Convalescent plasma in Covid-19: Possible mechanisms of action

Manuel Rojas, Yhojan Rodríguez, Diana M Monsalve, Yeny Acosta-Ampudia, Bernardo Camacho, Juan Esteban Gallo, Adriana Rojas-Villarraga, Carolina Ramírez-Santana, Juan C Díaz-Coronado, Rubén Manrique, Ruben D Mantilla, Yehuda Shoenfeld, Juan-Manuel Anaya, Manuel Rojas, Yhojan Rodríguez, Diana M Monsalve, Yeny Acosta-Ampudia, Bernardo Camacho, Juan Esteban Gallo, Adriana Rojas-Villarraga, Carolina Ramírez-Santana, Juan C Díaz-Coronado, Rubén Manrique, Ruben D Mantilla, Yehuda Shoenfeld, Juan-Manuel Anaya

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible of the coronavirus disease 2019 (COVID-19) pandemic. Therapeutic options including antimalarials, antivirals, and vaccines are under study. Meanwhile the current pandemic has called attention over old therapeutic tools to treat infectious diseases. Convalescent plasma (CP) constitutes the first option in the current situation, since it has been successfully used in other coronaviruses outbreaks. Herein, we discuss the possible mechanisms of action of CP and their repercussion in COVID-19 pathogenesis, including direct neutralization of the virus, control of an overactive immune system (i.e., cytokine storm, Th1/Th17 ratio, complement activation) and immunomodulation of a hypercoagulable state. All these benefits of CP are expected to be better achieved if used in non-critically hospitalized patients, in the hope of reducing morbidity and mortality.

Keywords: ACE-2 receptor; COVID-19; Convalescent plasma; Coronavirus; Cytokines; Intravenous immunoglobulins; Neutralizing antibodies; SARS-Cov-2.

Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved.

Figures

Fig. 1
Fig. 1
Schematic representation of convalescent plasma components and its mechanisms of action. A. Main convalescent plasma components. B. Antiviral effects of NAbs. IgG and IgM are the main isotypes, although IgA may be also important, particularly in mucosal viral infections. Other non-NAbs may exert a protective effect. The humoral immune response is mainly directed towards spike (S) protein. C. Anti-inflammatory effects of CP include network of autoantibodies and control of an overactive immune system (i.e., cytokine storm, Th1/Th17 ratio, complement activation and regulation of a hypercoagulable state) (see text for details). N: Nucleoprotein; M: Membrane; E: Envelope.

References

    1. Su S., Wong G., Shi W., Liu J., Lai A.C.K., Zhou J. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol. 2016;24:490–502. doi: 10.1016/j.tim.2016.03.003.
    1. Cavanagh D. Coronavirus avian infectious bronchitis virus. Vet Res. 2007;38:281–297. doi: 10.1051/vetres:2006055.
    1. Ismail M.M., Tang A.Y., Saif Y.M. Pathogenicity of turkey coronavirus in turkeys and chickens. Avian Dis. 2003;47:515–522. doi: 10.1637/5917.
    1. Lu R., Zhao X., Li J., Niu P., Yang B., Wu H. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet. 2020;395:565–574. doi: 10.1016/S0140-6736(20)30251-8.
    1. Nie Q.-H., Luo X.-D., Hui W.-L. Advances in clinical diagnosis and treatment of severe acute respiratory syndrome. World J Gastroenterol. 2003;9:1139–1143. doi: 10.3748/wjg.v9.i6.1139.
    1. Zaki A.M., van Boheemen S., Bestebroer T.M., Osterhaus A.D.M.E., Fouchier R.A.M. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012;367:1814–1820. doi: 10.1056/NEJMoa1211721.
    1. Phua J., Weng L., Ling L., Egi M., Lim C.-M., Divatia J.V. Intensive care management of coronavirus disease 2019 (COVID-19): Challenges and recommendations. Lancet Respir Med. 2020 doi: 10.1016/S2213-2600(20)30161-2.
    1. Zhu N., Zhang D., Wang W., Li X., Yang B., Song J. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382:727–733. doi: 10.1056/NEJMoa2001017.
    1. Chan J.F.-W., Yuan S., Kok K.-H., To K.K.-W., Chu H., Yang J. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020;395:514–523. doi: 10.1016/S0140-6736(20)30154-9.
    1. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5.
    1. Shoenfeld Y. Corona (COVID-19) time musings: Our involvement in COVID-19 pathogenesis, diagnosis, treatment and vaccine planning. Autoimmun Rev. 2020;102538 doi: 10.1016/j.autrev.2020.102538.
    1. Kanduc D., Shoenfeld Y. On the molecular determinants and the mechanism of the SARS-CoV-2 attack 2020. Clin Immunol. 2020;215:108426. doi: 10.1016/j.clim.2020.108426.
    1. Rojas M., Restrepo-Jiménez P., Monsalve D.M., Pacheco Y., Acosta-Ampudia Y., Ramírez-Santana C. Molecular mimicry and autoimmunity. J Autoimmun. 2018;95:100–123. doi: 10.1016/j.jaut.2018.10.012.
    1. Cao B., Wang Y., Wen D., Liu W., Wang J., Fan G. A trial of lopinavir-ritonavir in adults hospitalized with severe covid-19. N Engl J Med. 2020 doi: 10.1056/NEJMoa2001282.
    1. Chen Z., Hu J., Zhang Z., Jiang S., Han S., Yan D. Efficacy of hydroxychloroquine in patients with COVID-19: Results of a randomized clinical trial. MedRxiv. 2020 doi: 10.1101/2020.03.22.20040758.
    1. Gautret P., Lagier J.-C., Parola P., Hoang V.T., Meddeb L., Mailhe M. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020;105949 doi: 10.1016/j.ijantimicag.2020.105949.
    1. Borba M.G.S., Val F.F.A., Sampaio V.S., Alexandre M.A.A., Melo G.C., Brito M. Effect of high vs low doses of chloroquine diphosphate as adjunctive therapy for patients hospitalized with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: A randomized clinical trial. JAMA Netw Open. 2020;3 doi: 10.1001/jamanetworkopen.2020.8857.
    1. Marano G., Vaglio S., Pupella S., Facco G., Catalano L., Liumbruno G.M. Convalescent plasma: New evidence for an old therapeutic tool? Blood Transfus. 2016;14:152–157. doi: 10.2450/2015.0131-15.
    1. Burnouf T., Seghatchian J. Ebola virus convalescent blood products: Where we are now and where we may need to go. Transfus Apher Sci. 2014;51:120–125. doi: 10.1016/j.transci.2014.10.003.
    1. Mair-Jenkins J., Saavedra-Campos M., Baillie J.K., Cleary P., Khaw F.-M., Lim W.S. The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: A systematic review and exploratory meta-analysis. J Infect Dis. 2015;211:80–90. doi: 10.1093/infdis/jiu396.
    1. Rojas M., Monsalve D.M., Pacheco Y., Acosta-Ampudia Y., Ramírez-Santana C., Ansari A.A. Ebola virus disease: An emerging and re-emerging viral threat. J Autoimmun. 2020;106:102375. doi: 10.1016/j.jaut.2019.102375.
    1. Planitzer C.B., Modrof J., Kreil T.R. West Nile virus neutralization by US plasma-derived immunoglobulin products. J Infect Dis. 2007;196:435–440. doi: 10.1086/519392.
    1. Haley M., Retter A.S., Fowler D., Gea-Banacloche J., O’Grady N.P. The role for intravenous immunoglobulin in the treatment of West Nile virus encephalitis. Clin Infect Dis. 2003;37:e88–e90. doi: 10.1086/377172.
    1. Shimoni Z., Niven M.J., Pitlick S., Bulvik S. Treatment of West Nile virus encephalitis with intravenous immunoglobulin. Emerg Infect Dis. 2001;7:759. doi: 10.3201/eid0704.010432.
    1. van Griensven J., Edwards T., de Lamballerie X., Semple M.G., Gallian P., Baize S. Evaluation of convalescent plasma for Ebola virus disease in Guinea. N Engl J Med. 2016;374:33–42. doi: 10.1056/NEJMoa1511812.
    1. Garraud O., Heshmati F., Pozzetto B., Lefrere F., Girot R., Saillol A. Plasma therapy against infectious pathogens, as of yesterday, today and tomorrow. Transfus Clin Biol. 2016;23:39–44. doi: 10.1016/j.tracli.2015.12.003.
    1. Lünemann J.D., Nimmerjahn F., Dalakas M.C. Intravenous immunoglobulin in neurology--mode of action and clinical efficacy. Nat Rev Neurol. 2015;11:80–89. doi: 10.1038/nrneurol.2014.253.
    1. McGonagle D., Sharif K., O’Regan A., Bridgewood C. The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmun Rev. 2020 doi: 10.1016/j.autrev.2020.102537. In press:102537.
    1. Wan S., Yi Q., Fan S., Lv J., Zhang X., Guo L. Characteristics of lymphocyte subsets and cytokines in peripheral blood of 123 hospitalized patients with 2019 novel coronavirus pneumonia (NCP) MedRxiv. 2020 doi: 10.1101/2020.02.10.20021832.
    1. Shahani L., Singh S., Khardori N.M. Immunotherapy in clinical medicine: Historical perspective and current status. Med Clin North Am. 2012;96:421–431. doi: 10.1016/j.mcna.2012.04.001. ix.
    1. Shakir E.M., Cheung D.S., Grayson M.H. Mechanisms of immunotherapy: A historical perspective. Ann Allergy Asthma Immunol. 2010;105:340–347. doi: 10.1016/j.anai.2010.09.012. quiz 348, 368.
    1. Sherer Y., Levy Y., Shoenfeld Y. IVIG in autoimmunity and cancer--efficacy versus safety. Expert Opin Drug Saf. 2002;1:153–158. doi: 10.1517/14740338.1.2.153.
    1. Katz U., Achiron A., Sherer Y., Shoenfeld Y. Safety of intravenous immunoglobulin (IVIG) therapy. Autoimmun Rev. 2007;6:257–259. doi: 10.1016/j.autrev.2006.08.011.
    1. Ahn J.Y., Sohn Y., Lee S.H., Cho Y., Hyun J.H., Baek Y.J. Use of convalescent plasma therapy in two COVID-19 patients with acute respiratory distress syndrome in Korea. J Korean Med Sci. 2020;35 doi: 10.3346/jkms.2020.35.e149.
    1. Ko J.-H., Seok H., Cho S.Y., Ha Y.E., Baek J.Y., Kim S.H. Challenges of convalescent plasma infusion therapy in Middle East respiratory coronavirus infection: A single centre experience. Antivir Ther. 2018;23:617–622. doi: 10.3851/IMP3243.
    1. Spalter S.H., Kaveri S., Kazatchkine M.D. Anti-idiotypes to autoantibodies in therapeutic preparations of normal polyspecific human IgG (intravenous immunoglobulin, IVIg) In: Shoenfeld Y., Kennedy R.C., Ferrone Infection and Cancer SBT-I in MA, editors. Idiotypes Med. Autoimmun. Infect. Cancer. Elsevier; Amsterdam: 1997. pp. 217–225. editors.
    1. Ye M., Fu D., Ren Y., Wang F., Wang D., Zhang F. Treatment with convalescent plasma for COVID-19 patients in Wuhan, China. J Med Virol. 2020 doi: 10.1002/jmv.25882.
    1. Shen C., Wang Z., Zhao F., Yang Y., Li J., Yuan J. Treatment of 5 critically ill patients with Covid-19 with convalescent plasma. JAMA. 2020;323(16):1582–1589. doi: 10.1001/jama.2020.4783.
    1. Duan K., Liu B., Li C., Zhang H., Yu T., Qu J. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci U S A. 2020 doi: 10.1073/pnas.2004168117.
    1. Soo Y.O.Y., Cheng Y., Wong R., Hui D.S., Lee C.K., Tsang K.K.S. Retrospective comparison of convalescent plasma with continuing high-dose methylprednisolone treatment in SARS patients. Clin Microbiol Infect. 2004;10:676–678. doi: 10.1111/j.1469-0691.2004.00956.x.
    1. Cheng Y., Wong R., Soo Y.O.Y., Wong W.S., Lee C.K., Ng M.H.L. Use of convalescent plasma therapy in SARS patients in Hong Kong. Eur J Clin Microbiol Infect Dis. 2005;24:44–46. doi: 10.1007/s10096-004-1271-9.
    1. Yeh K.-M., Chiueh T.-S., Siu L.K., Lin J.-C., Chan P.K.S., Peng M.-Y. Experience of using convalescent plasma for severe acute respiratory syndrome among healthcare workers in a Taiwan hospital. J Antimicrob Chemother. 2005;56:919–922. doi: 10.1093/jac/dki346.
    1. Zhou X., Zhao M., Wang F., Jiang T., Li Y., Nie W. Epidemiologic features, clinical diagnosis and therapy of first cluster of patients with severe acute respiratory syndrome in Beijing area. Zhonghua Yi Xue Za Zhi. 2003;83:1018–1022.
    1. Kong L. Letter to editor. Transfus Apher Sci. 2003;29:101. doi: 10.1016/S1473-0502(03)00109-5.
    1. Wong V.W.S., Dai D., Wu A.K.L., Sung J.J.Y. Treatment of severe acute respiratory syndrome with convalescent plasma. Hong Kong Med J. 2003;9:199–201.
    1. Hung I.F., To KK, Lee C.-K., Lee K.-L., Chan K., Yan W.-W. Convalescent plasma treatment reduced mortality in patients with severe pandemic influenza A (H1N1) 2009 virus infection. Clin Infect Dis. 2011;52:447–456. doi: 10.1093/cid/ciq106.
    1. Chan K.K.C., Lee K.L., Lam P.K.N., Law K.I., Joynt G.M., Yan W.W. Hong Kong’s experience on the use of extracorporeal membrane oxygenation for the treatment of influenza A (H1N1) Hong Kong Med J. 2010;16:447–454.
    1. Yu H., Gao Z., Feng Z., Shu Y., Xiang N., Zhou L. Clinical characteristics of 26 human cases of highly pathogenic avian influenza A (H5N1) virus infection in China. PLoS One. 2008;3 doi: 10.1371/journal.pone.0002985.
    1. Kong L.K., Zhou B.P. Successful treatment of avian influenza with convalescent plasma. Hong Kong Med J. 2006;12:489.
    1. Wong S.S.Y., Yuen K.-Y. The management of coronavirus infections with particular reference to SARS. J Antimicrob Chemother. 2008;62:437–441. doi: 10.1093/jac/dkn243.
    1. Zhang H., Zeng Y., Lin Z., Chen W., Liang J., Zhang H. Clinical characteristics and therapeutic experience of case of severe highly pathogenic A/H5N1 avian influenza with bronchopleural fistula. Zhonghua jie he he hu xi za zhi = Zhonghua jiehe he huxi zazhi = Chinese J Tuberc Respir Dis. 2009;32:356–359.
    1. Tiberghien P., de Lambalerie X., Morel P., Gallian P., Lacombe K., Yazdanpanah Y. Collecting and evaluating convalescent plasma for COVID-19 treatment: Why and how. Vox Sang. 2020 doi: 10.1111/vox.12926.
    1. Tissot J.-D., Garraud O. Ethics and blood donation: A marriage of convenience. Press Medicale. 2016;45:e247–e252. doi: 10.1016/j.lpm.2016.06.016.
    1. Bloch E.M., Shoham S., Casadevall A., Sachais B.S., Shaz B., Winters J.L. Deployment of convalescent plasma for the prevention and treatment of COVID-19. J Clin Invest. 2020 doi: 10.1172/JCI138745.
    1. Dodd R.Y., Crowder L.A., Haynes J.M., Notari E.P., Stramer S.L., Steele W.R. Screening blood donors for HIV, HCV, and HBV at the American Red Cross: 10-year trends in prevalence, incidence, and residual risk, 2007 to 2016. Transfus Med Rev. 2020 doi: 10.1016/j.tmrv.2020.02.001.
    1. Niazi S.K., Bhatti F.A., Salamat N., Ghani E., Tayyab M. Impact of nucleic acid amplification test on screening of blood donors in Northern Pakistan. Transfusion. 2015;55:1803–1811. doi: 10.1111/trf.13017.
    1. Bello-López J.M., Delgado-Balbuena L., Rojas-Huidobro D., Rojo-Medina J. Treatment of platelet concentrates and plasma with riboflavin and UV light: Impact in bacterial reduction. Transfus Clin Biol. 2018;25:197–203. doi: 10.1016/j.tracli.2018.03.004.
    1. Benjamin R.J., McLaughlin L.S. Plasma components: Properties, differences, and uses. Transfusion. 2012;52(Suppl. 1):9S–19S. doi: 10.1111/j.1537-2995.2012.03622.x.
    1. Du L., He Y., Zhou Y., Liu S., Zheng B.-J., Jiang S. The spike protein of SARS-CoV--a target for vaccine and therapeutic development. Nat Rev Microbiol. 2009;7:226–236. doi: 10.1038/nrmicro2090.
    1. Tian X., Li C., Huang A., Xia S., Lu S., Shi Z. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg Microbes Infect. 2020;9:382–385. doi: 10.1080/22221751.2020.1729069.
    1. Wu F., Wang A., Liu M., Wang Q., Chen J., Xia S. Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered patient cohort and their implications. MedRxiv. 2020 doi: 10.1101/2020.03.30.20047365.
    1. Hsueh P.-R., Huang L.-M., Chen P.-J., Kao C.-L., Yang P.-C. Chronological evolution of IgM, IgA, IgG and neutralisation antibodies after infection with SARS-associated coronavirus. Clin Microbiol Infect. 2004;10:1062–1066. doi: 10.1111/j.1469-0691.2004.01009.x.
    1. Gorse G.J., Donovan M.M., Patel G.B. Antibodies to coronaviruses are higher in older compared with younger adults and binding antibodies are more sensitive than neutralizing antibodies in identifying coronavirus-associated illnesses. J Med Virol. 2020;92:512–517. doi: 10.1002/jmv.25715.
    1. Rokni M., Ghasemi V., Tavakoli Z. Immune responses and pathogenesis of SARS-CoV-2 during an outbreak in Iran: Comparison with SARS and MERS. Rev Med Virol. 2020 doi: 10.1002/rmv.2107.
    1. Chaigne B., Mouthon L. Mechanisms of action of intravenous immunoglobulin. Transfus Apher Sci. 2017;56:45–49. doi: 10.1016/j.transci.2016.12.017.
    1. Zhang Y., Xiao M., Zhang S., Xia P., Cao W., Jiang W. Coagulopathy and antiphospholipid antibodies in patients with Covid-19. N Engl J Med. 2020;382(17):e38. doi: 10.1056/NEJMc2007575. In press.
    1. Lutz H.U., Späth P.J. Anti-inflammatory effect of intravenous immunoglobulin mediated through modulation of complement activation. Clin Rev Allergy Immunol. 2005;29:207–212. doi: 10.1385/CRIAI:29:3:207.
    1. Basta M., Van Goor F., Luccioli S., Billings E.M., Vortmeyer A.O., Baranyi L. F(ab)’2-mediated neutralization of C3a and C5a anaphylatoxins: a novel effector function of immunoglobulins. Nat Med. 2003;9:431–438. doi: 10.1038/nm836.
    1. Gralinski L.E., Sheahan T.P., Morrison T.E., Menachery V.D., Jensen K., Leist S.R. Complement activation contributes to severe acute respiratory syndrome coronavirus pathogenesis. MBio. 2018;9 doi: 10.1128/mBio.01753-18.
    1. Abe Y., Horiuchi A., Miyake M., Kimura S. Anti-cytokine nature of natural human immunoglobulin: one possible mechanism of the clinical effect of intravenous immunoglobulin therapy. Immunol Rev. 1994;139:5–19. doi: 10.1111/j.1600-065x.1994.tb00854.x.
    1. Kulkarni R. Antibody-dependent enhancement of viral infections BT - Dynamics of immune activation in viral diseases. In: Bramhachari P.V., editor. Dyn. Immune Act. Viral Dis. Springer Singapore; Singapore: 2020. pp. 9–41. editor.
    1. Vatti A., Monsalve D.M., Pacheco Y., Chang C., Anaya J.-M., Gershwin M.E. Original antigenic sin: A comprehensive review. J Autoimmun. 2017;83:12–21. doi: 10.1016/j.jaut.2017.04.008.
    1. Wang S.-F., Tseng S.-P., Yen C.-H., Yang J.-Y., Tsao C.-H., Shen C.-W. Antibody-dependent SARS coronavirus infection is mediated by antibodies against spike proteins. Biochem Biophys Res Commun. 2014;451:208–214. doi: 10.1016/j.bbrc.2014.07.090.
    1. Casadevall A., Pirofski L. The convalescent sera option for containing COVID-19. J Clin Invest. 2020;130:1545–1548. doi: 10.1172/JCI138003.
    1. Nimmerjahn F., Ravetch J.V. Anti-inflammatory actions of intravenous immunoglobulin. Annu Rev Immunol. 2008;26:513–533. doi: 10.1146/annurev.immunol.26.021607.090232.
    1. Kiessling P., Lledo-Garcia R., Watanabe S., Langdon G., Tran D., Bari M. The FcRn inhibitor rozanolixizumab reduces human serum IgG concentration: A randomized phase 1 study. Sci Transl Med. 2017;9 doi: 10.1126/scitranslmed.aan1208.
    1. Litzman J. Influence of FCRN expression on lung decline and intravenous immunoglobulin catabolism in common variable immunodeficiency patients. Clin Exp Immunol. 2014;178(Suppl):103–104. doi: 10.1111/cei.12529.
    1. Akilesh S., Petkova S., Sproule T.J., Shaffer D.J., Christianson G.J., Roopenian D. The MHC class I-like Fc receptor promotes humorally mediated autoimmune disease. J Clin Invest. 2004;113:1328–1333. doi: 10.1172/JCI18838.
    1. Hansen R.J., Balthasar J.P. Effects of intravenous immunoglobulin on platelet count and antiplatelet antibody disposition in a rat model of immune thrombocytopenia. Blood. 2002;100:2087–2093.
    1. Hansen R.J., Balthasar J.P. Intravenous immunoglobulin mediates an increase in anti-platelet antibody clearance via the FcRn receptor. Thromb Haemost. 2002;88:898–899.
    1. Jin J., Gong J., Lin B., Li Y., He Q. FcγRIIb expression on B cells is associated with treatment efficacy for acute rejection after kidney transplantation. Mol Immunol. 2017;85:283–292. doi: 10.1016/j.molimm.2017.03.006.
    1. Shrestha S., Wiener H., Shendre A., Kaslow R.A., Wu J., Olson A. Role of activating FcγR gene polymorphisms in Kawasaki disease susceptibility and intravenous immunoglobulin response. Circ Cardiovasc Genet. 2012;5:309–316. doi: 10.1161/CIRCGENETICS.111.962464.
    1. Kaneko Y., Nimmerjahn F., Ravetch J.V. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science. 2006;313(80):670–673. doi: 10.1126/science.1129594.
    1. Othy S., Topcu S., Saha C., Kothapalli P., Lacroix-Desmazes S., Kasermann F. Sialylation may be dispensable for reciprocal modulation of helper T cells by intravenous immunoglobulin. Eur J Immunol. 2014;44:2059–2063. doi: 10.1002/eji.201444440.
    1. Bayry J., Lacroix-Desmazes S., Carbonneil C., Misra N., Donkova V., Pashov A. Inhibition of maturation and function of dendritic cells by intravenous immunoglobulin. Blood. 2003;101:758–765. doi: 10.1182/blood-2002-05-1447.
    1. Sharma M., Schoindre Y., Hegde P., Saha C., Maddur M.S., Stephen-Victor E. Intravenous immunoglobulin-induced IL-33 is insufficient to mediate basophil expansion in autoimmune patients. Sci Rep. 2014;4:5672. doi: 10.1038/srep05672.
    1. Tjon A.S.W., van Gent R., Jaadar H., Martin van Hagen P., Mancham S., van der Laan L.J.W. Intravenous immunoglobulin treatment in humans suppresses dendritic cell function via stimulation of IL-4 and IL-13 production. J Immunol. 2014;192:5625–5634. doi: 10.4049/jimmunol.1301260.
    1. Karnam A., Rambabu N., Das M., Bou-Jaoudeh M., Delignat S., Käsermann F. Therapeutic normal IgG intravenous immunoglobulin activates Wnt-β-catenin pathway in dendritic cells. Commun Biol. 2020;3:96. doi: 10.1038/s42003-020-0825-4.
    1. Bayry J., Lacroix-Desmazes S., Delignat S., Mouthon L., Weill B., Kazatchkine M.D. Intravenous immunoglobulin abrogates dendritic cell differentiation induced by interferon-alpha present in serum from patients with systemic lupus erythematosus. Arthritis Rheum. 2003;48:3497–3502. doi: 10.1002/art.11346.
    1. Sharma M., Saha C., Schoindre Y., Gilardin L., Benveniste O., Kaveri S.V. Interferon-α inhibition by intravenous immunoglobulin is independent of modulation of the plasmacytoid dendritic cell population in the circulation: Comment on the article by Wiedeman et al. Arthritis Rheumatol. 2014;66:2308–2309. doi: 10.1002/art.38683.
    1. Aubin E., Lemieux R., Bazin R. Indirect inhibition of in vivo and in vitro T-cell responses by intravenous immunoglobulins due to impaired antigen presentation. Blood. 2010;115:1727–1734. doi: 10.1182/blood-2009-06-225417.
    1. Issekutz A.C., Rowter D., Miescher S., Käsermann F. Intravenous IgG (IVIG) and subcutaneous IgG (SCIG) preparations have comparable inhibitory effect on T cell activation, which is not dependent on IgG sialylation, monocytes or B cells. Clin Immunol. 2015;160:123–132. doi: 10.1016/j.clim.2015.05.003.
    1. Ahmadi M., Abdolmohammadi-Vahid S., Ghaebi M., Aghebati-Maleki L., Afkham A., Danaii S. Effect of intravenous immunoglobulin on Th1 and Th2 lymphocytes and improvement of pregnancy outcome in recurrent pregnancy loss (RPL) Biomed Pharmacother. 2017;92:1095–1102. doi: 10.1016/j.biopha.2017.06.001.
    1. Hung I.F.N., KKW To, Lee C.-K., Lee K.-L., Yan W.-W., Chan K. Hyperimmune IV immunoglobulin treatment: a multicenter double-blind randomized controlled trial for patients with severe 2009 influenza A(H1N1) infection. Chest. 2013;144:464–473. doi: 10.1378/chest.12-2907.
    1. Klehmet J., Goehler J., Ulm L., Kohler S., Meisel C., Meisel A. Effective treatment with intravenous immunoglobulins reduces autoreactive T-cell response in patients with CIDP. J Neurol Neurosurg Psychiatry. 2015;86:686–691. doi: 10.1136/jnnp-2014-307708.
    1. Trépanier P., Chabot D., Bazin R. Intravenous immunoglobulin modulates the expansion and cytotoxicity of CD8+ T cells. Immunology. 2014;141:233–241. doi: 10.1111/imm.12189.
    1. Ye Q., Gong F.-Q., Shang S.-Q., Hu J. Intravenous immunoglobulin treatment responsiveness depends on the degree of CD8+ T cell activation in Kawasaki disease. Clin Immunol. 2016;171:25–31. doi: 10.1016/j.clim.2016.08.012.
    1. Maddur M.S., Vani J., Hegde P., Lacroix-Desmazes S., Kaveri S.V., Bayry J. Inhibition of differentiation, amplification, and function of human TH17 cells by intravenous immunoglobulin. J Allergy Clin Immunol. 2011;127:823–827. doi: 10.1016/j.jaci.2010.12.1102.
    1. Maddur M.S., Kaveri S.V., Bayry J. Comparison of different IVIg preparations on IL-17 production by human Th17 cells. Autoimmun Rev. 2011;10:809–810. doi: 10.1016/j.autrev.2011.02.007.
    1. Kim D.J., Lee S.K., Kim J.Y., Na B.J., Hur S.E., Lee M. Intravenous immunoglobulin G modulates peripheral blood Th17 and Foxp3(+) regulatory T cells in pregnant women with recurrent pregnancy loss. Am J Reprod Immunol. 2014;71:441–450. doi: 10.1111/aji.12208.
    1. Tackenberg B., Jelcic I., Baerenwaldt A., Oertel W.H., Sommer N., Nimmerjahn F. Impaired inhibitory Fc gamma receptor IIB expression on B cells in chronic inflammatory demyelinating polyneuropathy. Proc Natl Acad Sci U S A. 2009;106:4788–4792. doi: 10.1073/pnas.0807319106.
    1. Nikolova K.A., Tchorbanov A.I., Djoumerska-Alexieva I.K., Nikolova M., Vassilev T.L. Intravenous immunoglobulin up-regulates the expression of the inhibitory Fc gamma IIB receptor on B cells. Immunol Cell Biol. 2009;87:529–533. doi: 10.1038/icb.2009.36.
    1. Séité J.-F., Guerrier T., Cornec D., Jamin C., Youinou P., Hillion S. TLR9 responses of B cells are repressed by intravenous immunoglobulin through the recruitment of phosphatase. J Autoimmun. 2011;37:190–197. doi: 10.1016/j.jaut.2011.05.014.
    1. Le Pottier L., Bendaoud B., Dueymes M., Daridon C., Youinou P., Shoenfeld Y. BAFF, a new target for intravenous immunoglobulin in autoimmunity and cancer. J Clin Immunol. 2007;27:257–265. doi: 10.1007/s10875-007-9082-2.
    1. Prasad N.K., Papoff G., Zeuner A., Bonnin E., Kazatchkine M.D., Ruberti G. Therapeutic preparations of normal polyspecific IgG (IVIg) induce apoptosis in human lymphocytes and monocytes: a novel mechanism of action of IVIg involving the Fas apoptotic pathway. J Immunol. 1998;161:3781–3790.
    1. Paquin Proulx D., Aubin E., Lemieux R., Bazin R. Inhibition of B cell-mediated antigen presentation by intravenous immunoglobulins (IVIg) Clin Immunol. 2010;135:422–429. doi: 10.1016/j.clim.2010.01.001.
    1. Séïté J.-F., Cornec D., Renaudineau Y., Youinou P., Mageed R.A., Hillion S. IVIg modulates BCR signaling through CD22 and promotes apoptosis in mature human B lymphocytes. Blood. 2010;116:1698–1704. doi: 10.1182/blood-2009-12-261461.
    1. Blanco-Melo D., Nilsson-Payant B.E., Chun Liu W., Uhl S., Hoagland D., Møller R. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020 doi: 10.1016/j.cell.2020.04.026. In press.
    1. Kozicky L.K., Zhao Z.Y., Menzies S.C., Fidanza M., Reid G.S.D., Wilhelmsen K. Intravenous immunoglobulin skews macrophages to an anti-inflammatory, IL-10-producing activation state. J Leukoc Biol. 2015;98:983–994. doi: 10.1189/jlb.3VMA0315-078R.
    1. Meregalli C., Marjanovic I., Scali C., Monza L., Spinoni N., Galliani C. High-dose intravenous immunoglobulins reduce nerve macrophage infiltration and the severity of bortezomib-induced peripheral neurotoxicity in rats. J Neuroinflammation. 2018;15:232. doi: 10.1186/s12974-018-1270-x.
    1. Zhang Bin, Liu Shuyi, Tan Tan, Huang Wenhui, Dong Yuhao, Chen Luyan. Treatment With Convalescent Plasma for Critically Ill Patients With SARS-CoV-2 Infection. Chest. 2020 doi: 10.1016/j.chest.2020.03.039. In press.
    1. Rajendran Karthick, Narayanasamy Krishnasamy, Rangarajan Jayanthi, Rathinam Jeyalalitha, Natarajan Murugan, Ramachandran Arunkumar. Convalescent plasma transfusion for the treatment of COVID‐19: Systematic review. J Med Virol. 2020 doi: 10.1002/jmv.25961. In press.

Source: PubMed

3
Předplatit