Chronic Wound Healing: A Review of Current Management and Treatments

George Han, Roger Ceilley, George Han, Roger Ceilley

Abstract

Wound healing is a complex, highly regulated process that is critical in maintaining the barrier function of skin. With numerous disease processes, the cascade of events involved in wound healing can be affected, resulting in chronic, non-healing wounds that subject the patient to significant discomfort and distress while draining the medical system of an enormous amount of resources. The healing of a superficial wound requires many factors to work in concert, and wound dressings and treatments have evolved considerably to address possible barriers to wound healing, ranging from infection to hypoxia. Even optimally, wound tissue never reaches its pre-injured strength and multiple aberrant healing states can result in chronic non-healing wounds. This article will review wound healing physiology and discuss current approaches for treating a wound.

Keywords: Biofilms; Chronic wounds; Growth factors; Hyperbaric oxygen; Negative pressure wound therapy; Skin infection; Skin substitutes; Wound dressings; Wound healing.

Figures

Fig. 1
Fig. 1
Chronic ulcers of peripheral vascular disease
Fig. 2
Fig. 2
Hyperbaric oxygen wound therapy chamber (Sigma 34 Hyperbaric Chamber, Perry Biomedical, Riviera Beach, FL, USA)

References

    1. Paquette D, Falanga V. Leg ulcers. Clin Geriatr Med. 2002;18(1):77–88. doi: 10.1016/S0749-0690(03)00035-1.
    1. Brem H, Stojadinovic O, Diegelmann RF, et al. Molecular markers in patients with chronic wounds to guide surgical debridement. Mol Med. 2007;13(1–2):30–39.
    1. Sen CK, Gordillo GM, Roy S, et al. Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen. 2009;17(6):763–771. doi: 10.1111/j.1524-475X.2009.00543.x.
    1. Stadelmann WK, Digenis AG, Tobin GR. Physiology and healing dynamics of chronic cutaneous wounds. Am J Surg. 1998;176(2A Suppl):26S–38S. doi: 10.1016/S0002-9610(98)00183-4.
    1. Wynn TA, Barron L. Macrophages: master regulators of inflammation and fibrosis. Semin Liver Dis. 2010;30(3):245–257. doi: 10.1055/s-0030-1255354.
    1. Haukipuro K, Melkko J, Risteli L, Kairaluoma M, Risteli J. Synthesis of type I collagen in healing wounds in humans. Ann Surg. 1991;213(1):75–80. doi: 10.1097/00000658-199101000-00013.
    1. Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature. 2008;453(7193):314–321. doi: 10.1038/nature07039.
    1. Hunt TK, Hopf HW. Wound healing and wound infection. What surgeons and anesthesiologists can do. Surg Clin North Am. 1997;77(3):587–606. doi: 10.1016/S0039-6109(05)70570-3.
    1. Sheffield PJ. Tissue oxygen measurements. In: Hunt TK, Davis JC, editors. Problem wounds: the role of oxygen. New York: Elsevier; 1988. pp. 17–52.
    1. Ruberg RL. Role of nutrition in wound healing. Surg Clin North Am. 1984;64(4):705–714. doi: 10.1016/S0039-6109(16)43386-4.
    1. Breslow RA, Hallfrisch J, Guy DG, Crawley B, Goldberg AP. The importance of dietary protein in healing pressure ulcers. J Am Geriatr Soc. 1993;41(4):357–362. doi: 10.1111/j.1532-5415.1993.tb06940.x.
    1. MacKay D, Miller AL. Nutritional support for wound healing. Altern Med Rev. 2003;8(4):359–377.
    1. Ehrlich HP, Tarver H, Hunt TK. Inhibitory effects of vitamin E on collagen synthesis and wound repair. Ann Surg. 1972;175(2):235–240. doi: 10.1097/00000658-197202000-00013.
    1. Greenwald DP, Sharzer LA, Padawer J, Levenson SM, Seifter E. Zone II flexor tendon repair: effects of vitamins A, E, beta-carotene. J Surg Res. 1990;49(1):98–102. doi: 10.1016/0022-4804(90)90117-K.
    1. Galeano M, Torre V, Deodato B, et al. Raxofelast, a hydrophilic vitamin E-like antioxidant, stimulates wound healing in genetically diabetic mice. Surgery. 2001;129(4):467–477.
    1. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047–1053. doi: 10.2337/diacare.27.5.1047.
    1. Reiber GE, Vileikyte L, Boyko EJ, et al. Causal pathways for incident lower-extremity ulcers in patients with diabetes from two settings. Diabetes Care. 1999;22(1):157–162. doi: 10.2337/diacare.22.1.157.
    1. Brem H, Tomic-Canic M. Cellular and molecular basis of wound healing in diabetes. J Clin Invest. 2007;117(5):1219–1222. doi: 10.1172/JCI32169.
    1. Christman AL, Selvin E, Margolis DJ, Lazarus GS, Garza LA. Hemoglobin A1c predicts healing rate in diabetic wounds. J Invest Dermatol. 2011;131(10):2121–2127. doi: 10.1038/jid.2011.176.
    1. Peppa M, Stavroulakis P, Raptis SA. Advanced glycoxidation products and impaired diabetic wound healing. Wound Repair Regen. 2009;17(4):461–472. doi: 10.1111/j.1524-475X.2009.00518.x.
    1. Trengove NJ, Stacey MC, McGechie DF, Mata S. Qualitative bacteriology and leg ulcer healing. J Wound Care. 1996;5(6):277–280. doi: 10.12968/jowc.1996.5.6.277.
    1. Armstrong DG, Liswood PJ, Todd WF. William J. Stickel Bronze Award. Prevalence of mixed infections in the diabetic pedal wound. A retrospective review of 112 infections. J Am Podiatr Med Assoc. 1995;85(10):533–537. doi: 10.7547/87507315-85-10-533.
    1. Schneider M, Vildozola CW, Brooks S. Quantitative assessment of bacterial invasion of chronic ulcers. Statistical analysis. Am J Surg. 1983;145(2):260–262. doi: 10.1016/0002-9610(83)90075-2.
    1. Murphy PS, Evans GR. Advances in wound healing: a review of current wound healing products. Plast Surg Int. 2012;2012:190436.
    1. Warriner R, Burrell R. Infection and the chronic wound: a focus on silver. Adv Skin Wound Care. 2005;18(Suppl 1):2–12. doi: 10.1097/00129334-200510001-00001.
    1. Miller AC, Rashid RM, Falzon L, Elamin EM, Zehtabchi S. Silver sulfadiazine for the treatment of partial-thickness burns and venous stasis ulcers. J Am Acad Dermatol. 2012;66(5):e159–e165. doi: 10.1016/j.jaad.2010.06.014.
    1. Skog E, Arnesjo B, Troeng T, Gjores JE, Bergljung L, Gundersen J, et al. A randomized trial comparing cadexomer iodine and standard treatment in the out-patient management of chronic venous ulcers. Br J Dermatol. 1983;109(1):77–83. doi: 10.1111/j.1365-2133.1983.tb03995.x.
    1. Moberg S, Hoffman L, Grennert ML, Holst A. A randomized trial of cadexomer iodine in decubitus ulcers. J Am Geriatr Soc. 1983;31(8):462–465. doi: 10.1111/j.1532-5415.1983.tb05117.x.
    1. Lipsky BA, Hoey C. Topical antimicrobial therapy for treating chronic wounds. Clin Infect Dis. 2009;49(10):1541–1549. doi: 10.1086/644732.
    1. Draelos ZD, Rizer RL, Trookman NS. A comparison of postprocedural wound care treatments: do antibiotic-based ointments improve outcomes? J Am Acad Dermatol. 2011;64(3 Suppl):S23–S29. doi: 10.1016/j.jaad.2010.11.010.
    1. Taylor SC, Averyhart AN, Heath CR. Postprocedural wound-healing efficacy following removal of dermatosis papulosa nigra lesions in an African American population: a comparison of a skin protectant ointment and a topical antibiotic. J Am Acad Dermatol. 2011;64(3 Suppl):S30–S35. doi: 10.1016/j.jaad.2010.11.009.
    1. Langford JH, Artemi P, Benrimoj SI. Topical antimicrobial prophylaxis in minor wounds. Ann Pharmacother. 1997;31(5):559–563. doi: 10.1177/106002809703100506.
    1. Maddox JS, Ware JC, Dillon HC., Jr The natural history of streptococcal skin infection: prevention with topical antibiotics. J Am Acad Dermatol. 1985;13(2 Pt 1):207–212. doi: 10.1016/S0190-9622(85)70160-0.
    1. Rogers HD, Desciak EB, Marcus RP, Wang S, MacKay-Wiggan J, Eliezri YD. Prospective study of wound infections in Mohs micrographic surgery using clean surgical technique in the absence of prophylactic antibiotics. J Am Acad Dermatol. 2010;63(5):842–851. doi: 10.1016/j.jaad.2010.07.029.
    1. Levender MM, Davis SA, Kwatra SG, Williford PM, Feldman SR. Use of topical antibiotics as prophylaxis in clean dermatologic procedures. J Am Acad Dermatol. 2012;66(3):445–451. doi: 10.1016/j.jaad.2011.02.005.
    1. Mulder G, Jones R, Cederholm-Williams S, Cherry G, Ryan T. Fibrin cuff lysis in chronic venous ulcers treated with a hydrocolloid dressing. Int J Dermatol. 1993;32(4):304–306. doi: 10.1111/j.1365-4362.1993.tb04275.x.
    1. Prete PE. Growth effects of Phaenicia sericata larval extracts on fibroblasts: mechanism for wound healing by maggot therapy. Life Sci. 1997;60(8):505–510. doi: 10.1016/S0024-3205(96)00688-1.
    1. Thomas S, Andrews A, Jones M, Church J. Maggots are useful in treating infected or necrotic wounds. BMJ. 1999;318(7186):807–808. doi: 10.1136/bmj.318.7186.807.
    1. Ke Q, Costa M. Hypoxia-inducible factor-1 (HIF-1) Mol Pharmacol. 2006;70(5):1469–1480. doi: 10.1124/mol.106.027029.
    1. Jones V, Grey JE, Harding KG. Wound dressings. BMJ. 2006;332(7544):777–780. doi: 10.1136/bmj.332.7544.777.
    1. Barnett SE, Varley SJ. The effects of calcium alginate on wound healing. Ann R Coll Surg Engl. 1987;69(4):153–155.
    1. Cullen B, Smith R, McCulloch E, Silcock D, Morrison L. Mechanism of action of PROMOGRAN, a protease modulating matrix, for the treatment of diabetic foot ulcers. Wound Repair Regen. 2002;10(1):16–25. doi: 10.1046/j.1524-475X.2002.10703.x.
    1. Beele H, Meuleneire F, Nahuys M, Percival SL. A prospective randomised open label study to evaluate the potential of a new silver alginate/carboxymethylcellulose antimicrobial wound dressing to promote wound healing. Int Wound J. 2010;7(4):262–270. doi: 10.1111/j.1742-481X.2010.00669.x.
    1. Percival SL, Bowler P, Woods EJ. Assessing the effect of an antimicrobial wound dressing on biofilms. Wound Repair Regen. 2008;16(1):52–57. doi: 10.1111/j.1524-475X.2007.00350.x.
    1. Dziewulski P, et al. Acute management of facial burns. In: Jeschke MG, Kamolz L-P, Sjöberg F, Wolf SE, editors. Handbook of burns vol. 1: acute burn care, 1st edn. New York: Springer; 2011. pp. 291–302.
    1. Marston WA, Hanft J, Norwood P, Pollak R. The efficacy and safety of Dermagraft in improving the healing of chronic diabetic foot ulcers: results of a prospective randomized trial. Diabetes Care. 2003;26(6):1701–1705. doi: 10.2337/diacare.26.6.1701.
    1. Hanft JR, Surprenant MS. Healing of chronic foot ulcers in diabetic patients treated with a human fibroblast-derived dermis. J Foot Ankle Surg. 2002;41(5):291–299. doi: 10.1016/S1067-2516(02)80047-3.
    1. Newton DJ, Khan F, Belch JJ, Mitchell MR, Leese GP. Blood flow changes in diabetic foot ulcers treated with dermal replacement therapy. J Foot Ankle Surg. 2002;41(4):233–237. doi: 10.1016/S1067-2516(02)80020-5.
    1. Langer A, Rogowski W. Systematic review of economic evaluations of human cell-derived wound care products for the treatment of venous leg and diabetic foot ulcers. BMC Health Serv Res. 2009;9:115. doi: 10.1186/1472-6963-9-115.
    1. Driver VR, Lavery LA, Reyzelman AM, et al. A clinical trial of Integra Template for diabetic foot ulcer treatment. Wound Repair Regen. 2015;23(6):891–900. doi: 10.1111/wrr.12357.
    1. Streubel PN, Stinner DJ, Obremskey WT. Use of negative-pressure wound therapy in orthopaedic trauma. J Am Acad Orthop Surg. 2012;20(9):564–574.
    1. Venturi ML, Attinger CE, Mesbahi AN, Hess CL, Graw KS. Mechanisms and clinical applications of the vacuum-assisted closure (VAC) device: a review. Am J Clin Dermatol. 2005;6(3):185–194. doi: 10.2165/00128071-200506030-00005.
    1. Smiell JM, Wieman TJ, Steed DL, Perry BH, Sampson AR, Schwab BH. Efficacy and safety of becaplermin (recombinant human platelet-derived growth factor-BB) in patients with nonhealing, lower extremity diabetic ulcers: a combined analysis of four randomized studies. Wound Repair Regen. 1999;7(5):335–346. doi: 10.1046/j.1524-475X.1999.00335.x.
    1. Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. Growth factors and cytokines in wound healing. Wound Repair Regen. 2008;16(5):585–601. doi: 10.1111/j.1524-475X.2008.00410.x.
    1. Emmerson E, Campbell L, Davies FC, et al. Insulin-like growth factor-1 promotes wound healing in estrogen-deprived mice: new insights into cutaneous IGF-1R/ERalpha cross talk. J Invest Dermatol. 2012;132(12):2838–2848. doi: 10.1038/jid.2012.228.
    1. Lima MH, Caricilli AM, de Abreu LL, et al. Topical insulin accelerates wound healing in diabetes by enhancing the AKT and ERK pathways: a double-blind placebo-controlled clinical trial. PLoS One. 2012;7(5):e36974. doi: 10.1371/journal.pone.0036974.
    1. Wu L, Xia YP, Roth SI, Gruskin E, Mustoe TA. Transforming growth factor-beta1 fails to stimulate wound healing and impairs its signal transduction in an aged ischemic ulcer model: importance of oxygen and age. Am J Pathol. 1999;154(1):301–309. doi: 10.1016/S0002-9440(10)65276-5.
    1. Wu SC, Marston W, Armstrong DG. Wound care: the role of advanced wound-healing technologies. J Am Podiatr Med Assoc. 2010;100(5):385–394. doi: 10.7547/1000385.
    1. Kranke P, Bennett M, Roeckl-Wiedmann I, Debus S. Hyperbaric oxygen therapy for chronic wounds. Cochrane Database Syst Rev. 2004;(2):CD004123.
    1. Fonder MA, Lazarus GS, Cowan DA, Aronson-Cook B, Kohli AR, Mamelak AJ. Treating the chronic wound: a practical approach to the care of nonhealing wounds and wound care dressings. J Am Acad Dermatol. 2008;58(2):185–206. doi: 10.1016/j.jaad.2007.08.048.
    1. Londahl M, Katzman P, Nilsson A, Hammarlund C. Hyperbaric oxygen therapy facilitates healing of chronic foot ulcers in patients with diabetes. Diabetes Care. 2010;33(5):998–1003. doi: 10.2337/dc09-1754.
    1. O’Reilly D, Linden R, Fedorko L, et al. A prospective, double-blind, randomized, controlled clinical trial comparing standard wound care with adjunctive hyperbaric oxygen therapy (HBOT) to standard wound care only for the treatment of chronic, non-healing ulcers of the lower limb in patients with diabetes mellitus: a study protocol. Trials. 2011;12:69. doi: 10.1186/1745-6215-12-69.
    1. Han G, Nguyen LN, Macherla C, et al. Nitric oxide-releasing nanoparticles accelerate wound healing by promoting fibroblast migration and collagen deposition. Am J Pathol. 2012;180(4):1465–1473. doi: 10.1016/j.ajpath.2011.12.013.
    1. Mowbray M, Tan X, Wheatley PS, Rossi AG, Morris RE, Weller RB. Topically applied nitric oxide induces T-lymphocyte infiltration in human skin, but minimal inflammation. J Invest Dermatol. 2008;128(2):352–360. doi: 10.1038/sj.jid.5701096.
    1. Lo DD, Zimmermann AS, Nauta A, Longaker MT, Lorenz HP. Scarless fetal skin wound healing update. Birth Defects Res C Embryo Today. 2012;96(3):237–247. doi: 10.1002/bdrc.21018.
    1. Larson BJ, Longaker MT, Lorenz HP. Scarless fetal wound healing: a basic science review. Plast Reconstr Surg. 2010;126(4):1172–1180. doi: 10.1097/PRS.0b013e3181eae781.
    1. Wilgus TA. Regenerative healing in fetal skin: a review of the literature. Ostomy Wound Manage. 2007;53(6):16–31.
    1. Seifert AW, Kiama SG, Seifert MG, Goheen JR, Palmer TM, Maden M. Skin shedding and tissue regeneration in African spiny mice (Acomys) Nature. 2012;489(7417):561–565. doi: 10.1038/nature11499.
    1. Degen KE, Gourdie RG. Embryonic wound healing: a primer for engineering novel therapies for tissue repair. Birth Defects Res C Embryo Today. 2012;96(3):258–270. doi: 10.1002/bdrc.21019.
    1. Badiavas EV, Falanga V. Treatment of chronic wounds with bone marrow-derived cells. Arch Dermatol. 2003;139(4):510–516. doi: 10.1001/archderm.139.4.510.
    1. McFarlin K, Gao X, Liu YB, et al. Bone marrow-derived mesenchymal stromal cells accelerate wound healing in the rat. Wound Repair Regen. 2006;14(4):471–478. doi: 10.1111/j.1743-6109.2006.00153.x.
    1. Jackson WM, Nesti LJ, Tuan RS. Mesenchymal stem cell therapy for attenuation of scar formation during wound healing. Stem Cell Res Ther. 2012;3(3):20. doi: 10.1186/scrt111.

Source: PubMed

3
Předplatit