Relation between Cortical Activation and Effort during Robot-Mediated Walking in Healthy People: A Functional Near-Infrared Spectroscopy Neuroimaging Study (fNIRS)

Julien Bonnal, Fanny Monnet, Ba-Thien Le, Ophélie Pila, Anne-Gaëlle Grosmaire, Canan Ozsancak, Christophe Duret, Pascal Auzou, Julien Bonnal, Fanny Monnet, Ba-Thien Le, Ophélie Pila, Anne-Gaëlle Grosmaire, Canan Ozsancak, Christophe Duret, Pascal Auzou

Abstract

Force and effort are important components of a motor task that can impact rehabilitation effectiveness. However, few studies have evaluated the impact of these factors on cortical activation during gait. The purpose of the study was to investigate the relation between cortical activation and effort required during exoskeleton-mediated gait at different levels of physical assistance in healthy individuals. Twenty-four healthy participants walked 10 m with an exoskeleton that provided four levels of assistance: 100%, 50%, 0%, and 25% resistance. Functional near-infrared spectroscopy (fNIRS) was used to measure cerebral flow dynamics with a 20-channel (plus two reference channels) device that covered most cortical motor regions bilaterally. We measured changes in oxyhemoglobin (HbO2) and deoxyhemoglobin (HbR). According to HbO2 levels, cortical activation only differed slightly between the assisted conditions and rest. In contrast, bilateral and widespread cortical activation occurred during the two unassisted conditions (somatosensory, somatosensory association, primary motor, premotor, and supplementary motor cortices). A similar pattern was seen for HbR levels, with a smaller number of significant channels than for HbO2. These results confirmed the hypothesis that there is a relation between cortical activation and level of effort during gait. This finding should help to optimize neurological rehabilitation strategies to drive neuroplasticity.

Keywords: cortical activation; exoskeleton; functional near-infrared spectroscopy; lower extremity; physical assistance; rehabilitation; training modes.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Atalante® exoskeleton (Wandercraft company, Paris, France). (a) Participant using the exoskeleton Atalante®; (b) mechanical design with ranges of motion.
Figure 2
Figure 2
Position of the optodes. Schematics of the optode locations among the EEG 10/20 system. (a) A total of 18 optodes, including 10 light source (in yellow) and 8 detectors (in blue), were arranged on the scalp to enable 20-channel measurement. There were two additional short channels (CH21 and CH22). (b) The anatomical locations of the optodes were superimposed onto the normalized brain surface in the MNI standard brain template.
Figure 3
Figure 3
Results of the hemodynamic response by level of assistance (A100%, A50%, A0%, A−25%) for each channel. The results are expressed by mean (average of the participants). Graph locations were organized according to the anatomical correspondence using the EEG 10/20 system. The time window analyzed was 45 s, from 10 s before the beginning of the task to 35 s after the task. The red traces indicate HbO2 levels and the blue traces indicate HbR levels. The red boxes indicate a significant difference between rest and task periods for HbO2 levels. The blue boxes indicate a significant difference between rest and task periods for HbR levels. * p < 0.05; ** p < 0.01 (Benjamini–Hochberg correction).
Figure 4
Figure 4
Mean activation maps of cerebral cortex for HbO2 and HbR during gait for each level of assistance (A100%, A50%, A0%, A−25%). The data are t values, t: statistical value of sample t-test with a significance level of p < 0.05 (Benjamini–Hochberg correction). The change from red to yellow indicates that the degree of activation is from low to high. The coordinates in the figure show the activation range of the cerebral cortex in each level of assistance. Only statistically significant responses were illustrated. The data and maps were calculated and generated by NIRS-SPM.
Figure 5
Figure 5
Two-by-two comparisons of HbO2 levels for each level of assistance (A100%, A50%, A0%, A−25%). The data are t values, t: statistical value of sample t-test with a significance level of p < 0.05 (Benjamini–Hochberg correction). The change from red to yellow indicates that the degree of difference is from low to high. Only statistically significant comparisons were illustrated. The data and maps were calculated and generated by NIRS-SPM.

References

    1. Park J., Kim T.-H. The Effects of Balance and Gait Function on Quality of Life of Stroke Patients. NeuroRehabilitation. 2019;44:37–41. doi: 10.3233/NRE-182467.
    1. Mehrholz J., Pohl M., Platz T., Kugler J., Elsner B. Electromechanical and Robot-Assisted Arm Training for Improving Activities of Daily Living, Arm Function, and Arm Muscle Strength after Stroke. Cochrane Database Syst. Rev. 2018;9:CD006876. doi: 10.1002/14651858.CD006876.pub5.
    1. Rodgers H., Bosomworth H., Krebs H.I., van Wijck F., Howel D., Wilson N., Finch T., Alvarado N., Ternent L., Fernandez-Garcia C., et al. Robot-Assisted Training Compared with an Enhanced Upper Limb Therapy Programme and with Usual Care for Upper Limb Functional Limitation after Stroke: The RATULS Three-Group RCT. Health Technol. Assess. 2020;24:1–232. doi: 10.3310/hta24540.
    1. Bütefisch C., Hummelsheim H., Denzler P., Mauritz K.H. Repetitive Training of Isolated Movements Improves the Outcome of Motor Rehabilitation of the Centrally Paretic Hand. J. Neurol. Sci. 1995;130:59–68. doi: 10.1016/0022-510X(95)00003-K.
    1. Kwakkel G., Wagenaar R.C., Twisk J.W., Lankhorst G.J., Koetsier J.C. Intensity of Leg and Arm Training after Primary Middle-Cerebral-Artery Stroke: A Randomised Trial. Lancet. 1999;354:191–196. doi: 10.1016/S0140-6736(98)09477-X.
    1. Moucheboeuf G., Griffier R., Gasq D., Glize B., Bouyer L., Dehail P., Cassoudesalle H. Effects of Robotic Gait Training after Stroke: A Meta-Analysis. Ann. Phys. Rehabil. Med. 2020;63:518–534. doi: 10.1016/j.rehab.2020.02.008.
    1. Mehrholz J., Thomas S., Kugler J., Pohl M., Elsner B. Electromechanical-Assisted Training for Walking after Stroke. Cochrane Database Syst. Rev. 2020;10:CD006185. doi: 10.1002/14651858.CD006185.pub5.
    1. Chollet F., DiPiero V., Wise R.J., Brooks D.J., Dolan R.J., Frackowiak R.S. The Functional Anatomy of Motor Recovery after Stroke in Humans: A Study with Positron Emission Tomography. Ann. Neurol. 1991;29:63–71. doi: 10.1002/ana.410290112.
    1. Cramer S.C., Nelles G., Benson R.R., Kaplan J.D., Parker R.A., Kwong K.K., Kennedy D.N., Finklestein S.P., Rosen B.R. A Functional MRI Study of Subjects Recovered from Hemiparetic Stroke. Stroke. 1997;28:2518–2527. doi: 10.1161/01.STR.28.12.2518.
    1. García-Cossio E., Severens M., Nienhuis B., Duysens J., Desain P., Keijsers N., Farquhar J. Decoding Sensorimotor Rhythms during Robotic-Assisted Treadmill Walking for Brain Computer Interface (BCI) Applications. PLoS ONE. 2015;10:e0137910. doi: 10.1371/journal.pone.0137910.
    1. Bishnoi A., Holtzer R., Hernandez M.E. Brain Activation Changes While Walking in Adults with and without Neurological Disease: Systematic Review and Meta-Analysis of Functional Near-Infrared Spectroscopy Studies. Brain Sci. 2021;11:291. doi: 10.3390/brainsci11030291.
    1. Pelicioni P.H.S., Tijsma M., Lord S.R., Menant J. Prefrontal Cortical Activation Measured by FNIRS during Walking: Effects of Age, Disease and Secondary Task. PeerJ. 2019;7:e6833. doi: 10.7717/peerj.6833.
    1. Miyai I., Tanabe H.C., Sase I., Eda H., Oda I., Konishi I., Tsunazawa Y., Suzuki T., Yanagida T., Kubota K. Cortical Mapping of Gait in Humans: A near-Infrared Spectroscopic Topography Study. Neuroimage. 2001;14:1186–1192. doi: 10.1006/nimg.2001.0905.
    1. Kurz M.J., Wilson T.W., Arpin D.J. Stride-Time Variability and Sensorimotor Cortical Activation during Walking. Neuroimage. 2012;59:1602–1607. doi: 10.1016/j.neuroimage.2011.08.084.
    1. Kim H.Y., Yang S.P., Park G.L., Kim E.J., You J.S.H. Best Facilitated Cortical Activation during Different Stepping, Treadmill, and Robot-Assisted Walking Training Paradigms and Speeds: A Functional near-Infrared Spectroscopy Neuroimaging Study. NeuroRehabilitation. 2016;38:171–178. doi: 10.3233/NRE-161307.
    1. Hepp-Reymond M., Kirkpatrick-Tanner M., Gabernet L., Qi H.X., Weber B. Context-Dependent Force Coding in Motor and Premotor Cortical Areas. Exp. Brain Res. 1999;128:123–133. doi: 10.1007/s002210050827.
    1. Dettmers C., Ridding M.C., Stephan K.M., Lemon R.N., Rothwell J.C., Frackowiak R.S. Comparison of Regional Cerebral Blood Flow with Transcranial Magnetic Stimulation at Different Forces. J. Appl. Physiol. 1996;81:596–603. doi: 10.1152/jappl.1996.81.2.596.
    1. Yoon T., Vanden Noven M.L., Nielson K.A., Hunter S.K. Brain Areas Associated with Force Steadiness and Intensity during Isometric Ankle Dorsiflexion in Men and Women. Exp. Brain Res. 2014;232:3133–3145. doi: 10.1007/s00221-014-3976-z.
    1. Derosière G., Alexandre F., Bourdillon N., Mandrick K., Ward T.E., Perrey S. Similar Scaling of Contralateral and Ipsilateral Cortical Responses during Graded Unimanual Force Generation. Pt 1Neuroimage. 2014;85:471–477. doi: 10.1016/j.neuroimage.2013.02.006.
    1. Shibuya K., Kuboyama N., Yamada S. Complementary Activation of the Ipsilateral Primary Motor Cortex during a Sustained Handgrip Task. Eur. J. Appl. Physiol. 2016;116:171–178. doi: 10.1007/s00421-015-3262-1.
    1. Tyagi O., Zhu Y., Johnson C., Mehta R.K., Sasangohar F., Erraguntla M., Qaraqe K. Neural Signatures of Handgrip Fatigue in Type 1 Diabetic Men and Women. Front. Hum. Neurosci. 2020;14:564969. doi: 10.3389/fnhum.2020.564969.
    1. Kim H. Cerebral Hemodynamics Predicts the Cortical Area and Coding Scheme in the Human Brain for Force Generation by Wrist Muscles. Behav. Brain Res. 2020;396:112865. doi: 10.1016/j.bbr.2020.112865.
    1. Shi P., Li A., Yu H. Response of the Cerebral Cortex to Resistance and Non-Resistance Exercise under Different Trajectories: A Functional Near-Infrared Spectroscopy Study. Front. Neurosci. 2021;15:685920. doi: 10.3389/fnins.2021.685920.
    1. Wagner J., Solis-Escalante T., Grieshofer P., Neuper C., Müller-Putz G., Scherer R. Level of Participation in Robotic-Assisted Treadmill Walking Modulates Midline Sensorimotor EEG Rhythms in Able-Bodied Subjects. Neuroimage. 2012;63:1203–1211. doi: 10.1016/j.neuroimage.2012.08.019.
    1. Thickbroom G.W., Phillips B.A., Morris I., Byrnes M.L., Mastaglia F.L. Isometric Force-Related Activity in Sensorimotor Cortex Measured with Functional MRI. Exp. Brain Res. 1998;121:59–64. doi: 10.1007/s002210050437.
    1. Dettmers C., Fink G.R., Lemon R.N., Stephan K.M., Passingham R.E., Silbersweig D., Holmes A., Ridding M.C., Brooks D.J., Frackowiak R.S. Relation between Cerebral Activity and Force in the Motor Areas of the Human Brain. J. Neurophysiol. 1995;74:802–815. doi: 10.1152/jn.1995.74.2.802.
    1. Keisker B., Hepp-Reymond M.-C., Blickenstorfer A., Kollias S.S. Differential Representation of Dynamic and Static Power Grip Force in the Sensorimotor Network. Eur. J. Neurosci. 2010;31:1483–1491. doi: 10.1111/j.1460-9568.2010.07172.x.
    1. Alexandre F., Heraud N., Oliver N., Varray A. Cortical Implication in Lower Voluntary Muscle Force Production in Non-Hypoxemic COPD Patients. PLoS ONE. 2014;9:e100961. doi: 10.1371/journal.pone.0100961.
    1. Harada T., Miyai I., Suzuki M., Kubota K. Gait Capacity Affects Cortical Activation Patterns Related to Speed Control in the Elderly. Exp. Brain Res. 2009;193:445–454. doi: 10.1007/s00221-008-1643-y.
    1. Oh S., Song M., Kim J. Validating Attentive Locomotion Training Using Interactive Treadmill: An FNIRS Study. J. Neuroeng. Rehabil. 2018;15:122. doi: 10.1186/s12984-018-0472-x.
    1. Saleh S., Sandroff B.M., Vitiello T., Owoeye O., Hoxha A., Hake P., Goverover Y., Wylie G., Yue G., DeLuca J. The Role of Premotor Areas in Dual Tasking in Healthy Controls and Persons with Multiple Sclerosis: An FNIRS Imaging Study. Front. Behav. Neurosci. 2018;12:296. doi: 10.3389/fnbeh.2018.00296.
    1. Kerdraon J., Previnaire J.G., Tucker M., Coignard P., Allegre W., Knappen E., Ames A. Evaluation of Safety and Performance of the Self Balancing Walking System Atalante in Patients with Complete Motor Spinal Cord Injury. Spinal Cord Ser. Cases. 2021;7:71. doi: 10.1038/s41394-021-00432-3.
    1. Lancaster J.L., Woldorff M.G., Parsons L.M., Liotti M., Freitas C.S., Rainey L., Kochunov P.V., Nickerson D., Mikiten S.A., Fox P.T. Automated Talairach Atlas Labels for Functional Brain Mapping. Hum. Brain Mapp. 2000;10:120–131. doi: 10.1002/1097-0193(200007)10:3<120::AID-HBM30>;2-8.
    1. Ye J.C., Tak S., Jang K.E., Jung J., Jang J. NIRS-SPM: Statistical Parametric Mapping for near-Infrared Spectroscopy. Neuroimage. 2009;44:428–447. doi: 10.1016/j.neuroimage.2008.08.036.
    1. Scholkmann F., Wolf M. General Equation for the Differential Pathlength Factor of the Frontal Human Head Depending on Wavelength and Age. J. Biomed. Opt. 2013;18:105004. doi: 10.1117/1.JBO.18.10.105004.
    1. Huppert T.J., Hoge R.D., Diamond S.G., Franceschini M.A., Boas D.A. A Temporal Comparison of BOLD, ASL, and NIRS Hemodynamic Responses to Motor Stimuli in Adult Humans. Neuroimage. 2006;29:368–382. doi: 10.1016/j.neuroimage.2005.08.065.
    1. Zama T., Shimada S. Simultaneous Measurement of Electroencephalography and Near-Infrared Spectroscopy during Voluntary Motor Preparation. Sci. Rep. 2015;5:16438. doi: 10.1038/srep16438.
    1. Hoshi Y. Hemodynamic Signals in FNIRS. Prog. Brain Res. 2016;225:153–179. doi: 10.1016/bs.pbr.2016.03.004.
    1. Nishiyori R., Bisconti S., Ulrich B. Motor Cortex Activity during Functional Motor Skills: An FNIRS Study. Brain Topogr. 2016;29:42–55. doi: 10.1007/s10548-015-0443-5.
    1. Gentile E., Ricci K., Delussi M., Brighina F., de Tommaso M. Motor Cortex Function in Fibromyalgia: A Study by Functional Near-Infrared Spectroscopy. Pain Res. Treat. 2019;2019:2623161. doi: 10.1155/2019/2623161.
    1. Hirth C., Obrig H., Valdueza J., Dirnagl U., Villringer A. Simultaneous Assessment of Cerebral Oxygenation and Hemodynamics during a Motor Task. A Combined near Infrared and Transcranial Doppler Sonography Study. Adv. Exp. Med. Biol. 1997;411:461–469. doi: 10.1007/978-1-4615-5865-1_59.
    1. Sato T., Ito M., Suto T., Kameyama M., Suda M., Yamagishi Y., Ohshima A., Uehara T., Fukuda M., Mikuni M. Time Courses of Brain Activation and Their Implications for Function: A Multichannel near-Infrared Spectroscopy Study during Finger Tapping. Neurosci. Res. 2007;58:297–304. doi: 10.1016/j.neures.2007.03.014.
    1. Dravida S., Noah J.A., Zhang X., Hirsch J. Comparison of Oxyhemoglobin and Deoxyhemoglobin Signal Reliability with and without Global Mean Removal for Digit Manipulation Motor Tasks. Neurophotonics. 2018;5:011006. doi: 10.1117/1.NPh.5.1.011006.
    1. Chen W.-L., Wagner J., Heugel N., Sugar J., Lee Y.-W., Conant L., Malloy M., Heffernan J., Quirk B., Zinos A., et al. Functional Near-Infrared Spectroscopy and Its Clinical Application in the Field of Neuroscience: Advances and Future Directions. Front. Neurosci. 2020;14:724. doi: 10.3389/fnins.2020.00724.
    1. Peters S., Lim S.B., Louie D.R., Yang C.-L., Eng J.J. Passive, yet Not Inactive: Robotic Exoskeleton Walking Increases Cortical Activation Dependent on Task. J. Neuroeng. Rehabil. 2020;17:107. doi: 10.1186/s12984-020-00739-6.
    1. Suzuki M., Miyai I., Ono T., Oda I., Konishi I., Kochiyama T., Kubota K. Prefrontal and Premotor Cortices Are Involved in Adapting Walking and Running Speed on the Treadmill: An Optical Imaging Study. Neuroimage. 2004;23:1020–1026. doi: 10.1016/j.neuroimage.2004.07.002.
    1. de Belli V., Orcioli-Silva D., Beretta V.S., Vitório R., Zampier V.C., Nóbrega-Sousa P., da Conceição N.R., Gobbi L.T.B. Prefrontal Cortical Activity During Preferred and Fast Walking in Young and Older Adults: An FNIRS Study. Neuroscience. 2021;473:81–89. doi: 10.1016/j.neuroscience.2021.08.019.
    1. Hawkins K.A., Fox E.J., Daly J.J., Rose D.K., Christou E.A., McGuirk T.E., Otzel D.M., Butera K.A., Chatterjee S.A., Clark D.J. Prefrontal Over-Activation during Walking in People with Mobility Deficits: Interpretation and Functional Implications. Hum. Mov. Sci. 2018;59:46–55. doi: 10.1016/j.humov.2018.03.010.
    1. Knaepen K., Mierau A., Swinnen E., Fernandez Tellez H., Michielsen M., Kerckhofs E., Lefeber D., Meeusen R. Human-Robot Interaction: Does Robotic Guidance Force Affect Gait-Related Brain Dynamics during Robot-Assisted Treadmill Walking? PLoS ONE. 2015;10:e0140626. doi: 10.1371/journal.pone.0140626.
    1. Evarts E.V., Fromm C., Kröller J., Jennings V.A. Motor Cortex Control of Finely Graded Forces. J. Neurophysiol. 1983;49:1199–1215. doi: 10.1152/jn.1983.49.5.1199.
    1. Georgopoulos A.P., Ashe J., Smyrnis N., Taira M. The Motor Cortex and the Coding of Force. Science. 1992;256:1692–1695. doi: 10.1126/science.256.5064.1692.
    1. Maier M.J., Rosenbaum D., Haeussinger F.B., Brüne M., Enzi B., Plewnia C., Fallgatter A.J., Ehlis A.-C. Forgiveness and Cognitive Control-Provoking Revenge via Theta-Burst-Stimulation of the DLPFC. Neuroimage. 2018;183:769–775. doi: 10.1016/j.neuroimage.2018.08.065.
    1. Ashe J. Force and the Motor Cortex. Behav. Brain Res. 1997;86:255–269. doi: 10.1016/S0166-4328(97)00752-3.
    1. Keisker B., Hepp-Reymond M.-C., Blickenstorfer A., Meyer M., Kollias S.S. Differential Force Scaling of Fine-Graded Power Grip Force in the Sensorimotor Network. Hum. Brain Mapp. 2009;30:2453–2465. doi: 10.1002/hbm.20676.
    1. Villiger M., Estévez N., Hepp-Reymond M.-C., Kiper D., Kollias S.S., Eng K., Hotz-Boendermaker S. Enhanced Activation of Motor Execution Networks Using Action Observation Combined with Imagination of Lower Limb Movements. PLoS ONE. 2013;8:e72403. doi: 10.1371/journal.pone.0072403.
    1. Pinti P., Tachtsidis I., Hamilton A., Hirsch J., Aichelburg C., Gilbert S., Burgess P.W. The Present and Future Use of Functional Near-Infrared Spectroscopy (FNIRS) for Cognitive Neuroscience. Ann. N. Y. Acad. Sci. 2020;1464:5–29. doi: 10.1111/nyas.13948.
    1. Takakusaki K. Functional Neuroanatomy for Posture and Gait Control. J. Mov. Disord. 2017;10:1–17. doi: 10.14802/jmd.16062.
    1. Vitorio R., Stuart S., Mancini M. Executive Control of Walking in People with Parkinson’s Disease With Freezing of Gait. Neurorehabil. Neural Repair. 2020;34:1138–1149. doi: 10.1177/1545968320969940.
    1. Turner D.L., Ramos-Murguialday A., Birbaumer N., Hoffmann U., Luft A. Neurophysiology of Robot-Mediated Training and Therapy: A Perspective for Future Use in Clinical Populations. Front. Neurol. 2013;4:184. doi: 10.3389/fneur.2013.00184.
    1. Calabrò R.S., Cacciola A., Bertè F., Manuli A., Leo A., Bramanti A., Naro A., Milardi D., Bramanti P. Robotic Gait Rehabilitation and Substitution Devices in Neurological Disorders: Where Are We Now? Neurol. Sci. 2016;37:503–514. doi: 10.1007/s10072-016-2474-4.
    1. Uçar D.E., Paker N., Buğdaycı D. Lokomat: A Therapeutic Chance for Patients with Chronic Hemiplegia. NeuroRehabilitation. 2014;34:447–453. doi: 10.3233/NRE-141054.
    1. Husemann B., Müller F., Krewer C., Heller S., Koenig E. Effects of Locomotion Training with Assistance of a Robot-Driven Gait Orthosis in Hemiparetic Patients after Stroke: A Randomized Controlled Pilot Study. Stroke. 2007;38:349–354. doi: 10.1161/01.STR.0000254607.48765.cb.
    1. Miyai I., Suzuki M., Hatakenaka M., Kubota K. Effect of Body Weight Support on Cortical Activation during Gait in Patients with Stroke. Exp. Brain Res. 2006;169:85–91. doi: 10.1007/s00221-005-0123-x.
    1. Dettmers C., Lemon R.N., Stephan K.M., Fink G.R., Frackowiak R.S. Cerebral Activation during the Exertion of Sustained Static Force in Man. Neuroreport. 1996;7:2103–2110. doi: 10.1097/00001756-199609020-00008.
    1. Ludman C.N., Cooper T.G., Ploutz-Synder L.L., Potchen E.J., Meyer R.A. Force of Voluntary Exercise Does Not Affect Sensorimotor Cortex Activation as Detected by Functional MRI at 1.5 T. NMR Biomed. 1996;9:228–232. doi: 10.1002/(SICI)1099-1492(199608)9:5<228::AID-NBM420>;2-1.
    1. Głowiński S., Ptak M. A kinematic model of a humanoid lower limb exoskeleton with pneumatic actuators. Acta Bioeng. Biomech. 2022;24:145–157. doi: 10.37190/ABB-01991-2021-05.
    1. Zhao M., Bonassi G., Samogin J., Taberna G.A., Pelosin E., Nieuwboer A., Avanzino L., Mantini D. Frequency-dependent modulation of neural oscillations across the gait cycle. Hum. Brain Mapp. 2022;43:3404–3415. doi: 10.1002/hbm.25856.

Source: PubMed

3
Předplatit