Small Dense Low-Density Lipoprotein as Biomarker for Atherosclerotic Diseases

Ekaterina A Ivanova, Veronika A Myasoedova, Alexandra A Melnichenko, Andrey V Grechko, Alexander N Orekhov, Ekaterina A Ivanova, Veronika A Myasoedova, Alexandra A Melnichenko, Andrey V Grechko, Alexander N Orekhov

Abstract

Low-density lipoprotein (LDL) plays a key role in the development and progression of atherosclerosis and cardiovascular disease. LDL consists of several subclasses of particles with different sizes and densities, including large buoyant (lb) and intermediate and small dense (sd) LDLs. It has been well documented that sdLDL has a greater atherogenic potential than that of other LDL subfractions and that sdLDL cholesterol (sdLDL-C) proportion is a better marker for prediction of cardiovascular disease than that of total LDL-C. Circulating sdLDL readily undergoes multiple atherogenic modifications in blood plasma, such as desialylation, glycation, and oxidation, that further increase its atherogenicity. Modified sdLDL is a potent inductor of inflammatory processes associated with cardiovascular disease. Several laboratory methods have been developed for separation of LDL subclasses, and the results obtained by different methods can not be directly compared in most cases. Recently, the development of homogeneous assays facilitated the LDL subfraction analysis making possible large clinical studies evaluating the significance of sdLDL in the development of cardiovascular disease. Further studies are needed to establish guidelines for sdLDL evaluation and correction in clinical practice.

Figures

Figure 1
Figure 1
Hypothetical scheme of metabolic origins of LDL subclasses. Two metabolic pathways exist for the production of LDL particles from the precursors secreted by the liver. In case of low TG availability, the liver secretes mostly VLDL1 and IDL as TG-rich and TG-poor lipoprotein particles. These can be modified by LPL and HL to generate LDLI and III particles. In case of high TG availability, a distinct pattern of LDL precursors is secreted, including larger VLDL1 and VLDL2. After these modifications by LPL and HL, they give rise to LDLII and IV particles. After TG transfer to the LDL particles by CETP, they can be further delipidated by HL resulting in the formation of smaller LDL particles. TG: triglycerides; LPL: lipoprotein lipase; HL: hepatic lipase; CETP: cholesterol ester transfer protein.

References

    1. Prospective Studies Collaboration, Lewington S., Whitlock G., et al. Blood cholesterol and vascular mortality by age, sex, and blood pressure: a meta-analysis of individual data from 61 prospective studies with 55,000 vascular deaths. Lancet. 2007;370(9602):1829–1839. doi: 10.1016/S0140-6736(07)61778-4.
    1. Mills E. J., Rachlis B., Wu P., Devereaux P. J., Arora P., Perri D. Primary prevention of cardiovascular mortality and events with statin treatments: a network meta-analysis involving more than 65,000 patients. Journal of the American College of Cardiology. 2008;52(22):1769–1781. doi: 10.1016/j.jacc.2008.08.039.
    1. Hirayama S., Miida T. Small dense LDL: an emerging risk factor for cardiovascular disease. Clinica Chimica Acta. 2012;(414):215–224. doi: 10.1016/j.cca.2012.09.010.
    1. Baigent C., Keech A., Kearney P. M., et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet. 2005;366(9493):1267–1278. doi: 10.1016/S0140-6736(05)67394-1.
    1. Afilalo J., Majdan A. A., Eisenberg M. J. Intensive statin therapy in acute coronary syndromes and stable coronary heart disease: a comparative meta-analysis of randomised controlled trials. Heart. 2007;93(8):914–921. doi: 10.1136/hrt.2006.112508.
    1. Rizzo M., Berneis K. Low-density lipoprotein size and cardiovascular risk assessment. QJM : Monthly Journal of the Association of Physicians. 2006;99(1):1–14. doi: 10.1093/qjmed/hci154.
    1. Packard C. J. Small dense low-density lipoprotein and its role as an independent predictor of cardiovascular disease. Current Opinion in Lipidology. 2006;17(4):412–417. doi: 10.1097/01.mol.0000236367.42755.c1.
    1. Krauss R. M. Lipoprotein subfractions and cardiovascular disease risk. Current Opinion in Lipidology. 2010;21(4):305–311. doi: 10.1097/MOL.0b013e32833b7756.
    1. Steinberg D., Parthasarathy S., Carew T. E., Khoo J. C., Witztum J. L. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. The New England Journal of Medicine. 1989;320(14):915–924. doi: 10.1056/NEJM198904063201407.
    1. Orekhov A. N., Tertov V. V., Mukhin D. N. Desialylated low density lipoprotein—naturally occurring modified lipoprotein with atherogenic potency. Atherosclerosis. 1991;86(2-3):153–161. doi: 10.1016/0021-9150(91)90211-K.
    1. Diffenderfer M. R., Schaefer E. J. The composition and metabolism of large and small LDL. Current Opinion in Lipidology. 2014;25(3):221–226. doi: 10.1097/MOL.0000000000000067.
    1. Austin M. A., Breslow J. L., Hennekens C. H., Buring J. E., Willett W. C., Krauss R. M. Low-density lipoprotein subclass patterns and risk of myocardial infarction. Journal of the American Medical Association. 1988;260(13):1917–1921. doi: 10.1001/jama.1988.03410130125037.
    1. Austin M. A., Brunzell J. D., Fitch W. L., Krauss R. M. Inheritance of low density lipoprotein subclass patterns in familial combined hyperlipidemia. Arteriosclerosis. 1990;10(4):520–530. doi: 10.1161/01.ATV.10.4.520.
    1. Austin M. A., Horowitz H., Wijsman E., Krauss R. M., Brunzell J. Bimodality of plasma apolipoprotein B levels in familial combined hyperlipidemia. Atherosclerosis. 1992;92(1):67–77. doi: 10.1016/0021-9150(92)90011-5.
    1. Ayyobi A. F., McGladdery S. H., McNeely M. J., Austin M. A., Motulsky A. G., Brunzell J. D. Small, dense LDL and elevated apolipoprotein B are the common characteristics for the three major lipid phenotypes of familial combined hyperlipidemia. Arteriosclerosis, Thrombosis, and Vascular Biology. 2003;23(7):1289–1294. doi: 10.1161/01.ATV.0000077220.44620.9B.
    1. Magkos F., Mohammed B. S., Mittendorfer B. Effect of obesity on the plasma lipoprotein subclass profile in normoglycemic and normolipidemic men and women. International Journal of Obesity. 2008;32(11):1655–1664. doi: 10.1038/ijo.2008.164.
    1. Nikolic D., Katsiki N., Montalto G., Isenovic E. R., Mikhailidis D. P., Rizzo M. Lipoprotein subfractions in metabolic syndrome and obesity: clinical significance and therapeutic approaches. Nutrients. 2013;5(3):928–948. doi: 10.3390/nu5030928.
    1. Berneis K., Jeanneret C., Muser J., Felix B., Miserez A. R. Low-density lipoprotein size and subclasses are markers of clinically apparent and non-apparent atherosclerosis in type 2 diabetes. Metabolism, Clinical and Experimental. 2005;54(2):227–234. doi: 10.1016/j.metabol.2004.08.017.
    1. Goldberg R., Temprosa M., Otvos J., et al. Lifestyle and metformin treatment favorably influence lipoprotein subfraction distribution in the Diabetes Prevention Program. The Journal of Clinical Endocrinology and Metabolism. 2013;98(10):3989–3998. doi: 10.1210/jc.2013-1452.
    1. Brunzell J. D., Zambon A., Deeb S. S. The effect of hepatic lipase on coronary artery disease in humans is influenced by the underlying lipoprotein phenotype. Biochimica et Biophysica Acta. 2012;1821(3):365–372. doi: 10.1016/j.bbalip.2011.09.008.
    1. National Cholesterol Education Program Expert Panel on Detection E, Treatment of High Blood Cholesterol in A. Third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) final report. Circulation. 2002;106(25):3143–3421.
    1. Schmitz G., Orsó E. Lipoprotein(a) hyperlipidemia as cardiovascular risk factor: pathophysiological aspects. Clinical Research in Cardiology Supplements. 2015;10(Supplement 1):21–25. doi: 10.1007/s11789-015-0074-0.
    1. Krauss R. M., Lindgren F. T., Ray R. M. Interrelationships among subgroups of serum lipoproteins in normal human subjects. Clinica Chimica Acta. 1980;104(3):275–290.
    1. Havel R. J., Eder H. A., Bragdon J. H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. The Journal of Clinical Investigation. 1955;34(9):1345–1353. doi: 10.1172/JCI103182.
    1. Gofman J. W., Lindgren F. T., Elliott H. Ultracentrifugal studies of lipoproteins of human serum. The Journal of Biological Chemistry. 1949;179(2):973–979.
    1. Griffin B. A., Caslake M. J., Yip B., Tait G. W., Packard C. J., Shepherd J. Rapid isolation of low density lipoprotein (LDL) subfractions from plasma by density gradient ultracentrifugation. Atherosclerosis. 1990;83(1):59–67. doi: 10.1016/0021-9150(90)90131-2.
    1. Griffin B. A., Freeman D. J., Tait G. W., et al. Role of plasma triglyceride in the regulation of plasma low density lipoprotein (LDL) subfractions: contribution of small, dense LDL to coronary heart disease risk. Atherosclerosis. 1994;106(2):241–253. doi: 10.1016/0021-9150(94)90129-5.
    1. Yee M. S., Pavitt D. V., Tan T., et al. Lipoprotein separation in a novel iodixanol density gradient, for composition, density, and phenotype analysis. Journal of Lipid Research. 2008;49(6):1364–1371. doi: 10.1194/jlr.D700044-JLR200.
    1. Davies I. G., Graham J. M., Griffin B. A. Rapid separation of LDL subclasses by iodixanol gradient ultracentrifugation. Clinical Chemistry. 2003;49(11):1865–1872. doi: 10.1373/clinchem.2003.023366.
    1. Ensign W., Hill N., Heward C. B. Disparate LDL phenotypic classification among 4 different methods assessing LDL particle characteristics. Clinical Chemistry. 2006;52(9):1722–1727. doi: 10.1373/clinchem.2005.059949.
    1. Williams P. T., Vranizan K. M., Krauss R. M. Correlations of plasma lipoproteins with LDL subfractions by particle size in men and women. Journal of Lipid Research. 1992;33(5):765–774.
    1. Hoefner D. M., Hodel S. D., O'Brien J. F., et al. Development of a rapid, quantitative method for LDL subfractionation with use of the Quantimetrix Lipoprint LDL System. Clinical Chemistry. 2001;47(2):266–274.
    1. Banuls C., Bellod L., Jover A., et al. Comparability of two different polyacrylamide gel electrophoresis methods for the classification of LDL pattern type. Clinica Chimica Acta. 2012;413(1-2):251–257. doi: 10.1016/j.cca.2011.09.047.
    1. Otvos J. D., Jeyarajah E. J., Bennett D. W., Krauss R. M. Development of a proton nuclear magnetic resonance spectroscopic method for determining plasma lipoprotein concentrations and subspecies distributions from a single, rapid measurement. Clinical Chemistry. 1992;38(9):1632–1638.
    1. Witte D. R., Taskinen M. R., Perttunen-Nio H., Van Tol A., Livingstone S., Colhoun H. M. Study of agreement between LDL size as measured by nuclear magnetic resonance and gradient gel electrophoresis. Journal of Lipid Research. 2004;45(6):1069–1076. doi: 10.1194/jlr.M300395-JLR200.
    1. Okazaki M., Usui S., Ishigami M., et al. Identification of unique lipoprotein subclasses for visceral obesity by component analysis of cholesterol profile in high-performance liquid chromatography. Arteriosclerosis, Thrombosis, and Vascular Biology. 2005;25(3):578–584. doi: 10.1161/01.ATV.0000155017.60171.88.
    1. O'Neal D., Harrip P., Dragicevic G., Rae D., Best J. D. A comparison of LDL size determination using gradient gel electrophoresis and light-scattering methods. Journal of Lipid Research. 1998;39(10):2086–2090.
    1. Sakurai T., Trirongjitmoah S., Nishibata Y., et al. Measurement of lipoprotein particle sizes using dynamic light scattering. Annals of Clinical Biochemistry. 2010;47(Part 5):476–481. doi: 10.1258/acb.2010.010100.
    1. Caulfield M. P., Li S., Lee G., et al. Direct determination of lipoprotein particle sizes and concentrations by ion mobility analysis. Clinical Chemistry. 2008;54(8):1307–1316. doi: 10.1373/clinchem.2007.100586.
    1. Musunuru K., Orho-Melander M., Caulfield M. P., et al. Ion mobility analysis of lipoprotein subfractions identifies three independent axes of cardiovascular risk. Arteriosclerosis, Thrombosis, and Vascular Biology. 2009;29(11):1975–1980. doi: 10.1161/ATVBAHA.109.190405.
    1. Hirano T., Ito Y., Saegusa H., Yoshino G. A novel and simple method for quantification of small, dense LDL. Journal of Lipid Research. 2003;44(11):2193–2201. doi: 10.1194/jlr.D300007-JLR200.
    1. Ito Y., Fujimura M., Ohta M., Hirano T. Development of a homogeneous assay for measurement of small dense LDL cholesterol. Clinical Chemistry. 2011;57(1):57–65. doi: 10.1373/clinchem.2010.149559.
    1. Albers J. J., Kennedy H., Marcovina S. M. Evaluation of a new homogenous method for detection of small dense LDL cholesterol: comparison with the LDL cholesterol profile obtained by density gradient ultracentrifugation. Clinica Chimica Acta. 2011;412(7-8):556–561. doi: 10.1016/j.cca.2010.12.003.
    1. Berneis K. K., Krauss R. M. Metabolic origins and clinical significance of LDL heterogeneity. Journal of Lipid Research. 2002;43(9):1363–1379. doi: 10.1194/jlr.R200004-JLR200.
    1. Krauss R. M., Burke D. J. Identification of multiple subclasses of plasma low density lipoproteins in normal humans. Journal of Lipid Research. 1982;23(1):97–104.
    1. Chung M., Lichtenstein A. H., Ip S., Lau J., Balk E. M. Comparability of methods for LDL subfraction determination: a systematic review. Atherosclerosis. 2009;205(2):342–348. doi: 10.1016/j.atherosclerosis.2008.12.011.
    1. Krauss R. M., Williams P. T., Lindgren F. T., Wood P. D. Coordinate changes in levels of human serum low and high density lipoprotein subclasses in healthy men. Arteriosclerosis. 1988;8(2):155–162. doi: 10.1161/01.ATV.8.2.155.
    1. Ohmura H., Mokuno H., Sawano M., et al. Lipid compositional differences of small, dense low-density lipoprotein particle influence its oxidative susceptibility: possible implication of increased risk of coronary artery disease in subjects with phenotype B. Metabolism, Clinical and Experimental. 2002;51(9):1081–1087.
    1. Geiss H. C., Bremer S., Barrett P. H., Otto C., Parhofer K. G. In vivo metabolism of LDL subfractions in patients with heterozygous FH on statin therapy: rebound analysis of LDL subfractions after LDL apheresis. Journal of Lipid Research. 2004;45(8):1459–1467. doi: 10.1194/jlr.M300523-JLR200.
    1. Zheng C., Khoo C., Furtado J., Sacks F. M. Apolipoprotein C-III and the metabolic basis for hypertriglyceridemia and the dense low-density lipoprotein phenotype. Circulation. 2010;121(15):1722–1734. doi: 10.1161/CIRCULATIONAHA.109.875807.
    1. Jacobson T. A., Miller M., Schaefer E. J. Hypertriglyceridemia and cardiovascular risk reduction. Clinical Therapeutics. 2007;29(5):763–777. doi: 10.1016/j.clinthera.2007.05.002.
    1. Pirillo A., Catapano A. L. Omega-3 polyunsaturated fatty acids in the treatment of hypertriglyceridaemia. International Journal of Cardiology. 2013;170(2 Supplement 1):S16–S20. doi: 10.1016/j.ijcard.2013.06.040.
    1. Brousseau M. E., Schaefer E. J., Wolfe M. L., et al. Effects of an inhibitor of cholesteryl ester transfer protein on HDL cholesterol. The New England Journal of Medicine. 2004;350(15):1505–1515. doi: 10.1056/NEJMoa031766.
    1. Krauss R. M., Wojnooski K., Orr J., et al. Changes in lipoprotein subfraction concentration and composition in healthy individuals treated with the CETP inhibitor anacetrapib. Journal of Lipid Research. 2012;53(3):540–547. doi: 10.1194/jlr.M018010.
    1. Musunuru K., Strong A., Frank-Kamenetsky M., et al. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature. 2010;466(7307):714–719. doi: 10.1038/nature09266.
    1. Hoogeveen R. C., Gaubatz J. W., Sun W., et al. Small dense low-density lipoprotein-cholesterol concentrations predict risk for coronary heart disease: the Atherosclerosis Risk in Communities (ARIC) study. Arteriosclerosis, Thrombosis, and Vascular Biology. 2014;34(5):1069–1077. doi: 10.1161/ATVBAHA.114.303284.
    1. Packard C., Caslake M., Shepherd J. The role of small, dense low density lipoprotein (LDL): a new look. International Journal of Cardiology. 2000;74(Supplement 1):S17–S22.
    1. Griffin B. A. Lipoprotein atherogenicity: an overview of current mechanisms. The Proceedings of the Nutrition Society. 1999;58(1):163–169. doi: 10.1161/ATVBAHA.114.303284.
    1. Jaakkola O., Solakivi T., Tertov V. V., Orekhov A. N., Miettinen T. A., Nikkari T. Characteristics of low-density lipoprotein subfractions from patients with coronary artery disease. Coronary Artery Disease. 1993;4(4):379–385. doi: 10.1097/00019501-199304000-00010.
    1. Steinberg D., Witztum J. L. Oxidized low-density lipoprotein and atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology. 2010;30(12):2311–2316. doi: 10.1161/ATVBAHA.108.179697.
    1. Miller Y. I., Choi S. H., Wiesner P., et al. Oxidation-specific epitopes are danger-associated molecular patterns recognized by pattern recognition receptors of innate immunity. Circulation Research. 2011;108(2):235–248. doi: 10.1161/CIRCRESAHA.110.223875.
    1. Tribble D. L., Rizzo M., Chait A., Lewis D. M., Blanche P. J., Krauss R. M. Enhanced oxidative susceptibility and reduced antioxidant content of metabolic precursors of small, dense low-density lipoproteins. The American Journal of Medicine. 2001;110(2):103–110. doi: 10.1016/S0002-9343(00)00700-2.
    1. Macphee C. H., Nelson J. J., Zalewski A. Lipoprotein-associated phospholipase A2 as a target of therapy. Current Opinion in Lipidology. 2005;16(4):442–446. doi: 10.1097/01.mol.0000174155.61307.5f.
    1. Tertov V. V., Kaplun V. V., Sobenin I. A., Boytsova E. Y., Bovin N. V., Orekhov A. N. Human plasma trans-sialidase causes atherogenic modification of low density lipoprotein. Atherosclerosis. 2001;159(1):103–115. doi: 10.1016/S0021-9150(01)00498-1.
    1. La Belle M., Krauss R. M. Differences in carbohydrate content of low density lipoproteins associated with low density lipoprotein subclass patterns. Journal of Lipid Research. 1990;31(9):1577–1588.
    1. Anber V., Griffin B. A., McConnell M., Packard C. J., Shepherd J. Influence of plasma lipid and LDL-subfraction profile on the interaction between low density lipoprotein with human arterial wall proteoglycans. Atherosclerosis. 1996;124(2):261–271. doi: 10.1016/0021-9150(96)05842-X.
    1. Younis N., Charlton-Menys V., Sharma R., Soran H., Durrington P. N. Glycation of LDL in non-diabetic people: small dense LDL is preferentially glycated both in vivo and in vitro. Atherosclerosis. 2009;202(1):162–168. doi: 10.1016/j.atherosclerosis.2008.04.036.
    1. Soran H., Durrington P. N. Susceptibility of LDL and its subfractions to glycation. Current Opinion in Lipidology. 2011;22(4):254–261. doi: 10.1097/MOL.0b013e328348a43f.
    1. Matsui H., Okumura K., Toki Y., Hayakawa T. Low-density lipoprotein particle size as an independent predictor of glycated low-density lipoprotein level. Diabetes Care. 1999;22(7):1220–1221. doi: 10.2337/diacare.22.7.1220a.
    1. Mello A. P., da Silva I. T., Abdalla D. S., Damasceno N. R. Electronegative low-density lipoprotein: origin and impact on health and disease. Atherosclerosis. 2011;215(2):257–265. doi: 10.1016/j.atherosclerosis.2010.12.028.
    1. Sanchez-Quesada J. L., Benitez S., Otal C., Franco M., Blanco-Vaca F., Ordonez-Llanos J. Density distribution of electronegative LDL in normolipemic and hyperlipemic subjects. Journal of Lipid Research. 2002;43(5):699–705.
    1. Sanchez-Quesada J. L., Perez A., Caixas A., et al. Effect of glycemic optimization on electronegative low-density lipoprotein in diabetes: relation to nonenzymatic glycosylation and oxidative modification. The Journal of Clinical Endocrinology and Metabolism. 2001;86(7):3243–3249. doi: 10.1210/jcem.86.7.7692.
    1. Chappey B., Myara I., Benoit M. O., Maziere C., Maziere J. C., Moatti N. Characteristics of ten charge-differing subfractions isolated from human native low-density lipoproteins (LDL). No evidence of peroxidative modifications. Biochimica et Biophysica Acta. 1995;1259(3):261–270. doi: 10.1016/0005-2760(95)00172-7.
    1. Hasegawa G., Kajiyama S., Tanaka T., et al. The alpha-glucosidase inhibitor acarbose reduces the net electronegative charge of low-density lipoprotein in patients with newly diagnosed type 2 diabetes. Clinica Chimica Acta. 2008;390(1-2):110–114. doi: 10.1007/s11120-017-0382-y.
    1. Schaefer E. J., Tsunoda F., Diffenderfer M., Polisecki E., Thai N., Asztalos B. The measurement of lipids, lipoproteins, apolipoproteins, fatty acids, and sterols, and next generation sequencing for the diagnosis and treatment of lipid disorders. In: De Groot L. J., Chrousos G., Dungan K., et al., editors. Endotext [Internet] South Dartmouth (MA): , Inc.; 2016.
    1. Tertov V. V., Sobenin I. A., Orekhov A. N. Modified (desialylated) low-density lipoprotein measured in serum by lectin-sorbent assay. Clinical Chemistry. 1995;41(7):1018–1021.
    1. Avogaro P., Bon G. B., Cazzolato G. Presence of a modified low density lipoprotein in humans. Arteriosclerosis. 1988;8(1):79–87. doi: 10.1161/01.ATV.8.1.79.
    1. Schmitz G., Mollers C., Richter V. Analytical capillary isotachophoresis of human serum lipoproteins. Electrophoresis. 1997;18(10):1807–1813. doi: 10.1002/elps.1150181015.
    1. Tertov V. V., Sobenin I. A., Orekhov A. N. Similarity between naturally occurring modified desialylated, electronegative and aortic low density lipoprotein. Free Radical Research. 1996;25(4):313–319.
    1. Tertov V. V., Bittolo-Bon G., Sobenin I. A., Cazzolato G., Orekhov A. N., Avogaro P. Naturally occurring modified low density lipoproteins are similar if not identical: more electronegative and desialylated lipoprotein subfractions. Experimental and Molecular Pathology. 1995;62(3):166–172. doi: 10.1006/exmp.1995.1018.
    1. Carmena R., Duriez P., Fruchart J. C. Atherogenic lipoprotein particles in atherosclerosis. Circulation. 2004;109(23 Supplement 1):III2–III7. doi: 10.1161/01.CIR.0000131511.50734.44.
    1. Rizzo M., Berneis K. The clinical relevance of low-density-lipoproteins size modulation by statins. Cardiovascular Drugs and Therapy. 2006;20(3):205–217. doi: 10.1007/s10557-006-8283-x.
    1. Arai H., Kokubo Y., Watanabe M., et al. Small dense low-density lipoproteins cholesterol can predict incident cardiovascular disease in an urban Japanese cohort: the Suita study. Journal of Atherosclerosis and Thrombosis. 2013;20(2):195–203. doi: 10.5551/jat.14936.
    1. Ai M., Otokozawa S., Asztalos B. F., et al. Small dense LDL cholesterol and coronary heart disease: results from the Framingham Offspring Study. Clinical Chemistry. 2010;56(6):967–976. doi: 10.1373/clinchem.2009.137489.
    1. Tsai M. Y., Steffen B. T., Guan W., et al. New automated assay of small dense low-density lipoprotein cholesterol identifies risk of coronary heart disease: the Multi-ethnic Study of Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology. 2014;34(1):196–201. doi: 10.1161/ATVBAHA.113.302401.
    1. Gerber P. A., Thalhammer C., Schmied C., et al. Small, dense LDL particles predict changes in intima media thickness and insulin resistance in men with type 2 diabetes and prediabetes—a prospective cohort study. PLoS One. 2013;8(8, article e72763) doi: 10.1371/journal.pone.0072763.
    1. Shen H., Xu L., Lu J., et al. Correlation between small dense low-density lipoprotein cholesterol and carotid artery intima-media thickness in a healthy Chinese population. Lipids in Health and Disease. 2015;14(1):p. 137. doi: 10.1186/s12944-015-0143-x.
    1. Jacomella V., Gerber P. A., Mosimann K., et al. Small dense low density lipoprotein particles are associated with poor outcome after angioplasty in peripheral artery disease. PLoS One. 2014;9(9, article e108813) doi: 10.1371/journal.pone.0108813.
    1. Hirano T., Ito Y., Koba S., et al. Clinical significance of small dense low-density lipoprotein cholesterol levels determined by the simple precipitation method. Arteriosclerosis, Thrombosis, and Vascular Biology. 2004;24(3):558–563. doi: 10.1161/01.ATV.0000117179.92263.08.
    1. Fukushima Y., Hirayama S., Ueno T., et al. Small dense LDL cholesterol is a robust therapeutic marker of statin treatment in patients with acute coronary syndrome and metabolic syndrome. Clinica Chimica Acta. 2011;412(15-16):1423–1427. doi: 10.1016/j.cca.2011.04.021.
    1. Toledo F. G., Sniderman A. D., Kelley D. E. Influence of hepatic steatosis (fatty liver) on severity and composition of dyslipidemia in type 2 diabetes. Diabetes Care. 2006;29(8):1845–1850. doi: 10.2337/dc06-0455.
    1. Cali A. M., Zern T. L., Taksali S. E., et al. Intrahepatic fat accumulation and alterations in lipoprotein composition in obese adolescents: a perfect proatherogenic state. Diabetes Care. 2007;30(12):3093–3098. doi: 10.2337/dc07-1088.
    1. Rizzo M., Pernice V., Frasheri A., et al. Small, dense low-density lipoproteins (LDL) are predictors of cardio- and cerebro-vascular events in subjects with the metabolic syndrome. Clinical Endocrinology. 2009;70(6):870–875. doi: 10.1111/j.1365-2265.2008.03407.x.
    1. Satoh N., Wada H., Ono K., et al. Small dense LDL-cholesterol relative to LDL-cholesterol is a strong independent determinant of hypoadiponectinemia in metabolic syndrome. Circulation Journal: Official Journal of the Japanese Circulation Society. 2008;72(6):932–939.
    1. Chu M., Wang A. Y., Chan I. H., Chui S. H., Lam C. W. Serum small-dense LDL abnormalities in chronic renal disease patients. British Journal of Biomedical Science. 2012;69(3):99–102.
    1. Vinik A. I. The metabolic basis of atherogenic dyslipidemia. Clinical Cornerstone. 2005;7(2-3):27–35. doi: 10.1016/S1098-3597(05)80065-1.
    1. Ip S., Lichtenstein A. H., Chung M., Lau J., Balk E. M. Systematic review: association of low-density lipoprotein subfractions with cardiovascular outcomes. Annals of Internal Medicine. 2009;150(7):474–484. doi: 10.7326/0003-4819-150-7-200904070-00007.
    1. Florentin M., Tselepis A. D., Elisaf M. S., Rizos C. V., Mikhailidis D. P., Liberopoulos E. N. Effect of non-statin lipid lowering and anti-obesity drugs on LDL subfractions in patients with mixed dyslipidaemia. Current Vascular Pharmacology. 2010;8(6):820–830. doi: 10.2174/157016110793563825.
    1. Gouni-Berthold I., Mikhailidis D. P., Rizzo M. Clinical benefits of ezetimibe use: is absence of proof, proof of absence? Expert Opinion on Pharmacotherapy. 2012;13(14):1985–1988. doi: 10.1517/14656566.2012.720974.
    1. Superko H. R., Berneis K. K., Williams P. T., Rizzo M., Wood P. D. Gemfibrozil reduces small low-density lipoprotein more in normolipemic subjects classified as low-density lipoprotein pattern B compared with pattern A. The American Journal of Cardiology. 2005;96(9):1266–1272. doi: 10.1016/j.amjcard.2005.06.069.
    1. McKeage K., Keating G. M. Fenofibrate: a review of its use in dyslipidaemia. Drugs. 2011;71(14):1917–1946. doi: 10.2165/11208090-000000000-00000.
    1. Nakou E. S., Filippatos T. D., Georgoula M., et al. The effect of orlistat and ezetimibe, alone or in combination, on serum LDL and small dense LDL cholesterol levels in overweight and obese patients with hypercholesterolaemia. Current Medical Research and Opinion. 2008;24(7):1919–1929. doi: 10.1185/03007990802177150.
    1. Morgan L. M., Griffin B. A., Millward D. J., et al. Comparison of the effects of four commercially available weight-loss programmes on lipid-based cardiovascular risk factors. Public Health Nutrition. 2009;12(6):799–807. doi: 10.1017/S1368980008003236.

Source: PubMed

3
Předplatit