    1. Bashyal P., Parajuli P., Pandey R.P., Sohng J.K. Microbial Biosynthesis of Antibacterial Chrysoeriol in Recombinant Escherichia coli and Bioactivity Assessment. Catalysts. 2019;9:112. doi: 10.3390/catal9020112.
    1. Richwagen N., Lyles J.T., Dale B., Quave C.L., Dale B.L.F. Antibacterial activity of Kalanchoe mortagei and K. fedtschenkoi against ESKAPE pathogens. Front. Pharmacol. 2019;10:67. doi: 10.3389/fphar.2019.00067.
    1. Jarial R., Thakur S., Sakinah M., Zularisam A., Sharad A., Kanwar S., Singh L. Potent anticancer, antioxidant and antibacterial activities of isolated flavonoids from Asplenium nidus. J. King Saud Univ. Sci. 2018;30:185–192. doi: 10.1016/j.jksus.2016.11.006.
    1. Geethalakshmi R., Sundaramurthi J.C., Sarada D.V. Antibacterial activity of flavonoid isolated from Trianthema decandra against Pseudomonas aeruginosa and molecular docking study of FabZ. Microb. Pathog. 2018;121:87–92. doi: 10.1016/j.micpath.2018.05.016.
    1. Loon Y.K., Satari M.H., Dewi W. Antibacterial effect of pineapple (Ananas comosus) extract towards Staphylococcus aureus. Padjadjaran J. Dent. 2018;30:30. doi: 10.24198/pjd.vol30no1.16099.
    1. Dzoyem J., Tchamgoue J., Tchouankeu J., Kouam S., Choudhary M., Bakowsky U. Antibacterial activity and cytotoxicity of flavonoids compounds isolated from Pseudarthria hookeri Wight & Arn.(Fabaceae) S. Afr. J. Bot. 2018;114:100–103.
    1. Matsumoto T., Kaneko A., Koseki J., Matsubara Y., Aiba S., Yamasaki K. Pharmacokinetic Study of Bioactive Flavonoids in the Traditional Japanese Medicine Keigairengyoto Exerting Antibacterial Effects against Staphylococcus aureus. Int. J. Mol. Sci. 2018;19:328. doi: 10.3390/ijms19020328.
    1. Aleebrahim-Dehkordy E., Rafieian-Kopaei M., Amini-Khoei H., Abbasi S. In Vitro Evaluation of Antioxidant Activity and Antibacterial Effects and Measurement of Total Phenolic and Flavonoid Contents of Quercus brantii L. Fruit Extract. J. Diet. Suppl. 2018;16:408–416. doi: 10.1080/19390211.2018.1470126.
    1. Sujatha R., Siva D., Nawas P. Screening of phytochemical profile and antibacterial activity of various solvent extracts of marine algae Sargassum swartzii. World Sci. News. 2019;115:27–40.
    1. Blumberg J.B., Camesano T.A., Cassidy A., Kris-Etherton P., Howell A., Manach C., Ostertag L.M., Sies H., Skulas-Ray A., Vita J.A. Cranberries and their bioactive constituents in human health. Adv. Nutr. 2013;4:618–632. doi: 10.3945/an.113.004473.
    1. He J., Giusti M.M. Anthocyanins: Natural colorants with health-promoting properties. Annu. Rev. Food Sci. Technol. 2010;1:163–187. doi: 10.1146/annurev.food.080708.100754.
    1. Kasala E.R., Bodduluru L.N., Madana R.M., Gogoi R., Barua C.C. Chemopreventive and therapeutic potential of chrysin in cancer: Mechanistic perspectives. Toxicol. Lett. 2015;233:214–225. doi: 10.1016/j.toxlet.2015.01.008.
    1. Babu P.V.A., Liu D., Gilbert E.R. Recent advances in understanding the anti-diabetic actions of dietary flavonoids. J. Nutr. Biochem. 2013;24:1777–1789. doi: 10.1016/j.jnutbio.2013.06.003.
    1. Latif R. Chocolate/cocoa and human health: A review. Neth. J. Med. 2013;71:63–68.
    1. Milea Ș.-A., Aprodu I., Vasile A.M., Barbu V., Râpeanu G., Bahrim G.E., Stănciuc N. Widen the functionality of flavonoids from yellow onion skins through extraction and microencapsulation in whey proteins hydrolysates and different polymers. J. Food Eng. 2019;251:29–35. doi: 10.1016/j.jfoodeng.2019.02.003.
    1. Pucciarini L., Ianni F., Petesse V., Pellati F., Brighenti V., Volpi C., Gargaro M., Natalini B., Clementi C., Sardella R. Onion (Allium cepa L.) Skin: A Rich Resource of Biomolecules for the Sustainable Production of Colored Biofunctional Textiles. Molecules. 2019;24:634. doi: 10.3390/molecules24030634.
    1. Yang S.J., Paudel P., Shrestha S., Seong S.H., Jung H.A., Choi J.S. In vitro protein tyrosine phosphatase 1B inhibition and antioxidant property of different onion peel cultivars: A comparative study. Food Sci. Nutr. 2019;7:205–215. doi: 10.1002/fsn3.863.
    1. Oteiza P.I., Fraga C.G., Mills D.A., Taft D.H. Flavonoids and the gastrointestinal tract: Local and systemic effects. Mol. Aspects Med. 2018 doi: 10.1016/j.mam.2018.01.001.
    1. Mojica L., Berhow M., Gonzalez de Mejia E. Black bean anthocyanin-rich extracts as food colorants: Physicochemical stability and antidiabetes potential. Food Chem. 2017;229:628–639. doi: 10.1016/j.foodchem.2017.02.124.
    1. George S., Ajikumaran Nair S., Johnson A.J., Venkataraman R., Baby S. O-prenylated flavonoid, an antidiabetes constituent in Melicope lunu-ankenda. J. Ethnopharmacol. 2015;168:158–163. doi: 10.1016/j.jep.2015.03.060.
    1. Akhtar S., Rauf A., Imran M., Qamar M., Riaz M., Mubarak M.S. Black carrot (Daucus carota L.), dietary and health promoting perspectives of its polyphenols: A review. Trends Food Sci. Technol. 2017;66:36–47. doi: 10.1016/j.tifs.2017.05.004.
    1. Nyane N.A., Tlaila T.B., Malefane T.G., Ndwandwe D.E., Owira P.M.O. Metformin-like antidiabetic, cardio-protective and non-glycemic effects of naringenin: Molecular and pharmacological insights. Eur. J. Pharmacol. 2017;803:103–111. doi: 10.1016/j.ejphar.2017.03.042.
    1. El-Sherei M.M., Ragheb A.Y., Kassem M.E.S., Marzouk M.M., Mosharrafa S.A., Saleh N.A.M. Phytochemistry, biological activities and economical uses of the genus Sterculia and the related genera: A reveiw. Asian Pacific J. Trop. Dis. 2016;6:492–501. doi: 10.1016/S2222-1808(16)61075-7.
    1. Imran M., Rauf A., Shah Z.A., Saeed F., Imran A., Arshad M.U., Ahmad B., Bawazeer S., Atif M., Peters D.G. Chemo-preventive and therapeutic effect of the dietary flavonoid kaempferol: A comprehensive review. Phytother. Res. 2019;33:263–275. doi: 10.1002/ptr.6227.
    1. Ajebli M., Eddouks M. Flavonoid-enriched extract from desert plant Warionia saharae improves glucose and cholesterol levels in diabetic rats. Cardiovasc. Hematol. Agents Med. Chem. 2019;17:28–39. doi: 10.2174/1871525717666190121143934.
    1. Shi F., Wei Z., Zhao Y., Xu X. Nanostructured lipid carriers loaded with baicalin: An efficient carrier for enhanced antidiabetic effects. Pharmacogn. Mag. 2016;12:198.
    1. Shams-Rad S., Mohammadi M., Ramezani-Jolfaie N., Zarei S., Mohsenpour M., Salehi-Abargouei A. Hesperidin supplementation has no effect on blood glucose control: A systematic review and meta-analysis of randomized controlled clinical trials. British J. Clin. Pharmacol. 2020;86:13–22. doi: 10.1111/bcp.14120.
    1. Campoy S., Adrio J.L. Antifungals. Biochem. Pharmacol. 2017;133:86–96. doi: 10.1016/j.bcp.2016.11.019.
    1. Adam A.Z., Lee S.Y., Mohamed R. Pharmacological properties of agarwood tea derived from Aquilaria (Thymelaeaceae) leaves: An emerging contemporary herbal drink. J. Herbal Med. 2017;10:37–44. doi: 10.1016/j.hermed.2017.06.002.
    1. Wang Q.-H., Wu J.-S., Wu R.-J., Han N.-R.-C.-K.-T., Dai N.-Y.-T. Two new flavonoids from Artemisa sacrorum Ledeb and their antifungal activity. J. Mol. Struct. 2015;1088:34–37. doi: 10.1016/j.molstruc.2015.01.045.
    1. Peralta M.A., da Silva M.A., Ortega M.G., Cabrera J.L., Paraje M.G. Antifungal activity of a prenylated flavonoid from Dalea elegans against Candida albicans biofilms. Phytomedicine. 2015;22:975–980. doi: 10.1016/j.phymed.2015.07.003.

Source: PubMed

3
Předplatit