Dyslipidemia in obesity: mechanisms and potential targets

Boudewijn Klop, Jan Willem F Elte, Manuel Castro Cabezas, Boudewijn Klop, Jan Willem F Elte, Manuel Castro Cabezas

Abstract

Obesity has become a major worldwide health problem. In every single country in the world, the incidence of obesity is rising continuously and therefore, the associated morbidity, mortality and both medical and economical costs are expected to increase as well. The majority of these complications are related to co-morbid conditions that include coronary artery disease, hypertension, type 2 diabetes mellitus, respiratory disorders and dyslipidemia. Obesity increases cardiovascular risk through risk factors such as increased fasting plasma triglycerides, high LDL cholesterol, low HDL cholesterol, elevated blood glucose and insulin levels and high blood pressure. Novel lipid dependent, metabolic risk factors associated to obesity are the presence of the small dense LDL phenotype, postprandial hyperlipidemia with accumulation of atherogenic remnants and hepatic overproduction of apoB containing lipoproteins. All these lipid abnormalities are typical features of the metabolic syndrome and may be associated to a pro-inflammatory gradient which in part may originate in the adipose tissue itself and directly affect the endothelium. An important link between obesity, the metabolic syndrome and dyslipidemia, seems to be the development of insulin resistance in peripheral tissues leading to an enhanced hepatic flux of fatty acids from dietary sources, intravascular lipolysis and from adipose tissue resistant to the antilipolytic effects of insulin. The current review will focus on these aspects of lipid metabolism in obesity and potential interventions to treat the obesity related dyslipidemia.

Figures

Figure 1
Figure 1
The hallmark of dyslipidemia in obesity is hypertriglyceridemia in part due to increased free fatty acid (FFA) fluxes to the liver, which leads to hepatic accumulation of triglycerides (TG). This leads to an increased hepatic synthesis of large very low density lipoproteins (VLDL) 1, which hampers the lipolysis of chylomicrons due to competition mainly at the level of lipoprotein lipase (LPL) with increased remnant TG being transported to the liver. Lipolysis is further impaired in obesity by reduced mRNA expression levels of LPL in adipose tissue and reduced LPL activity in skeletal muscle. Hypertriglyceridemia further induces an increased exchange of cholesterolesters (CE) and TG between VLDL and HDL and low density lipoproteins (LDL) by cholesterylester-transfer-protein (CETP). This leads to decreased HDL-C concentrations and a reduction in TG content in LDL. In addition, hepatic lipase (HL) removes TG and phospholipids from LDL for the final formation of TG-depleted small dense LDL. The intense yellow color represents cholesterol, whereas the light yellow color represents the TG content within the different lipoproteins. Obesity induced increases in metabolic processes are marked with green arrows, whereas reductions are marked with red arrows.
Figure 2
Figure 2
Free fatty acid (FFA) uptake and its related triglyceride (TG) synthesis in adipocytes are highly depended of C3adesArg or acylation-stimulation protein (ASP). Chylomicrons and VLDL undergo lipolysis by lipoprotein lipase (LPL) with subsequent release of FFA into the circulation. The FFA are then transported into the subendothelial space by the scavenger receptor CD36 and other transporters where C3adesArg plays an important role in the subsequent TG synthesis for storage of lipids in the adipocytes. C3adesArg is the most potent molecule known, which induces transmembrane transport of FFA and its intracellular esterification into TG within adipocytes. C3adesArg is metabolized from complement component (C) 3a by carboxypeptidase N and C3a is again the splice product from C3, which is formed in case of complement activation. Postprandial lipemia is directly linked to complement activation. For example, adipocytes secrete C3 when incubated with TG-rich lipoproteins like chylomicrons or very low density lipoproteins (VLDL), but also Factor B and Factor D, thereby causing activation of the complement cascade.

References

    1. Knight J.A. Diseases and disorders associated with excess body weight. Ann. Clin. Lab Sci. 2011;41:107–121.
    1. Flock M.R., Green M.H., Kris-Etherton P.M. Effects of adiposity on plasma lipid response to reductions in dietary saturated fatty acids and cholesterol. Adv. Nutr. 2011;2:261–274. doi: 10.3945/an.111.000422.
    1. Boden G. Obesity, insulin resistance and free fatty acids. Curr. Opin. Endocrinol. Diabetes Obes. 2011;18:139–143. doi: 10.1097/MED.0b013e3283444b09.
    1. Zalesin K.C., Franklin B.A., Miller W.M., Peterson E.D., McCullough P.A. Impact of obesity on cardiovascular disease. Med. Clin. North. Am. 2011;95:919–937. doi: 10.1016/j.mcna.2011.06.005.
    1. Castro Cabezas M., Elte J.W. Farewell to the metabolic syndrome? Not too soon. Atherosclerosis. 2009;204:348–349; author reply 350–351.
    1. Franssen R., Monajemi H., Stroes E.S., Kastelein J.J. Obesity and dyslipidemia. Med. Clin. North. Am. 2011;95:893–902. doi: 10.1016/j.mcna.2011.06.003.
    1. Wang H., Peng D.Q. New insights into the mechanism of low high-density lipoprotein cholesterol in obesity. Lipids Health Dis. 2011;10 doi: 10.1186/1476-511X-10-176.
    1. Pan X., Hussain M.M. Gut triglyceride production. Biochim. Biophys. Acta. 2011;1821:727–735.
    1. Altmann S.W., Davis H.R., Jr., Zhu L.J., Yao X., Hoos L.M., Tetzloff G., Iyer S.P., Maguire M., Golovko A., Zeng M., et al. Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science. 2004;303:1201–1204. doi: 10.1126/science.1093131.
    1. Davis H.R., Jr., Zhu L.J., Hoos L.M., Tetzloff G., Maguire M., Liu J., Yao X., Iyer S.P., Lam M.H., Lund E.G., et al. Niemann-Pick C1 Like 1 (NPC1L1) is the intestinal phytosterol and cholesterol transporter and a key modulator of whole-body cholesterol homeostasis. J. Biol. Chem. 2004;279:33586–33592. doi: 10.1074/jbc.M405817200.
    1. Klop B., Jukema J.W., Rabelink T.J., Castro Cabezas M. A physician’s guide for the management of hypertriglyceridemia: The etiology of hypertriglyceridemia determines treatment strategy. Panminerva Med. 2012;54:91–103.
    1. Innerarity T.L., Young S.G., Poksay K.S., Mahley R.W., Smith R.S., Milne R.W., Marcel Y.L., Weisgraber K.H. Structural relationship of human apolipoprotein B48 to apolipoprotein B100. J. Clin. Invest. 1987;80:1794–1798. doi: 10.1172/JCI113273.
    1. Goldberg I.J., Eckel R.H., Abumrad N.A. Regulation of fatty acid uptake into tissues: lipoprotein lipase- and CD36-mediated pathways. J. Lipid Res. 2009;50:S86–S90. doi: 10.1194/jlr.R800085-JLR200.
    1. Dallinga-Thie G.M., Franssen R., Mooij H.L., Visser M.E., Hassing H.C., Peelman F., Kastelein J.J., Peterfy M., Nieuwdorp M. The metabolism of triglyceride-rich lipoproteins revisited: new players, new insight. Atherosclerosis. 2010;211:1–8. doi: 10.1016/j.atherosclerosis.2009.12.027.
    1. Davies B.S., Beigneux A.P., Barnes R.H., II, Tu Y., Gin P., Weinstein M.M., Nobumori C., Nyren R., Goldberg I., Olivecrona G., et al. GPIHBP1 is responsible for the entry of lipoprotein lipase into capillaries. Cell Metab. 2010;12:42–52. doi: 10.1016/j.cmet.2010.04.016.
    1. Davies B.S., Beigneux A.P., Fong L.G., Young S.G. New wrinkles in lipoprotein lipase biology. Curr. Opin. Lipidol. 2012;23:35–42. doi: 10.1097/MOL.0b013e32834d0b33.
    1. Karpe F., Dickmann J.R., Frayn K.N. Fatty acids, obesity, and insulin resistance: Time for a reevaluation. Diabetes. 2011;60:2441–2449. doi: 10.2337/db11-0425.
    1. McQuaid S.E., Hodson L., Neville M.J., Dennis A.L., Cheeseman J., Humphreys S.M., Ruge T., Gilbert M., Fielding B.A., Frayn K.N., et al. Downregulation of adipose tissue fatty acid trafficking in obesity: A driver for ectopic fat deposition? Diabetes. 2011;60:47–55. doi: 10.2337/db10-0867.
    1. Ooi E.M., Barrett P.H., Chan D.C., Watts G.F. Apolipoprotein C-III: Understanding an emerging cardiovascular risk factor. Clin. Sci. (Lond.) 2008;114:611–624. doi: 10.1042/CS20070308.
    1. Brunzell J.D., Hazzard W.R., Porte D., Jr., Bierman E.L. Evidence for a common, saturable, triglyceride removal mechanism for chylomicrons and very low density lipoproteins in man. J. Clin. Invest. 1973;52:1578–1585. doi: 10.1172/JCI107334.
    1. Baldo A., Sniderman A.D., St-Luce S., Avramoglu R.K., Maslowska M., Hoang B., Monge J.C., Bell A., Mulay S., Cianflone K. The adipsin-acylation stimulating protein system and regulation of intracellular triglyceride synthesis. J. Clin. Invest. 1993;92:1543–1547. doi: 10.1172/JCI116733.
    1. Germinario R., Sniderman A.D., Manuel S., Lefebvre S.P., Baldo A., Cianflone K. Coordinate regulation of triacylglycerol synthesis and glucose transport by acylation-stimulating protein. Metabolism. 1993;42:574–580. doi: 10.1016/0026-0495(93)90215-A.
    1. Abumrad N.A., Davidson N.O. Role of the gut in lipid homeostasis. Physiol. Rev. 2012;92:1061–1085. doi: 10.1152/physrev.00019.2011.
    1. Evans K., Burdge G.C., Wootton S.A., Clark M.L., Frayn K.N. Regulation of dietary fatty acid entrapment in subcutaneous adipose tissue and skeletal muscle. Diabetes. 2002;51:2684–2690. doi: 10.2337/diabetes.51.9.2684.
    1. Mahley R.W., Ji Z.S. Remnant lipoprotein metabolism: key pathways involving cell-surface heparan sulfate proteoglycans and apolipoprotein E. J. Lipid Res. 1999;40:1–16.
    1. Mahley R.W., Huang Y., Rall S.C., Jr. Pathogenesis of type III hyperlipoproteinemia (dysbetalipoproteinemia). Questions, quandaries, and paradoxes. J. Lipid Res. 1999;40:1933–1949.
    1. Sultan F., Lagrange D., Jansen H., Griglio S. Inhibition of hepatic lipase activity impairs chylomicron remnant-removal in rats. Biochim. Biophys. Acta. 1990;1042:150–152. doi: 10.1016/0005-2760(90)90071-5.
    1. Kowal R.C., Herz J., Goldstein J.L., Esser V., Brown M.S. Low density lipoprotein receptor-related protein mediates uptake of cholesteryl esters derived from apoprotein E-enriched lipoproteins. Proc. Natl. Acad. Sci. USA. 1989;86:5810–5814. doi: 10.1073/pnas.86.15.5810.
    1. Hussain M.M., Maxfield F.R., Mas-Oliva J., Tabas I., Ji Z.S., Innerarity T.L., Mahley R.W. Clearance of chylomicron remnants by the low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor. J. Biol. Chem. 1991;266:13936–13940.
    1. Beisiegel U., Weber W., Bengtsson-Olivecrona G. Lipoprotein lipase enhances the binding of chylomicrons to low density lipoprotein receptor-related protein. Proc. Natl. Acad. Sci. USA. 1991;88:8342–8346. doi: 10.1073/pnas.88.19.8342.
    1. Goldstein J.L., Brown M.S. The LDL receptor. Arterioscler. Thromb. Vasc. Biol. 2009;29:431–438. doi: 10.1161/ATVBAHA.108.179564.
    1. Lambert G., Sjouke B., Choque B., Kastelein J.J., Hovingh G.K. The PCSK9 decade: Thematic Review Series: New Lipid and Lipoprotein Targets for the Treatment of Cardiometabolic Diseases. J. Lipid Res. 2012;53:2515–2524. doi: 10.1194/jlr.R026658.
    1. Raal F., Scott R., Somaratne R., Bridges I., Li G., Wasserman S.M., Stein E.A. Low-density lipoprotein cholesterol-lowering effects of AMG 145, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease in patients with heterozygous familial hypercholesterolemia: The reduction of LDL-C with PCSK9 inhibition in heterozygous familial hypercholesterolemia disorder (RUTHERFORD) randomized trial. Circulation. 2012;126:2408–2417. doi: 10.1161/CIRCULATIONAHA.112.144055.
    1. Patsch J.R., Miesenbock G., Hopferwieser T., Muhlberger V., Knapp E., Dunn J.K., Gotto A.M., Jr., Patsch W. Relation of triglyceride metabolism and coronary artery disease. Studies in the postprandial state. Arterioscler. Thromb. 1992;12:1336–1345. doi: 10.1161/01.ATV.12.11.1336.
    1. Engelberg H. Serum lipemia: An overlooked cause of tissue hypoxia. Cardiology. 1983;70:273–279. doi: 10.1159/000173604.
    1. Simons L.A., Dwyer T., Simons J., Bernstein L., Mock P., Poonia N.S., Balasubramaniam S., Baron D., Branson J., Morgan J., et al. Chylomicrons and chylomicron remnants in coronary artery disease: A case-control study. Atherosclerosis. 1987;65:181–189. doi: 10.1016/0021-9150(87)90020-7.
    1. Ryu J.E., Howard G., Craven T.E., Bond M.G., Hagaman A.P., Crouse J.R., III. Postprandial triglyceridemia and carotid atherosclerosis in middle-aged subjects. Stroke. 1992;23:823–828. doi: 10.1161/01.STR.23.6.823.
    1. Karpe F., Steiner G., Uffelman K., Olivecrona T., Hamsten A. Postprandial lipoproteins and progression of coronary atherosclerosis. Atherosclerosis. 1994;106:83–97. doi: 10.1016/0021-9150(94)90085-X.
    1. Meyer E., Westerveld H.T., de Ruyter-Meijstek F.C., van Greevenbroek M.M., Rienks R., van Rijn H.J., Erkelens D.W., de Bruin T.W. Abnormal postprandial apolipoprotein B-48 and triglyceride responses in normolipidemic women with greater than 70% stenotic coronary artery disease: A case-control study. Atherosclerosis. 1996;124:221–235. doi: 10.1016/0021-9150(96)05832-7.
    1. Groot P.H., van Stiphout W.A., Krauss X.H., Jansen H., van Tol A., van Ramshorst E., Chin-On S., Hofman A., Cresswell S.R., Havekes L. Postprandial lipoprotein metabolism in normolipidemic men with and without coronary artery disease. Arterioscler. Thromb. 1991;11:653–662. doi: 10.1161/01.ATV.11.3.653.
    1. Ginsberg H.N., Jones J., Blaner W.S., Thomas A., Karmally W., Fields L., Blood D., Begg M.D. Association of postprandial triglyceride and retinyl palmitate responses with newly diagnosed exercise-induced myocardial ischemia in middle-aged men and women. Arterioscler. Thromb. Vasc. Biol. 1995;15:1829–1838. doi: 10.1161/01.ATV.15.11.1829.
    1. Sakata K., Miho N., Shirotani M., Yoshida H., Takada Y., Takada A. Remnant-like particle cholesterol is a major risk factor for myocardial infarction in vasospastic angina with nearly normal coronary artery. Atherosclerosis. 1998;136:225–231. doi: 10.1016/S0021-9150(97)00209-8.
    1. Ellsworth J.L., Fong L.G., Kraemer F.B., Cooper A.D. Differences in the processing of chylomicron remnants and β-VLDL by macrophages. J. Lipid Res. 1990;31:1399–1411.
    1. Genest J., Sniderman A., Cianflone K., Teng B., Wacholder S., Marcel Y., Kwiterovich P., Jr. Hyperapobetalipoproteinemia. Plasma lipoprotein responses to oral fat load. Arteriosclerosis. 1986;6:297–304. doi: 10.1161/01.ATV.6.3.297.
    1. Castro Cabezas M., de Bruin T.W., Jansen H., Kock L.A., Kortlandt W., Erkelens D.W. Impaired chylomicron remnant clearance in familial combined hyperlipidemia. Arterioscler. Thromb. 1993;13:804–814. doi: 10.1161/01.ATV.13.6.804.
    1. Castro Cabezas M., de Bruin T.W., de Valk H.W., Shoulders C.C., Jansen H., Willem Erkelens D. Impaired fatty acid metabolism in familial combined hyperlipidemia. A mechanism associating hepatic apolipoprotein B overproduction and insulin resistance. J. Clin. Invest. 1993;92:160–168. doi: 10.1172/JCI116544.
    1. Castro Cabezas M., de Bruin T.W., Kock L.A., Kortlandt W., Van Linde-Sibenius Trip M., Jansen H., Erkelens D.W. Simvastatin improves chylomicron remnant removal in familial combined hyperlipidemia without changing chylomicron conversion. Metabolism. 1993;42:497–503. doi: 10.1016/0026-0495(93)90109-2.
    1. Capell W.H., Zambon A., Austin M.A., Brunzell J.D., Hokanson J.E. Compositional differences of LDL particles in normal subjects with LDL subclass phenotype A and LDL subclass phenotype B. Arterioscler Thromb. Vasc. Biol. 1996;16:1040–1046. doi: 10.1161/01.ATV.16.8.1040.
    1. Hokanson J.E., Krauss R.M., Albers J.J., Austin M.A., Brunzell J.D. LDL physical and chemical properties in familial combined hyperlipidemia. Arterioscler. Thromb. Vasc. Biol. 1995;15:452–459. doi: 10.1161/01.ATV.15.4.452.
    1. Clemente-Postigo M., Queipo-Ortuno M.I., Fernandez-Garcia D., Gomez-Huelgas R., Tinahones F.J., Cardona F. Adipose tissue gene expression of factors related to lipid processing in obesity. PLoS One. 2011;6:e24783. doi: 10.1371/journal.pone.0024783.
    1. Peterson J., Bihain B.E., Bengtsson-Olivecrona G., Deckelbaum R.J., Carpentier Y.A., Olivecrona T. Fatty acid control of lipoprotein lipase: a link between energy metabolism and lipid transport. Proc. Natl. Acad. Sci. USA. 1990;87:909–913. doi: 10.1073/pnas.87.3.909.
    1. Karpe F., Olivecrona T., Walldius G., Hamsten A. Lipoprotein lipase in plasma after an oral fat load: Relation to free fatty acids. J. Lipid Res. 1992;33:975–984.
    1. Tchernof A., Lamarche B., Prud’Homme D., Nadeau A., Moorjani S., Labrie F., Lupien P.J., Despres J.P. The dense LDL phenotype. Association with plasma lipoprotein levels, visceral obesity, and hyperinsulinemia in men. Diabetes Care. 1996;19:629–637.
    1. Packard C.J. Triacylglycerol-rich lipoproteins and the generation of small, dense low-density lipoprotein. Biochem. Soc. Trans. 2003;31:1066–1069. doi: 10.1042/BST0311066.
    1. Klop B., Proctor S.D., Mamo J.C., Botham K.M., Castro Cabezas M. Understanding postprandial inflammation and its relationship to lifestyle behaviour and metabolic diseases. Int. J. Vasc. Med. 2012;2012:947417. doi: 10.1155/2012/947417.
    1. Proctor S.D., Mamo J.C. Intimal retention of cholesterol derived from apolipoprotein B100- and apolipoprotein B48-containing lipoproteins in carotid arteries of Watanabe heritable hyperlipidemic rabbits. Arterioscler. Thromb. Vasc. Biol. 2003;23:1595–1600. doi: 10.1161/01.ATV.0000084638.14534.0A.
    1. Proctor S.D., Vine D.F., Mamo J.C. Arterial retention of apolipoprotein B(48)- and B(100)-containing lipoproteins in atherogenesis. Curr. Opin. Lipidol. 2002;13:461–470. doi: 10.1097/00041433-200210000-00001.
    1. Tabas I., Williams K.J., Boren J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: Update and therapeutic implications. Circulation. 2007;116:1832–1844. doi: 10.1161/CIRCULATIONAHA.106.676890.
    1. Klop B., Castro Cabezas M. Chylomicrons: A key biomarker and risk factor for cardiovascular disease and for the understanding of obesity. Curr. Cardiovasc. Risk. Rep. 2012;6:27–34. doi: 10.1007/s12170-011-0215-z.
    1. Subramanian S., Chait A. Hypertriglyceridemia secondary to obesity and diabetes. Biochim. Biophys. Acta. 2012;1821:819–825. doi: 10.1016/j.bbalip.2011.10.003.
    1. Pacifico L., Anania C., Osborn J.F., Ferraro F., Bonci E., Olivero E., Chiesa C. Low 25(OH)D3 levels are associated with total adiposity, metabolic syndrome, and hypertension in Caucasian children and adolescents. Eur. J. Endocrinol. 2011;165:603–611. doi: 10.1530/EJE-11-0545.
    1. Proctor S.D., Vine D.F., Mamo J.C. Arterial permeability and efflux of apolipoprotein B-containing lipoproteins assessed by in situ perfusion and three-dimensional quantitative confocal microscopy. Arterioscler. Thromb. Vasc. Biol. 2004;24:2162–2167. doi: 10.1161/01.ATV.0000143859.75035.5a.
    1. Watts G.F., Chan D.C., Barrett P.H., Martins I.J., Redgrave T.G. Preliminary experience with a new stable isotope breath test for chylomicron remnant metabolism: A study in central obesity. Clin. Sci. (Lond.) 2001;101:683–690. doi: 10.1042/CS20010166.
    1. Taskinen M.R., Adiels M., Westerbacka J., Soderlund S., Kahri J., Lundbom N., Lundbom J., Hakkarainen A., Olofsson S.O., Orho-Melander M., et al. Dual metabolic defects are required to produce hypertriglyceridemia in obese subjects. Arterioscler. Thromb. Vasc. Biol. 2011;31:2144–2150. doi: 10.1161/ATVBAHA.111.224808.
    1. Caron S., Verrijken A., Mertens I., Samanez C.H., Mautino G., Haas J.T., Duran-Sandoval D., Prawitt J., Francque S., Vallez E., et al. Transcriptional activation of apolipoprotein CIII expression by glucose may contribute to diabetic dyslipidemia. Arterioscler. Thromb. Vasc. Biol. 2011;31:513–519. doi: 10.1161/ATVBAHA.110.220723.
    1. Mamo J.C., Watts G.F., Barrett P.H., Smith D., James A.P., Pal S. Postprandial dyslipidemia in men with visceral obesity: An effect of reduced LDL receptor expression? Am. J. Physiol. Endocrinol. Metab. 2001;281:E626–E632.
    1. Castro Cabezas M., Erkelens D.W. The direct way from gut to vessel wall: Atheroinitiation. Eur. J. Clin. Invest. 1998;28:504–505. doi: 10.1046/j.1365-2362.1998.00318.x.
    1. Jorgensen A.B., Frikke-Schmidt R., West A.S., Grande P., Nordestgaard B.G., Tybjaerg-Hansen A. Genetically elevated non-fasting triglycerides and calculated remnant cholesterol as causal risk factors for myocardial infarction. Eur. Heart J. 2012 doi: 10.1093/eurheartj/ehs431.
    1. Senti M., Nogues X., Pedro-Botet J., Rubies-Prat J., Vidal-Barraquer F. Lipoprotein profile in men with peripheral vascular disease. Role of intermediate density lipoproteins and apoprotein E phenotypes. Circulation. 1992;85:30–36. doi: 10.1161/01.CIR.85.1.30.
    1. Vogel R.A., Corretti M.C., Plotnick G.D. Effect of a single high-fat meal on endothelial function in healthy subjects. Am. J. Cardiol. 1997;79:350–354. doi: 10.1016/S0002-9149(96)00760-6.
    1. Lundman P., Eriksson M., Schenck-Gustafsson K., Karpe F., Tornvall P. Transient triglyceridemia decreases vascular reactivity in young, healthy men without risk factors for coronary heart disease. Circulation. 1997;96:3266–3268. doi: 10.1161/01.CIR.96.10.3266.
    1. Steinberg H.O., Tarshoby M., Monestel R., Hook G., Cronin J., Johnson A., Bayazeed B., Baron A.D. Elevated circulating free fatty acid levels impair endothelium-dependent vasodilation. J. Clin. Invest. 1997;100:1230–1239. doi: 10.1172/JCI119636.
    1. Van Oostrom A.J., van Wijk J., Castro Cabezas M. Lipaemia, inflammation and atherosclerosis: Novel opportunities in the understanding and treatment of atherosclerosis. Drugs. 2004;64:19–41. doi: 10.2165/00003495-200464002-00004.
    1. Alipour A., Elte J.W., van Zaanen H.C., Rietveld A.P., Castro Cabezas M. Novel aspects of postprandial lipemia in relation to atherosclerosis. Atheroscler. Suppl. 2008;9:39–44.
    1. Couillard C., Bergeron N., Prud’homme D., Bergeron J., Tremblay A., Bouchard C., Mauriege P., Despres J.P. Postprandial triglyceride response in visceral obesity in men. Diabetes. 1998;47:953–960. doi: 10.2337/diabetes.47.6.953.
    1. Taira K., Hikita M., Kobayashi J., Bujo H., Takahashi K., Murano S., Morisaki N., Saito Y. Delayed post-prandial lipid metabolism in subjects with intra-abdominal visceral fat accumulation. Eur. J. Clin. Invest. 1999;29:301–308. doi: 10.1046/j.1365-2362.1999.00454.x.
    1. Su J.W., Nzekwu M.M., Cabezas M.C., Redgrave T., Proctor S.D. Methods to assess impaired post-prandial metabolism and the impact for early detection of cardiovascular disease risk. Eur. J. Clin. Invest. 2009;39:741–754. doi: 10.1111/j.1365-2362.2009.02179.x.
    1. Castro Cabezas M., Halkes C.J., Meijssen S., van Oostrom A.J., Erkelens D.W. Diurnal triglyceride profiles: A novel approach to study triglyceride changes. Atherosclerosis. 2001;155:219–228. doi: 10.1016/S0021-9150(00)00554-2.
    1. Van Oostrom A.J., Castro Cabezas M., Ribalta J., Masana L., Twickler T.B., Remijnse T.A., Erkelens D.W. Diurnal triglyceride profiles in healthy normolipidemic male subjects are associated to insulin sensitivity, body composition and diet. Eur. J. Clin. Invest. 2000;30:964–971. doi: 10.1046/j.1365-2362.2000.00732.x.
    1. Halkes C.J., Castro Cabezas M., van Wijk J.P., Erkelens D.W. Gender differences in diurnal triglyceridemia in lean and overweight subjects. Int. J. Obes. Relat. Metab. Disord. 2001;25:1767–1774. doi: 10.1038/sj.ijo.0801831.
    1. Lean M.E., Han T.S., Morrison C.E. Waist circumference as a measure for indicating need for weight management. Br. Med. J. 1995;311:158–161. doi: 10.1136/bmj.311.6998.158.
    1. Van Gaal L.F., Mertens I.L., de Block C.E. Mechanisms linking obesity with cardiovascular disease. Nature. 2006;444:875–880.
    1. Deeb S.S., Zambon A., Carr M.C., Ayyobi A.F., Brunzell J.D. Hepatic lipase and dyslipidemia: Interactions among genetic variants, obesity, gender, and diet. J. Lipid Res. 2003;44:1279–1286. doi: 10.1194/jlr.R200017-JLR200.
    1. Hill M.J., Metcalfe D., McTernan P.G. Obesity and diabetes: Lipids, “nowhere to run to”. Clin. Sci. (Lond.) 2009;116:113–123. doi: 10.1042/CS20080050.
    1. Bjorntorp P., Bergman H., Varnauskas E. Plasma free fatty acid turnover rate in obesity. Acta Med. Scand. 1969;185:351–356. doi: 10.1111/j.0954-6820.1969.tb07347.x.
    1. Mook S., Halkes C.C., Bilecen S., Castro Cabezas M. In vivo regulation of plasma free fatty acids in insulin resistance. Metabolism. 2004;53:1197–1201. doi: 10.1016/j.metabol.2004.02.023.
    1. Van Oostrom A.J., van Dijk H., Verseyden C., Sniderman A.D., Cianflone K., Rabelink T.J., Castro Cabezas M. Addition of glucose to an oral fat load reduces postprandial free fatty acids and prevents the postprandial increase in complement component 3. Am. J. Clin. Nutr. 2004;79:510–515.
    1. Capurso C., Capurso A. From excess adiposity to insulin resistance: The role of free fatty acids. Vascul. Pharmacol. 2012;57:91–97. doi: 10.1016/j.vph.2012.05.003.
    1. Lottenberg A.M., Afonso Mda S., Lavrador M.S., Machado R.M., Nakandakare E.R. The role of dietary fatty acids in the pathology of metabolic syndrome. J. Nutr. Biochem. 2012;23:1027–1040. doi: 10.1016/j.jnutbio.2012.03.004.
    1. Sears B., Ricordi C. Role of fatty acids and polyphenols in inflammatory gene transcription and their impact on obesity, metabolic syndrome and diabetes. Eur. Rev. Med. Pharmacol. Sci. 2012;16:1137–1154.
    1. Kopp A., Gross P., Falk W., Bala M., Weigert J., Buechler C., Neumeier M., Scholmerich J., Schaffler A. Fatty acids as metabolic mediators in innate immunity. Eur. J. Clin. Invest. 2009;39:924–933. doi: 10.1111/j.1365-2362.2009.02185.x.
    1. Sniderman A.D., Maslowska M., Cianflone K. Of mice and men (and women) and the acylation-stimulating protein pathway. Curr. Opin. Lipidol. 2000;11:291–296. doi: 10.1097/00041433-200006000-00010.
    1. Cianflone K., Vu H., Walsh M., Baldo A., Sniderman A. Metabolic response of Acylation Stimulating Protein to an oral fat load. J. Lipid Res. 1989;30:1727–1733.
    1. Cianflone K., Maslowska M. Differentiation-induced production of ASP in human adipocytes. Eur. J. Clin. Invest. 1995;25:817–825. doi: 10.1111/j.1365-2362.1995.tb01690.x.
    1. Maslowska M., Scantlebury T., Germinario R., Cianflone K. Acute in vitro production of acylation stimulating protein in differentiated human adipocytes. J. Lipid Res. 1997;38:1–11.
    1. Saleh J., Summers L.K., Cianflone K., Fielding B.A., Sniderman A.D., Frayn K.N. Coordinated release of acylation stimulating protein (ASP) and triacylglycerol clearance by human adipose tissue in vivo in the postprandial period. J. Lipid Res. 1998;39:884–891.
    1. Skidgel R.A. Basic carboxypeptidases: Regulators of peptide hormone activity. Trends Pharmacol. Sci. 1988;9:299–304. doi: 10.1016/0165-6147(88)90015-6.
    1. Maslowska M., Sniderman A.D., Germinario R., Cianflone K. ASP stimulates glucose transport in cultured human adipocytes. Int. J. Obes. Relat. Metab. Disord. 1997;21:261–266.
    1. Van Oostrom A.J., Alipour A., Plokker T.W., Sniderman A.D., Castro Cabezas M. The metabolic syndrome in relation to complement component 3 and postprandial lipemia in patients from an outpatient lipid clinic and healthy volunteers. Atherosclerosis. 2007;190:167–173. doi: 10.1016/j.atherosclerosis.2006.01.009.
    1. Volp A.C., Barbosa K.B., Bressan J. Triacylglycerols and body fat mass are possible independent predictors of C3 in apparently healthy young Brazilian adults. Nutrition. 2012;28:544–550. doi: 10.1016/j.nut.2011.08.014.
    1. Hernandez-Mijares A., Banuls C., Bellod L., Jover A., Sola E., Morillas C., Victor V.M., Rocha M. Effect of weight loss on C3 and C4 components of complement in obese patients. Eur. J. Clin. Invest. 2012;42:503–509. doi: 10.1111/j.1365-2362.2011.02606.x.
    1. Meijssen S., van Dijk H., Verseyden C., Erkelens D.W., Castro Cabezas M. Delayed and exaggerated postprandial complement component 3 response in familial combined hyperlipidemia. Arterioscler. Thromb. Vasc. Biol. 2002;22:811–816. doi: 10.1161/01.ATV.0000014079.98335.72.
    1. Halkes C.J., van Dijk H., de Jaegere P.P.T., Plokker H.W.M., van der Helm Y., Erkelens D.W., Castro Cabezas M. Postprandial increase of complement component 3 in normolipidemic patients with coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 2001;21:1526–1530. doi: 10.1161/hq0901.095276.
    1. Kristiansson K., Perola M., Tikkanen E., Kettunen J., Surakka I., Havulinna A.S., Stancakova A., Barnes C., Widen E., Kajantie E., et al. Genome-wide screen for metabolic syndrome susceptibility Loci reveals strong lipid gene contribution but no evidence for common genetic basis for clustering of metabolic syndrome traits. Circ. Cardiovasc. Genet. 2012;5:242–249. doi: 10.1161/CIRCGENETICS.111.961482.
    1. Alipour A., van Oostrom A.J., Van Wijk J.P., Verseyden C., Plokker H.W., Jukema J.W., Rabelink A.J., Castro Cabezas M. Mannose binding lectin deficiency and triglyceride-rich lipoprotein metabolism in normolipidemic subjects. Atherosclerosis. 2009;206:444–450. doi: 10.1016/j.atherosclerosis.2009.03.007.
    1. Meijssen S., Castro Cabezas M., Twickler T.B., Jansen H., Erkelens D.W. In vivo evidence of defective postprandial and postabsorptive free fatty acid metabolism in familial combined hyperlipidemia. J. Lipid Res. 2000;41:1096–1102.
    1. Halkes C.J., van Dijk H., Verseyden C., de Jaegere P.P., Plokker H.W., Meijssen S., Erkelens D.W., Castro Cabezas M. Gender differences in postprandial ketone bodies in normolipidemic subjects and in untreated patients with familial combined hyperlipidemia. Arterioscler. Thromb. Vasc. Biol. 2003;23:1875–1880. doi: 10.1161/01.ATV.0000092326.00725.ED.
    1. Castro Cabezas M., van Wijk J.P., Elte J.W., Klop B. Effects of metformin on the regulation of free Fatty acids in insulin resistance: A double-blind, placebo-controlled study. J. Nutr. Metab. 2012;2012 doi: 10.1155/2012/394623.
    1. Lopez-Miranda J., Williams C., Lairon D. Dietary, physiological, genetic and pathological influences on postprandial lipid metabolism. Br. J. Nutr. 2007;98:458–473. doi: 10.1017/S000711450774268X.
    1. De Ruyter J.C., Olthof M.R., Seidell J.C., Katan M.B. A trial of sugar-free or sugar-sweetened beverages and body weight in children. N. Engl. J. Med. 2012;367:1397–1406. doi: 10.1056/NEJMoa1203034.
    1. Patalay M., Lofgren I.E., Freake H.C., Koo S.I., Fernandez M.L. The lowering of plasma lipids following a weight reduction program is related to increased expression of the LDL receptor and lipoprotein lipase. J. Nutr. 2005;135:735–739.
    1. Laimer M.W., Engl J., Tschoner A., Kaser S., Ritsch A., Tatarczyk T., Rauchenzauner M., Weiss H., Aigner F., Patsch J.R., et al. Effects of weight loss on lipid transfer proteins in morbidly obese women. Lipids. 2009;44:1125–1130. doi: 10.1007/s11745-009-3349-8.
    1. Wang Y., Snel M., Jonker J.T., Hammer S., Lamb H.J., de Roos A., Meinders A.E., Pijl H., Romijn J.A., Smit J.W., et al. Prolonged caloric restriction in obese patients with type 2 diabetes mellitus decreases plasma CETP and increases apolipoprotein AI levels without improving the cholesterol efflux properties of HDL. Diabetes Care. 2011;34:2576–2580. doi: 10.2337/dc11-0685.
    1. Chan D.C., Watts G.F., Barrett P.H., Mamo J.C., Redgrave T.G. Markers of triglyceride-rich lipoprotein remnant metabolism in visceral obesity. Clin. Chem. 2002;48:278–283.
    1. James A.P., Watts G.F., Barrett P.H., Smith D., Pal S., Chan D.C., Mamo J.C. Effect of weight loss on postprandial lipemia and low-density lipoprotein receptor binding in overweight men. Metabolism. 2003;52:136–141. doi: 10.1053/meta.2003.50032.
    1. Roberts C.K., Barnard R.J., Liang K.H., Vaziri N.D. Effect of diet on adipose tissue and skeletal muscle VLDL receptor and LPL: Implications for obesity and hyperlipidemia. Atherosclerosis. 2002;161:133–141. doi: 10.1016/S0021-9150(01)00622-0.
    1. Maraki M.I., Aggelopoulou N., Christodoulou N., Anastasiou C.A., Toutouza M., Panagiotakos D.B., Kavouras S.A., Magkos F., Sidossis L.S. Lifestyle intervention leading to moderate weight loss normalizes postprandial triacylglycerolemia despite persisting obesity. Obesity (Silver Spring) 2011;19:968–976. doi: 10.1038/oby.2010.218.
    1. Cruz-Teno C., Perez-Martinez P., Delgado-Lista J., Yubero-Serrano E.M., Garcia-Rios A., Marin C., Gomez P., Jimenez-Gomez Y., Camargo A., Rodriguez-Cantalejo F., et al. Detary fat modifies the postprandial inflammatory state in subjects with metabolic syndrome: The LIPGENE study. Mol. Nutr. Food Res. 2012;56:854–865. doi: 10.1002/mnfr.201200096.
    1. Yin R.X., Wu D.F., Miao L., Aung L.H., Cao X.L., Yan T.T., Long X.J., Liu W.Y., Zhang L., Li M. Several genetic polymorphisms interact with overweight/obesity to influence serum lipid levels. Cardiovasc. Diabetol. 2012;11 doi: 10.1186/1475-2840-11-123.
    1. Corella D., Peloso G., Arnett D.K., Demissie S., Cupples L.A., Tucker K., Lai C.Q., Parnell L.D., Coltell O., Lee Y.C., et al. APOA2, dietary fat, and body mass index: replication of a gene-diet interaction in 3 independent populations. Arch. Intern. Med. 2009;169:1897–1906. doi: 10.1001/archinternmed.2009.343.
    1. Lai C.Q., Corella D., Demissie S., Cupples L.A., Adiconis X., Zhu Y., Parnell L.D., Tucker K.L., Ordovas J.M. Dietary intake of n-6 fatty acids modulates effect of apolipoprotein A5 gene on plasma fasting triglycerides, remnant lipoprotein concentrations, and lipoprotein particle size: The Framingham Heart Study. Circulation. 2006;113:2062–2070. doi: 10.1161/CIRCULATIONAHA.105.577296.
    1. Sanchez-Moreno C., Ordovas J.M., Smith C.E., Baraza J.C., Lee Y.C., Garaulet M. APOA5 gene variation interacts with dietary fat intake to modulate obesity and circulating triglycerides in a Mediterranean population. J. Nutr. 2012;141:380–385.
    1. Thomas T.R., Horner K.E., Langdon M.M., Zhang J.Q., Krul E.S., Sun G.Y., Cox R.H. Effect of exercise and medium-chain fatty acids on postprandial lipemia. J. Appl. Physiol. 2001;90:1239–1246.
    1. Ferguson M.A., Alderson N.L., Trost S.G., Essig D.A., Burke J.R., Durstine J.L. Effects of four different single exercise sessions on lipids, lipoproteins, and lipoprotein lipase. J. Appl. Physiol. 1998;85:1169–1174.
    1. Harrison M., Moyna N.M., Zderic T.W., O’Gorman D.J., McCaffrey N., Carson B.P., Hamilton M.T. Lipoprotein particle distribution and skeletal muscle lipoprotein lipase activity after acute exercise. Lipids. Health Dis. 2012;11 doi: 10.1186/1476-511X-11-64.
    1. Slivkoff-Clark K.M., James A.P., Mamo J.C. The chronic effects of fish oil with exercise on postprandial lipaemia and chylomicron homeostasis in insulin resistant viscerally obese men. Nutr. Metab. (Lond.) 2012;9:9. doi: 10.1186/1743-7075-9-9.
    1. Sullivan S., Kirk E.P., Mittendorfer B., Patterson B.W., Klein S. Randomized trial of exercise effect on intrahepatic triglyceride content and lipid kinetics in nonalcoholic fatty liver disease. Hepatology. 2012;55:1738–1745. doi: 10.1002/hep.25548.
    1. Magkos F. Exercise and fat accumulation in the human liver. Curr. Opin. Lipidol. 2010;21:507–517. doi: 10.1097/MOL.0b013e32833ea912.
    1. van Herpen N.A., Schrauwen-Hinderling V.B., Schaart G., Mensink R.P., Schrauwen P. Three weeks on a high-fat diet increases intrahepatic lipid accumulation and decreases metabolic flexibility in healthy overweight men. J. Clin. Endocrinol. Metab. 2012;96:E691–E695.
    1. Mestek M.L. Physical activity, blood lipids, and lipoproteins. Am. J. Lifestyle Med. 2009;3:279–283. doi: 10.1177/1559827609334885.
    1. Thompson P.D., Rader D.J. Does exercise increase HDL cholesterol in those who need it the most? Arterioscler. Thromb. Vasc. Biol. 2001;21:1097–1098. doi: 10.1161/hq0701.092147.
    1. Maki K.C., Pelkman C.L., Finocchiaro E.T., Kelley K.M., Lawless A.L., Schild A.L., Rains T.M. Resistant starch from high-amylose maize increases insulin sensitivity in overweight and obese men. J. Nutr. 2012;142:717–723. doi: 10.3945/jn.111.152975.
    1. Robertson M.D., Wright J.W., Loizon E., Debard C., Vidal H., Shojaee-Moradie F., Russell-Jones D., Umpleby A.M. Insulin-sensitizing effects on muscle and adipose tissue after dietary fiber intake in men and women with metabolic syndrome. J. Clin. Endocrinol. Metab. 2012;97:3326–3332. doi: 10.1210/jc.2012-1513.
    1. Zhou Y.H., Ma X.Q., Wu C., Lu J., Zhang S.S., Guo J., Wu S.Q., Ye X.F., Xu J.F., He J. Effect of anti-obesity drug on cardiovascular risk factors: A systematic review and meta-analysis of randomized controlled trials. PLoS One. 2012;7:e39062. doi: 10.1371/journal.pone.0039062.
    1. Aron-Wisnewsky J., Julia Z., Poitou C., Bouillot J.L., Basdevant A., Chapman M.J., Clement K., Guerin M. Effect of bariatric surgery-induced weight loss on SR-BI-, ABCG1-, and ABCA1-mediated cellular cholesterol efflux in obese women. J. Clin. Endocrinol. Metab. 2011;96:1151–1159. doi: 10.1210/jc.2010-2378.
    1. Catapano A.L., Reiner Z., de Backer G., Graham I., Taskinen M.R., Wiklund O., Agewall S., Alegria E., Chapman M.J., Durrington P., et al. ESC/EAS Guidelines for the management of dyslipidaemias: The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS) Atherosclerosis. 2011;217:1–44.
    1. Kushner R.F. Clinincal assessment and management of adult obesity. Circulation. 2012;126:2870–2877. doi: 10.1161/CIRCULATIONAHA.111.075424.
    1. Berglund L., Brunzell J.D., Goldberg A.C., Goldberg I.J., Sacks F., Murad M.H., Stalenhoef A.F. Evaluation and treatment of hypertriglyceridemia: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 2012;97:2969–2989. doi: 10.1210/jc.2011-3213.
    1. Sniderman A.D., Williams K., Contois J.H., Monroe H.M., McQueen M.J., de Graaf J., Furberg C.D. A meta-analysis of low-density lipoprotein cholesterol, non-high-density lipoprotein cholesterol, and apolipoprotein B as markers of cardiovascular risk. Circ. Cardiovasc. Qual. Outcomes. 2011;4:337–345. doi: 10.1161/CIRCOUTCOMES.110.959247.
    1. Mora S., Glynn R.J., Boekholdt S.M., Nordestgaard B.G., Kastelein J.J., Ridker P.M. On-treatment non-high-density lipoprotein cholesterol, apolipoprotein B, triglycerides, and lipid ratios in relation to residual vascular risk after treatment with potent statin therapy: JUPITER (justification for the use of statins in prevention: An intervention trial evaluating rosuvastatin) J. Am. Coll. Cardiol. 2012;59:1521–1528.
    1. Boekholdt S.M., Arsenault B.J., Mora S., Pedersen T.R., LaRosa J.C., Nestel P.J., Simes R.J., Durrington P., Hitman G.A., Welch K.M., et al. Association of LDL cholesterol, non-HDL cholesterol, and apolipoprotein B levels with risk of cardiovascular events among patients treated with statins: A meta-analysis. JAMA. 2012;307:1302–1309. doi: 10.1001/jama.2012.366.
    1. Robinson J.G., Wang S., Jacobson T.A. Meta-analysis of comparison of effectiveness of lowering apolipoprotein B versus low-density lipoprotein cholesterol and nonhigh-density lipoprotein cholesterol for cardiovascular risk reduction in randomized trials. Am. J. Cardiol. 2012;110:1468–1476. doi: 10.1016/j.amjcard.2012.07.007.
    1. Klop B., Cohn J.S., van Oostrom A.J., van Wijk J.P., Birnie E., Castro Cabezas M. Daytime triglyceride variability in men and women with different levels of triglyceridemia. Clin. Chim. Acta. 2011;412:2183–2189. doi: 10.1016/j.cca.2011.08.010.
    1. Brunzell J.D. Clinical practice. Hypertriglyceridemia. N. Engl. J. Med. 2007;357:1009–1017. doi: 10.1056/NEJMcp070061.
    1. Watts G.F., Karpe F. Triglycerides and atherogenic dyslipidaemia: Extending treatment beyond statins in the high-risk cardiovascular patient. Heart. 2011;97:350–356. doi: 10.1136/hrt.2010.204990.
    1. Chan D.C., Watts G.F. Dyslipidaemia in the metabolic syndrome and type 2 diabetes: Pathogenesis, priorities, pharmacotherapies. Expert Opin. Pharmacother. 2011;12:13–30. doi: 10.1517/14656566.2010.502529.
    1. Watts G.F., Karpe F. Why, when and how should hypertriglyceridemia be treated in the high-risk cardiovascular patient? Expert. Rev. Cardiovasc. Ther. 2011;9:987–997. doi: 10.1586/erc.11.61.
    1. Dujovne C.A., Williams C.D., Ito M.K. What combination therapy with a statin, if any, would you recommend? Cur. Atheroscler. Rep. 2011;13:12–22.
    1. Rubenfire M., Brook R.D., Rosenson R.S. Treating mixed hyperlipidemia and the atherogenic lipid phenotype for prevention of cardiovascular events. Am. J. Med. 2010;123:892–898. doi: 10.1016/j.amjmed.2010.03.024.
    1. Toth P.P. Drug treatment of hyperlipidaemia: A guide to the rational use of lipid-lowering drugs. Drugs. 2010;70:1363–1379. doi: 10.2165/10898610-000000000-00000.
    1. Tenenbaum A., Motro M., Fisman E.Z., Tanne D., Boyko V., Behar S. Bezafibrate for the secondary prevention of myocardial infarction in patients with metabolic syndrome. Arch. Intern. Me.d. 2005;165:1154–1160.
    1. Tenkanen L., Manttari M., Manninen V. Some coronary risk factors related to the insulin resistance syndrome and treatment with gemfibrozil. Experience from the Helsinki Heart Study. Circulation. 1995;92:1779–1785. doi: 10.1161/01.CIR.92.7.1779.
    1. Tenkanen L., Manttari M., Kovanen P.T., Virkkunen H., Manninen V. Gemfibrozil in the treatment of dyslipidemia: An 18-year mortality follow-up of the Helsinki Heart Study. Arch. Intern. Med. 2006;166:743–748. doi: 10.1001/archinte.166.7.743.
    1. Rubins H.B., Robins S.J., Collins D., Nelson D.B., Elam M.B., Schaefer E.J., Faas F.H., Anderson J.W. Diabetes, plasma insulin, and cardiovascular disease: subgroup analysis from the Department of Veterans Affairs high-density lipoprotein intervention trial (VA-HIT) Arch. Intern. Med. 2002;162:2597–2604. doi: 10.1001/archinte.162.22.2597.
    1. Scott R., O’Brien R., Fulcher G., Pardy C., D’Emden M., Tse D., Taskinen M.R., Ehnholm C., Keech A. Effects of fenofibrate treatment on cardiovascular disease risk in 9795 individuals with type 2 diabetes and various components of the metabolic syndrome: The Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. Diabetes Care. 2009;32:493–498. doi: 10.2337/dc08-1543.
    1. Ginsberg H.N., Elam M.B., Lovato L.C., Crouse J.R., III, Leiter L.A., Linz P., Friedewald W.T., Buse J.B., Gerstein H.C., Probstfield J., et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N. Engl. J. Med. 2010;362:1563–1574. doi: 10.1056/NEJMoa1001282.
    1. Boden W.E., Probstfield J.L., Anderson T., Chaitman B.R., Desvignes-Nickens P., Koprowicz K., McBride R., Teo K., Weintraub W. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N. Engl. J. Med. 2011;365:2255–2267. doi: 10.1056/NEJMoa1107579.
    1. Watts G.F., Chan D.C., Ooi E.M., Nestel P.J., Beilin L.J., Barrett P.H. Fish oils, phytosterols and weight loss in the regulation of lipoprotein transport in the metabolic syndrome: Lessons from stable isotope tracer studies. Clin. Exp. Pharmacol. Physiol. 2006;33:877–882. doi: 10.1111/j.1440-1681.2006.04458.x.
    1. Chan D.C., Watts G.F., Barrett P.H., Beilin L.J., Redgrave T.G., Mori T.A. Regulatory effects of HMG CoA reductase inhibitor and fish oils on apolipoprotein B-100 kinetics in insulin-resistant obese male subjects with dyslipidemia. Diabetes. 2002;51:2377–2386. doi: 10.2337/diabetes.51.8.2377.
    1. Van Wijk J.P., de Koning E.J., Martens E.P., Rabelink T.J. Thiazolidinediones and blood lipids in type 2 diabetes. Arterioscler. Thromb. Vasc. Biol. 2003;23:1744–1749. doi: 10.1161/01.ATV.0000090521.25968.4D.

Source: PubMed

3
Předplatit