Effects of remote limb ischemic conditioning on muscle strength in healthy young adults: A randomized controlled trial

Swati M Surkar, Marghuretta D Bland, Anna E Mattlage, Ling Chen, Jeffrey M Gidday, Jin-Moo Lee, Tamara Hershey, Catherine E Lang, Swati M Surkar, Marghuretta D Bland, Anna E Mattlage, Ling Chen, Jeffrey M Gidday, Jin-Moo Lee, Tamara Hershey, Catherine E Lang

Abstract

Remote limb ischemic conditioning (RLIC) is a clinically feasible method in which brief, sub-lethal bouts of ischemia protects remote organs or tissues from subsequent ischemic injury. A single session of RLIC can improve exercise performance and increase muscle activation. The purpose of this study, therefore, was to assess the effects of a brief, two-week protocol of repeated RLIC combined with strength training on strength gain and neural adaptation in healthy young adults. Participants age 18-40 years were randomized to receive either RLIC plus strength training (n = 15) or sham conditioning plus strength training (n = 15). Participants received RLIC or sham conditioning over 8 visits using a blood pressure cuff on the dominant arm with 5 cycles of 5 minutes each alternating inflation and deflation. Visits 3-8 paired conditioning with wrist extensors strength training on the non-dominant (non-conditioned) arm using standard guidelines. Changes in one repetition maximum (1 RM) and electromyography (EMG) amplitude were compared between groups. Both groups were trained at a similar workload. While both groups gained strength over time (P = 0.001), the RLIC group had greater strength gains (9.38 ± 1.01 lbs) than the sham group (6.3 ± 1.08 lbs, P = 0.035). There was not a significant group x time interaction in EMG amplitude (P = 0.231). The RLIC group had larger percent changes in 1 RM (43.8% vs. 26.1%, P = 0.003) and EMG amplitudes (31.0% vs. 8.6%, P = 0.023) compared to sham conditioning. RLIC holds promise for enhancing muscle strength in healthy young and older adults, as well as clinical populations that could benefit from strength training.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. CONSORT flow diagram.
Fig 1. CONSORT flow diagram.
Fig 2. Order of experimental procedures.
Fig 2. Order of experimental procedures.
Fig 3. Strength.
Fig 3. Strength.
(A) Training load for each group during 2 weeks of strength training program. Training load was calculated as total number of repetitions by average load during each visit. Training visits 3–8 occurred on alternate weekdays. (B) 1 Repetition Maximum (1 RM) of the wrist extensor muscles on the non-dominant arm for each group. From pre- to post-test, mean change score in 1 RM in the RLIC group was 3.07 ± 0.75 lbs greater than the sham group. * indicates P

Fig 4. Electromyography (EMG).

(A) EMG activity…

Fig 4. Electromyography (EMG).

(A) EMG activity in extensor carpi radialis longus muscle on the…

Fig 4. Electromyography (EMG).
(A) EMG activity in extensor carpi radialis longus muscle on the non-dominant arm. Average amplitude of the EMG signal from pre- to post-test was increased in the RLIC compared to the sham group. (B) Percent change in EMG amplitude between from pre- to post-test between groups. On average, the RLIC group demonstrated 22.36 ± 4.89% relative increase in EMG amplitude compared to the sham group. Values are means ± SE. * indicates P
Similar articles
Cited by
References
    1. Stokfisz K, Ledakowicz-Polak A, Zagorski M, Zielinska M. Ischaemic preconditioning—Current knowledge and potential future applications after 30 years of experience. Adv Med Sci. 2017;62(2):307–16. Epub 2017/05/17. 10.1016/j.advms.2016.11.006 . - DOI - PubMed
    1. Dirnagl U, Becker K, Meisel A. Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use. Lancet Neurol. 2009;8(4):398–412. Epub 2009/03/20. 10.1016/S1474-4422(09)70054-7 - DOI - PMC - PubMed
    1. Gidday JM. Cerebral preconditioning and ischaemic tolerance. Nat Rev Neurosci. 2006;7(6):437–48. Epub 2006/05/23. 10.1038/nrn1927 . - DOI - PubMed
    1. Stetler RA, Leak RK, Gan Y, Li P, Zhang F, Hu X, et al. Preconditioning provides neuroprotection in models of CNS disease: paradigms and clinical significance. Prog Neurobiol. 2014;114:58–83. Epub 2014/01/07. 10.1016/j.pneurobio.2013.11.005 - DOI - PMC - PubMed
    1. Guo L, Zhou D, Wu D, Ding J, He X, Shi J, et al. Short-term remote ischemic conditioning may protect monkeys after ischemic stroke. Ann Clin Transl Neurol. 2019;6(2):310–23. Epub 2019/03/09. 10.1002/acn3.705 - DOI - PMC - PubMed
Show all 96 references
Publication types
MeSH terms
Related information
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM
Fig 4. Electromyography (EMG).
Fig 4. Electromyography (EMG).
(A) EMG activity in extensor carpi radialis longus muscle on the non-dominant arm. Average amplitude of the EMG signal from pre- to post-test was increased in the RLIC compared to the sham group. (B) Percent change in EMG amplitude between from pre- to post-test between groups. On average, the RLIC group demonstrated 22.36 ± 4.89% relative increase in EMG amplitude compared to the sham group. Values are means ± SE. * indicates P

References

    1. Stokfisz K, Ledakowicz-Polak A, Zagorski M, Zielinska M. Ischaemic preconditioning—Current knowledge and potential future applications after 30 years of experience. Adv Med Sci. 2017;62(2):307–16. Epub 2017/05/17. 10.1016/j.advms.2016.11.006 .
    1. Dirnagl U, Becker K, Meisel A. Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use. Lancet Neurol. 2009;8(4):398–412. Epub 2009/03/20. 10.1016/S1474-4422(09)70054-7
    1. Gidday JM. Cerebral preconditioning and ischaemic tolerance. Nat Rev Neurosci. 2006;7(6):437–48. Epub 2006/05/23. 10.1038/nrn1927 .
    1. Stetler RA, Leak RK, Gan Y, Li P, Zhang F, Hu X, et al. Preconditioning provides neuroprotection in models of CNS disease: paradigms and clinical significance. Prog Neurobiol. 2014;114:58–83. Epub 2014/01/07. 10.1016/j.pneurobio.2013.11.005
    1. Guo L, Zhou D, Wu D, Ding J, He X, Shi J, et al. Short-term remote ischemic conditioning may protect monkeys after ischemic stroke. Ann Clin Transl Neurol. 2019;6(2):310–23. Epub 2019/03/09. 10.1002/acn3.705
    1. Meng R, Asmaro K, Meng L, Liu Y, Ma C, Xi C, et al. Upper limb ischemic preconditioning prevents recurrent stroke in intracranial arterial stenosis. Neurology. 2012;79(18):1853–61. Epub 2012/10/05. 10.1212/WNL.0b013e318271f76a .
    1. Ren C, Yan Z, Wei D, Gao X, Chen X, Zhao H. Limb remote ischemic postconditioning protects against focal ischemia in rats. Brain Res. 2009;1288:88–94. Epub 2009/07/28. 10.1016/j.brainres.2009.07.029
    1. Vinten-Johansen J, Shi W. Perconditioning and postconditioning: current knowledge, knowledge gaps, barriers to adoption, and future directions. J Cardiovasc Pharmacol Ther. 2011;16(3–4):260–6. Epub 2011/08/09. 10.1177/1074248411415270 .
    1. Kharbanda RK, Nielsen TT, Redington AN. Translation of remote ischaemic preconditioning into clinical practice. Lancet. 2009;374(9700):1557–65. Epub 2009/11/03. 10.1016/S0140-6736(09)61421-5 .
    1. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74(5):1124–36. Epub 1986/11/01. 10.1161/01.cir.74.5.1124 .
    1. Eisen A, Fisman EZ, Rubenfire M, Freimark D, McKechnie R, Tenenbaum A, et al. Ischemic preconditioning: nearly two decades of research. A comprehensive review. Atherosclerosis. 2004;172(2):201–10. Epub 2004/03/17. 10.1016/S0021-9150(03)00238-7 .
    1. Lawson CS, Downey JM. Preconditioning: state of the art myocardial protection. Cardiovasc Res. 1993;27(4):542–50. Epub 1993/04/01. 10.1093/cvr/27.4.542 .
    1. Addison PD, Neligan PC, Ashrafpour H, Khan A, Zhong A, Moses M, et al. Noninvasive remote ischemic preconditioning for global protection of skeletal muscle against infarction. Am J Physiol Heart Circ Physiol. 2003;285(4):H1435–43. Epub 2003/06/07. 10.1152/ajpheart.00106.2003 .
    1. Pang CY, Yang RZ, Zhong A, Xu N, Boyd B, Forrest CR. Acute ischaemic preconditioning protects against skeletal muscle infarction in the pig. Cardiovasc Res. 1995;29(6):782–8. Epub 1995/06/01. .
    1. Jean-St-Michel E, Manlhiot C, Li J, Tropak M, Michelsen MM, Schmidt MR, et al. Remote preconditioning improves maximal performance in highly trained athletes. Med Sci Sports Exerc. 2011;43(7):1280–6. Epub 2010/12/07. 10.1249/MSS.0b013e318206845d .
    1. Kjeld T, Rasmussen MR, Jattu T, Nielsen HB, Secher NH. Ischemic preconditioning of one forearm enhances static and dynamic apnea. Med Sci Sports Exerc. 2014;46(1):151–5. Epub 2013/07/13. 10.1249/MSS.0b013e3182a4090a .
    1. Crisafulli A, Tangianu F, Tocco F, Concu A, Mameli O, Mulliri G, et al. Ischemic preconditioning of the muscle improves maximal exercise performance but not maximal oxygen uptake in humans. J Appl Physiol (1985). 2011;111(2):530–6. Epub 2011/05/28. 10.1152/japplphysiol.00266.2011 .
    1. Bailey TG, Jones H, Gregson W, Atkinson G, Cable NT, Thijssen DH. Effect of ischemic preconditioning on lactate accumulation and running performance. Med Sci Sports Exerc. 2012;44(11):2084–9. Epub 2012/07/31. 10.1249/MSS.0b013e318262cb17 .
    1. Libonati JR, Cox M, Incanno N, Melville SK, Musante FC, Glassberg HL, et al. Brief periods of occlusion and reperfusion increase skeletal muscle force output in humans. Cardiologia. 1998;43(12):1355–60. Epub 1999/02/16. .
    1. de Groot PC, Thijssen DH, Sanchez M, Ellenkamp R, Hopman MT. Ischemic preconditioning improves maximal performance in humans. Eur J Appl Physiol. 2010;108(1):141–6. Epub 2009/09/18. 10.1007/s00421-009-1195-2
    1. Tanaka D, Suga T, Tanaka T, Kido K, Honjo T, Fujita S, et al. Ischemic Preconditioning Enhances Muscle Endurance during Sustained Isometric Exercise. Int J Sports Med. 2016;37(8):614–8. Epub 2016/05/14. 10.1055/s-0035-1565141 .
    1. Kido K, Suga T, Tanaka D, Honjo T, Homma T, Fujita S, et al. Ischemic preconditioning accelerates muscle deoxygenation dynamics and enhances exercise endurance during the work-to-work test. Physiol Rep. 2015;3(5). Epub 2015/05/09. 10.14814/phy2.12395
    1. Barbosa TC, Machado AC, Braz ID, Fernandes IA, Vianna LC, Nobrega AC, et al. Remote ischemic preconditioning delays fatigue development during handgrip exercise. Scand J Med Sci Sports. 2015;25(3):356–64. Epub 2014/04/16. 10.1111/sms.12229 .
    1. Beaven CM, Cook CJ, Kilduff L, Drawer S, Gill N. Intermittent lower-limb occlusion enhances recovery after strenuous exercise. Appl Physiol Nutr Metab. 2012;37(6):1132–9. Epub 2012/09/14. 10.1139/h2012-101 .
    1. Hyngstrom AS, Murphy SA, Nguyen J, Schmit BD, Negro F, Gutterman DD, et al. Ischemic conditioning increases strength and volitional activation of paretic muscle in chronic stroke: a pilot study. J Appl Physiol (1985). 2018;124(5):1140–7. Epub 2018/02/09. 10.1152/japplphysiol.01072.2017
    1. Durand MJ, Boerger TF, Nguyen JN, Alqahtani SZ, Wright MT, Schmit BD, et al. Two weeks of ischemic conditioning improves walking speed and reduces neuromuscular fatigability in chronic stroke survivors. J Appl Physiol (1985). 2019;126(3):755–63. Epub 2019/01/18. 10.1152/japplphysiol.00772.2018
    1. Incognito AV, Burr JF, Millar PJ. The Effects of Ischemic Preconditioning on Human Exercise Performance. Sports Med. 2016;46(4):531–44. Epub 2015/12/10. 10.1007/s40279-015-0433-5
    1. Mansour Z, Bouitbir J, Charles AL, Talha S, Kindo M, Pottecher J, et al. Remote and local ischemic preconditioning equivalently protects rat skeletal muscle mitochondrial function during experimental aortic cross-clamping. J Vasc Surg. 2012;55(2):497–505.e1. Epub 2011/11/08. 10.1016/j.jvs.2011.07.084 .
    1. Moses MA, Addison PD, Neligan PC, Ashrafpour H, Huang N, Zair M, et al. Mitochondrial KATP channels in hindlimb remote ischemic preconditioning of skeletal muscle against infarction. Am J Physiol Heart Circ Physiol. 2005;288(2):H559–67. Epub 2004/10/02. 10.1152/ajpheart.00845.2004 .
    1. Kimura M, Ueda K, Goto C, Jitsuiki D, Nishioka K, Umemura T, et al. Repetition of ischemic preconditioning augments endothelium-dependent vasodilation in humans: role of endothelium-derived nitric oxide and endothelial progenitor cells. Arterioscler Thromb Vasc Biol. 2007;27(6):1403–10. Epub 2007/04/21. 10.1161/ATVBAHA.107.143578 .
    1. Riksen NP, Smits P, Rongen GA. Ischaemic preconditioning: from molecular characterisation to clinical application—part II. Neth J Med. 2004;62(11):409–23. Epub 2005/02/03. .
    1. Joyner MJ, Proctor DN. Muscle blood flow during exercise: the limits of reductionism. Med Sci Sports Exerc. 1999;31(7):1036–40. Epub 1999/07/23. 10.1097/00005768-199907000-00017 .
    1. Cruz RS, de Aguiar RA, Turnes T, Pereira KL, Caputo F. Effects of ischemic preconditioning on maximal constant-load cycling performance. J Appl Physiol (1985). 2015;119(9):961–7. Epub 2015/09/12. 10.1152/japplphysiol.00498.2015 .
    1. Cruz RS, de Aguiar RA, Turnes T, Salvador AF, Caputo F. Effects of ischemic preconditioning on short-duration cycling performance. Appl Physiol Nutr Metab. 2016;41(8):825–31. Epub 2016/07/13. 10.1139/apnm-2015-0646 .
    1. van der Krogt H, Kouwijzer I, Klomp A, Meskers CGM, Arendzen JH, de Groot JH. Loss of selective wrist muscle activation in post-stroke patients. Disabil Rehabil. 2019:1–9. Epub 2019/01/13. 10.1080/09638288.2018.1509241 .
    1. Bohannon RW. Muscle strength and muscle training after stroke. J Rehabil Med. 2007;39(1):14–20. Epub 2007/01/17. 10.2340/16501977-0018 .
    1. Kristensen OH, Stenager E, Dalgas U. Muscle Strength and Poststroke Hemiplegia: A Systematic Review of Muscle Strength Assessment and Muscle Strength Impairment. Arch Phys Med Rehabil. 2017;98(2):368–80. Epub 2016/07/04. 10.1016/j.apmr.2016.05.023 .
    1. Clark BC. In vivo alterations in skeletal muscle form and function after disuse atrophy. Med Sci Sports Exerc. 2009;41(10):1869–75. Epub 2009/09/04. 10.1249/MSS.0b013e3181a645a6 .
    1. Gram M, Vigelso A, Yokota T, Hansen CN, Helge JW, Hey-Mogensen M, et al. Two weeks of one-leg immobilization decreases skeletal muscle respiratory capacity equally in young and elderly men. Exp Gerontol. 2014;58:269–78. Epub 2014/09/07. 10.1016/j.exger.2014.08.013 .
    1. Zizola C, Schulze PC. Metabolic and structural impairment of skeletal muscle in heart failure. Heart Fail Rev. 2013;18(5):623–30. Epub 2012/10/16. 10.1007/s10741-012-9353-8
    1. Bone AE, Hepgul N, Kon S, Maddocks M. Sarcopenia and frailty in chronic respiratory disease. Chron Respir Dis. 2017;14(1):85–99. Epub 2016/12/08. 10.1177/1479972316679664
    1. Clark BC. Neuromuscular Changes with Aging and Sarcopenia. J Frailty Aging. 2019;8(1):7–9. Epub 2019/02/09. 10.14283/jfa.2018.35 .
    1. Takarada Y, Nakamura Y, Aruga S, Onda T, Miyazaki S, Ishii N. Rapid increase in plasma growth hormone after low-intensity resistance exercise with vascular occlusion. J Appl Physiol (1985). 2000;88(1):61–5. Epub 2000/01/21. 10.1152/jappl.2000.88.1.61 .
    1. Slysz J, Stultz J, Burr JF. The efficacy of blood flow restricted exercise: A systematic review & meta-analysis. J Sci Med Sport. 2016;19(8):669–75. Epub 2015/10/16. 10.1016/j.jsams.2015.09.005 .
    1. Luebbers PE, Fry AC, Kriley LM, Butler MS. The effects of a 7-week practical blood flow restriction program on well-trained collegiate athletes. J Strength Cond Res. 2014;28(8):2270–80. Epub 2014/01/31. 10.1519/JSC.0000000000000385 .
    1. Manimmanakorn A, Hamlin MJ, Ross JJ, Taylor R, Manimmanakorn N. Effects of low-load resistance training combined with blood flow restriction or hypoxia on muscle function and performance in netball athletes. J Sci Med Sport. 2013;16(4):337–42. Epub 2012/09/25. 10.1016/j.jsams.2012.08.009 .
    1. Scott BR, Loenneke JP, Slattery KM, Dascombe BJ. Blood flow restricted exercise for athletes: A review of available evidence. J Sci Med Sport. 2016;19(5):360–7. Epub 2015/06/30. 10.1016/j.jsams.2015.04.014 .
    1. Groennebaek T, Jespersen NR, Jakobsgaard JE, Sieljacks P, Wang J, Rindom E, et al. Skeletal Muscle Mitochondrial Protein Synthesis and Respiration Increase With Low-Load Blood Flow Restricted as Well as High-Load Resistance Training. Front Physiol. 2018;9:1796 Epub 2019/01/09. 10.3389/fphys.2018.01796
    1. Counts BR, Dankel SJ, Barnett BE, Kim D, Mouser JG, Allen KM, et al. Influence of relative blood flow restriction pressure on muscle activation and muscle adaptation. Muscle Nerve. 2016;53(3):438–45. Epub 2015/07/04. 10.1002/mus.24756 .
    1. Brown H, Binnie MJ, Dawson B, Bullock N, Scott BR, Peeling P. Factors affecting occlusion pressure and ischemic preconditioning. Eur J Sport Sci. 2018;18(3):387–96. Epub 2018/01/18. 10.1080/17461391.2017.1421712 .
    1. Yang Q, Wang Y, Feng J, Cao J, Chen B. Intermittent hypoxia from obstructive sleep apnea may cause neuronal impairment and dysfunction in central nervous system: the potential roles played by microglia. Neuropsychiatr Dis Treat. 2013;9:1077–86. Epub 2013/08/21. 10.2147/NDT.S49868
    1. Drager LF, Jun JC, Polotsky VY. Metabolic consequences of intermittent hypoxia: relevance to obstructive sleep apnea. Best Pract Res Clin Endocrinol Metab. 2010;24(5):843–51. Epub 2010/11/30. 10.1016/j.beem.2010.08.011
    1. Yarrow JF, White LJ, McCoy SC, Borst SE. Training augments resistance exercise induced elevation of circulating brain derived neurotrophic factor (BDNF). Neurosci Lett. 2010;479(2):161–5. Epub 2010/06/18. 10.1016/j.neulet.2010.05.058 .
    1. Ding Q, Ying Z, Gomez-Pinilla F. Exercise influences hippocampal plasticity by modulating brain-derived neurotrophic factor processing. Neuroscience. 2011;192:773–80. Epub 2011/07/16. 10.1016/j.neuroscience.2011.06.032
    1. Acler M, Robol E, Fiaschi A, Manganotti P. A double blind placebo RCT to investigate the effects of serotonergic modulation on brain excitability and motor recovery in stroke patients. J Neurol. 2009;256(7):1152–8. Epub 2009/03/24. 10.1007/s00415-009-5093-7 .
    1. Cherry-Allen KM, Gidday JM, Lee JM, Hershey T, Lang CE. Remote limb ischemic conditioning enhances motor learning in healthy humans. J Neurophysiol. 2015;113(10):3708–19. Epub 2015/04/14. 10.1152/jn.01028.2014
    1. Cherry-Allen KM, Gidday JM, Lee JM, Hershey T, Lang CE. Remote Limb Ischemic Conditioning at Two Cuff Inflation Pressures Yields Learning Enhancements in Healthy Adults. J Mot Behav. 2017;49(3):337–48. Epub 2016/10/13. 10.1080/00222895.2016.1204268
    1. Christie A, Kamen G. Short-term training adaptations in maximal motor unit firing rates and afterhyperpolarization duration. Muscle Nerve. 2010;41(5):651–60. Epub 2009/11/27. 10.1002/mus.21539 .
    1. Jenkins NDM, Miramonti AA, Hill EC, Smith CM, Cochrane-Snyman KC, Housh TJ, et al. Greater Neural Adaptations following High- vs. Low-Load Resistance Training. Front Physiol. 2017;8:331 Epub 2017/06/15. 10.3389/fphys.2017.00331
    1. Enko K, Nakamura K, Yunoki K, Miyoshi T, Akagi S, Yoshida M, et al. Intermittent arm ischemia induces vasodilatation of the contralateral upper limb. J Physiol Sci. 2011;61(6):507–13. Epub 2011/09/09. 10.1007/s12576-011-0172-9 .
    1. Tapuria N, Kumar Y, Habib MM, Abu Amara M, Seifalian AM, Davidson BR. Remote ischemic preconditioning: a novel protective method from ischemia reperfusion injury—a review. J Surg Res. 2008;150(2):304–30. Epub 2008/12/02. 10.1016/j.jss.2007.12.747 .
    1. Sutter EN, Mattlage AE, Bland MD, Cherry-Allen KM, Harrison E, Surkar SM, et al. Remote Limb Ischemic Conditioning and Motor Learning: Evaluation of Factors Influencing Response in Older Adults. Transl Stroke Res. 2018. Epub 2018/08/09. 10.1007/s12975-018-0653-8
    1. Groothuis JT, van Vliet L, Kooijman M, Hopman MTE. Venous cuff pressures from 30 mmHg to diastolic pressure are recommended to measure arterial inflow by plethysmography. J Appl Physiol. 2003;95:342–7. 10.1152/japplphysiol.00022.2003
    1. Lorentsen E, Hansteen V, Sivertssen E. The influence of venous collecting pressure on measurements of calf blood flow by venous occlusion plethysmography. Angiology. 1970;21(10):661–77. Epub 1970/11/01. 10.1177/000331977002101005 .
    1. Pallares LC, Deane CR, Baudouin SV, Evans TW. Strain gauge plethysmography and Doppler ultrasound in the measurement of limb blood flow. Eur J Clin Invest. 1994;24(4):279–86. Epub 1994/04/01. 10.1111/j.1365-2362.1994.tb01086.x .
    1. Braith RW, Graves JE, Pollock ML, Leggett SL, Carpenter DM, Colvin AB. Comparison of 2 vs 3 days/week of variable resistance training during 10- and 18-week programs. Int J Sports Med. 1989;10(6):450–4. Epub 1989/12/01. 10.1055/s-2007-1024942 .
    1. Hakkinen K, Alen M, Kallinen M, Newton RU, Kraemer WJ. Neuromuscular adaptation during prolonged strength training, detraining and re-strength-training in middle-aged and elderly people. Eur J Appl Physiol. 2000;83(1):51–62. Epub 2000/11/10. 10.1007/s004210000248 .
    1. Peltonen H, Walker S, Lahitie A, Hakkinen K, Avela J. Isometric parameters in the monitoring of maximal strength, power, and hypertrophic resistance-training. Appl Physiol Nutr Metab. 2018;43(2):145–53. Epub 2017/10/11. 10.1139/apnm-2017-0310 .
    1. Chu E, Kim YS, Hill G, Kim YH, Kim CK, Shim JK. Wrist Resistance Training Improves Motor Control and Strength. J Strength Cond Res. 2018;32(4):962–9. Epub 2017/08/02. 10.1519/JSC.0000000000002019 .
    1. Shimose R, Matsunaga A, Muro M. Effect of submaximal isometric wrist extension training on grip strength. Eur J Appl Physiol. 2011;111(3):557–65. Epub 2010/10/12. 10.1007/s00421-010-1675-4 .
    1. Koch S, Della-Morte D, Dave KR, Sacco RL, Perez-Pinzon MA. Biomarkers for ischemic preconditioning: finding the responders. J Cereb Blood Flow Metab. 2014;34(6):933–41. Epub 2014/03/20. 10.1038/jcbfm.2014.42
    1. Urbin MA, Harris-Love ML, Carter AR, Lang CE. High-Intensity, Unilateral Resistance Training of a Non-Paretic Muscle Group Increases Active Range of Motion in a Severely Paretic Upper Extremity Muscle Group after Stroke. Front Neurol. 2015;6:119 Epub 2015/06/16. 10.3389/fneur.2015.00119
    1. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2009;41(3):687–708. Epub 2009/02/11. 10.1249/MSS.0b013e3181915670 .
    1. Bird SP, Tarpenning KM, Marino FE. Designing resistance training programmes to enhance muscular fitness: a review of the acute programme variables. Sports Med. 2005;35(10):841–51. Epub 2005/09/27. 10.2165/00007256-200535100-00002 .
    1. Kraemer WJ, Ratamess NA. Fundamentals of resistance training: progression and exercise prescription. Med Sci Sports Exerc. 2004;36(4):674–88. Epub 2004/04/06. 10.1249/01.mss.0000121945.36635.61 .
    1. Scott BR, Slattery KM, Dascombe BJ. Intermittent hypoxic resistance training: is metabolic stress the key moderator? Med Hypotheses. 2015;84(2):145–9. Epub 2014/12/31. 10.1016/j.mehy.2014.12.001 .
    1. Ramis TR, Muller CHL, Boeno FP, Teixeira BC, Rech A, Pompermayer MG, et al. Effects of Traditional and Vascular Restricted Strength Training Program With Equalized Volume on Isometric and Dynamic Strength, Muscle Thickness, Electromyographic Activity, and Endothelial Function Adaptations in Young Adults. J Strength Cond Res. 2018. Epub 2018/08/01. 10.1519/jsc.0000000000002717 .
    1. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377–81. Epub 2008/10/22. 10.1016/j.jbi.2008.08.010
    1. Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175–91. Epub 2007/08/19. 10.3758/bf03193146 .
    1. Schoenfeld BJ, Grgic J, Ogborn D, Krieger JW. Strength and Hypertrophy Adaptations Between Low- vs. High-Load Resistance Training: A Systematic Review and Meta-analysis. J Strength Cond Res. 2017;31(12):3508–23. Epub 2017/08/24. 10.1519/JSC.0000000000002200 .
    1. Griffin L, Cafarelli E. Transcranial magnetic stimulation during resistance training of the tibialis anterior muscle. J Electromyogr Kinesiol. 2007;17(4):446–52. Epub 2006/08/08. 10.1016/j.jelekin.2006.05.001 .
    1. Kidgell DJ, Pearce AJ. Corticospinal properties following short-term strength training of an intrinsic hand muscle. Hum Mov Sci. 2010;29(5):631–41. Epub 2010/04/20. 10.1016/j.humov.2010.01.004 .
    1. Hess DC, Blauenfeldt RA, Andersen G, Hougaard KD, Hoda MN, Ding Y, et al. Remote ischaemic conditioning-a new paradigm of self-protection in the brain. Nat Rev Neurol. 2015;11(12):698–710. Epub 2015/11/21. 10.1038/nrneurol.2015.223 .
    1. Riksen NP, Smits P, Rongen GA. Ischaemic preconditioning: from molecular characterisation to clinical application—part I. Neth J Med. 2004;62(10):353–63. Epub 2005/02/03. .
    1. Wang WZ, Stepheson LL, Fang XH, Khiabani KT, Zamboni WA. Ischemic preconditioning-induced microvascular protection at a distance. J Reconstr Microsurg. 2004;20(2):175–81. Epub 2004/03/11. 10.1055/s-2004-820775 .
    1. Cooper CE, Brown GC. The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance. J Bioenerg Biomembr. 2008;40(5):533–9. Epub 2008/10/08. 10.1007/s10863-008-9166-6 .
    1. Lorenzo S, Minson CT, Babb TG, Halliwill JR. Lactate threshold predicting time-trial performance: impact of heat and acclimation. J Appl Physiol (1985). 2011;111(1):221–7. Epub 2011/04/30. 10.1152/japplphysiol.00334.2011
    1. Gabriel DA, Kamen G, Frost G. Neural adaptations to resistive exercise: mechanisms and recommendations for training practices. Sports Med. 2006;36(2):133–49. Epub 2006/02/09. 10.2165/00007256-200636020-00004 .
    1. Jenkins ND, Housh TJ, Buckner SL, Bergstrom HC, Cochrane KC, Hill EC, et al. Neuromuscular Adaptations After 2 and 4 Weeks of 80% Versus 30% 1 Repetition Maximum Resistance Training to Failure. J Strength Cond Res. 2016;30(8):2174–85. Epub 2016/02/06. 10.1519/JSC.0000000000001308 .
    1. Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P. Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol (1985). 2002;93(4):1318–26. Epub 2002/09/18. 10.1152/japplphysiol.00283.2002 .
    1. Lee M, Gandevia SC, Carroll TJ. Short-term strength training does not change cortical voluntary activation. Med Sci Sports Exerc. 2009;41(7):1452–60. Epub 2009/06/12. 10.1249/MSS.0b013e3181998837 .
    1. Gibson N, White J, Neish M, Murray A. Effect of ischemic preconditioning on land-based sprinting in team-sport athletes. Int J Sports Physiol Perform. 2013;8(6):671–6. Epub 2013/04/13. 10.1123/ijspp.8.6.671 .
    1. Sharma V, Marsh R, Cunniffe B, Cardinale M, Yellon DM, Davidson SM. From Protecting the Heart to Improving Athletic Performance—the Benefits of Local and Remote Ischaemic Preconditioning. Cardiovasc Drugs Ther. 2015;29(6):573–88. Epub 2015/10/20. 10.1007/s10557-015-6621-6
    1. Leal AK, Yamauchi K, Kim J, Ruiz-Velasco V, Kaufman MP. Peripheral delta-opioid receptors attenuate the exercise pressor reflex. Am J Physiol Heart Circ Physiol. 2013;305(8):H1246–55. Epub 2013/08/13. 10.1152/ajpheart.00116.2013
    1. Amann M, Proctor LT, Sebranek JJ, Pegelow DF, Dempsey JA. Opioid-mediated muscle afferents inhibit central motor drive and limit peripheral muscle fatigue development in humans. J Physiol. 2009;587(1):271–83. Epub 2008/11/19. 10.1113/jphysiol.2008.163303
    1. Amann M. Significance of Group III and IV muscle afferents for the endurance exercising human. Clin Exp Pharmacol Physiol. 2012;39(9):831–5. Epub 2012/02/04. 10.1111/j.1440-1681.2012.05681.x

Source: PubMed

3
Předplatit