Efficacy of melatonin for sleep disturbance following traumatic brain injury: a randomised controlled trial

Natalie A Grima, Shantha M W Rajaratnam, Darren Mansfield, Tracey L Sletten, Gershon Spitz, Jennie L Ponsford, Natalie A Grima, Shantha M W Rajaratnam, Darren Mansfield, Tracey L Sletten, Gershon Spitz, Jennie L Ponsford

Abstract

Background: The study aimed to determine the efficacy of melatonin supplementation for sleep disturbances in patients with traumatic brain injury (TBI).

Methods: This is a randomised double-blind placebo-controlled two-period two-treatment (melatonin and placebo) crossover study. Outpatients were recruited from Epworth and Austin Hospitals Melbourne, Australia. They had mild to severe TBI (n = 33) reporting sleep disturbances post-injury (mean age 37 years, standard deviation 11 years; 67% men). They were given prolonged-release melatonin formulation (2 mg; Circadin®) and placebo capsules for 4 weeks each in a counterbalanced fashion separated by a 48-hour washout period. Treatment was taken nightly 2 hours before bedtime. Serious adverse events and side-effects were monitored.

Results: Melatonin supplementation significantly reduced global Pittsburgh Sleep Quality Index scores relative to placebo, indicating improved sleep quality [melatonin 7.68 vs. placebo 9.47, original score units; difference -1.79; 95% confidence interval (CI), -2.70 to -0.88; p ≤ 0.0001]. Melatonin had no effect on sleep onset latency (melatonin 1.37 vs. placebo 1.42, log units; difference -0.05; 95% CI, -0.14 to 0.03; p = 0.23). With respect to the secondary outcomes, melatonin supplementation increased sleep efficiency on actigraphy, and vitality and mental health on the SF-36 v1 questionnaire (p ≤ 0.05 for each). Melatonin decreased anxiety on the Hospital Anxiety Depression Scale and fatigue on the Fatigue Severity Scale (p ≤ 0.05 for both), but had no significant effect on daytime sleepiness on the Epworth Sleepiness Scale (p = 0.15). No serious adverse events were reported.

Conclusions: Melatonin supplementation over a 4-week period is effective and safe in improving subjective sleep quality as well as some aspects of objective sleep quality in patients with TBI.

Trial registration: Identifier: 12611000734965; Prospectively registered on 13 July 2011.

Keywords: Acquired brain injury; Insomnia; Sleep; Traumatic brain injury.

Conflict of interest statement

Ethics approval and consent to participate

The study was prospectively approved by the following ethics committees, and participant consent was obtained from each participant before enrolment into the study as per the guidelines outlined by each of the human research committees: Monash University Human Research Committee (CF11/1900-2011001061), Epworth HealthCare Human Research Committee (52111) and Austin Health Human Research Committee (H2013/04950).

Consent for publication

Not applicable.

Competing interests

All authors have completed the International Committee of Medical Journal Editors uniform disclosure form at www.icmje.org/coi_disclosure.pdf. NAG has nothing to disclose. SMWR reports receiving research support outside of the submitted work from Vanda Pharmaceuticals, Phillips Respironics, Teva Pharmaceuticals, Optalert, Philips Lighting, Tyco Healthcare, Compumedics, Rio Tinto and Shell. SMWR also reports that he is the Director of the Sleep Health Foundation as well as the Program Leader of the Cooperative Research Centre for Alertness, Safety and Productivity. SMWR also serves as an advisory board member for Teva Pharmaceuticals (fees paid to Monash University). DM reports receiving grants outside of the submitted work from Fisher Paykel Pty and Rhinomed Pty. TLS reports she serves as a Project Leader in the Cooperative Research Centre for Alertness, Safety and Productivity. GS and JLP have nothing to disclose.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Overall patient disposition. A total of 35 participants were randomized to treatment. The final ITT sample size comprised of 33 participants. Abbreviations are as follows: ITT intention-to-treat, PSQI Pittsburgh Sleep Quality Index, TBI traumatic brain injury

References

    1. Ouellet MC, Beaulieu-Bonneau S, Morin CM. Sleep–wake disturbances after traumatic brain injury. Lancet Neurol. 2015;14(7):746–57. doi: 10.1016/S1474-4422(15)00068-X.
    1. Mathias JL, Alvaro PK. Prevalence of sleep disturbances, disorders, and problems following traumatic brain injury: a meta-analysis. Sleep Med. 2012;13(7):898–905. doi: 10.1016/j.sleep.2012.04.006.
    1. Imbach LL, Büchele F, Valko PO, Li T, Maric A, Stover JF, et al. Sleep–wake disorders persist 18 months after traumatic brain injury but remain underrecognized. Neurology. 2016;86(21):1945–9. doi: 10.1212/WNL.0000000000002697.
    1. Mahmood O, Rapport LJ, Hanks RA, Fichtenberg NL. Neuropsychological performance and sleep disturbance following traumatic brain injury. J Head Trauma Rehabil. 2004;19(5):378–90. doi: 10.1097/00001199-200409000-00003.
    1. Nakase-Richardson R, Sherer M, Barnett SD, Yablon SA, Evans CC, Kretzmer T, et al. Prospective evaluation of the nature, course, and impact of acute sleep abnormality after traumatic brain injury. Arch Phys Med Rehabil. 2013;94(5):875–82. doi: 10.1016/j.apmr.2013.01.001.
    1. Beaulieu-Bonneau S, Morin CM. Sleepiness and fatigue following traumatic brain injury. Sleep Med. 2012;13(6):598–605. doi: 10.1016/j.sleep.2012.02.010.
    1. Fogelberg DJ, Hoffman JM, Dikmen S, Temkin NR, Bell KR. Association of sleep and co-occurring psychological conditions at 1 year after traumatic brain injury. Arch Phys Med Rehabil. 2012;93(8):1313–8. doi: 10.1016/j.apmr.2012.04.031.
    1. Grima NA, Ponsford JL, St. Hilaire MA, Mansfield DR, Rajaratnam SM. Circadian melatonin rhythm following traumatic brain injury. Neurorehabil Neural Repair. 2016;30(10):972–7. doi: 10.1177/1545968316650279.
    1. Shekleton JA, Parcell DL, Redman JR, Phipps-Nelson J, Ponsford JL, Rajaratnam SMW. Sleep disturbance and melatonin levels following traumatic brain injury. Neurology. 2010;74(21):1732–8. doi: 10.1212/WNL.0b013e3181e0438b.
    1. Sack RL, Brandes RW, Kendall AR, Lewy AJ. Entrainment of free-running circadian rhythms by melatonin in blind people. N Engl J Med. 2000;343(15):1070–7. doi: 10.1056/NEJM200010123431503.
    1. Hack LM, Lockley SW, Arendt J, Skene DJ. The effects of low-dose 0.5-mg melatonin on the free-running circadian rhythms of blind subjects. J Biol Rhythms. 2003;18(5):420–9. doi: 10.1177/0748730403256796.
    1. Lockley SW, Skene DJ, James K, Thapan K, Wright J, Arendt J. Melatonin administration can entrain the free-running circadian system of blind subjects. J Endocrinol. 2000;164(1):R1–6. doi: 10.1677/joe.0.164R001.
    1. American Academy of Sleep Medicine . International classification of sleep disorders. 3. Darien: American Academy of Sleep Medicine; 2014.
    1. Fictenberg NL, Putnam SH, Mann NR, Zafonte RD, Millard AE. Insomnia screening in postacute traumatic brain injury: utility and validity of the Pittsburgh Sleep Quality Index. Am J Phys Med Rehabil. 2001;80(5):339–45. doi: 10.1097/00002060-200105000-00003.
    1. American Academy of Sleep Medicine . International classification of sleep disorders, revised: diagnostic and coding manual. Chicago: American Academy of Sleep Medicine; 2001.
    1. Garkinkel D, Laudon M, Nof D, Zisapel N. Improvement of sleep quality in elderly people by controlled-release melatonin. Lancet. 1995;346(8974):541–4.
    1. Wade AG, Ford I, Crawford G, McConnachie A, Nir T, Laudon M, Zisapel N. Nightly treatment of primary insomnia with prolonged release melatonin for 6 months: a randomized placebo controlled trial on age and endogenous melatonin as predictors of efficacy and safety. BioMed Central Med. 2010;8.
    1. Wade AG, Ford I, Crawford G, McMahon AD, Nir T, Laudon M, et al. Efficacy of prolonged release melatonin in insomnia patients aged 55–80 years: quality of sleep and next-day alertness outcomes. Curr Med Res Opin. 2007;23:2597–605. doi: 10.1185/030079907X233098.
    1. Lemoine P, Nir T, Laudon M, Zisapel N. Prolonged-release melatonin improves sleep quality and morning alertness in insomnia patients aged 55 years and older and has no withdrawal effects. J Sleep Res. 2007;16(4):372–80.
    1. Sinclair KL, Ponsford JL, Rajaratnam SMW. Actigraphic assessment of sleep disturbances following traumatic brain injury. Behav Sleep Med. 2012.
    1. Ancoli-Israel S, Cole R, Alessi C, Chambers M, Moorcroft W, Pollak CP. The role of actigraphy in the study of sleep and circadian rhythms. Sleep. 2003;26(3):342–92.
    1. Rajaratnam SMW, Middleton B, Stone BM, Arendt J, Dijk DJ. Melatonin advances the circadian timing of EEG sleep and directly facilitates sleep without altering its duration in extended sleep opportunities in humans. J Physiol. 2004;561(1):339–51. doi: 10.1113/jphysiol.2004.073742.
    1. Bruni O, Alonso-Alconada D, Besag F, Biran V, Braam W, Cortese S, et al. Immediate and prolonged-release melatonin in children with neurodevelopmental disabilities. Author reply to Prof. Zisapel. Eur J Paediatr Neurol. 2017;21(2):420–1. doi: 10.1016/j.ejpn.2017.01.009.
    1. Department of Health and Ageing, Therapeutic Goods Administration. Australian public assessment report for melatonin: circadin. Canberra: Australian Government; 2011. Online access: .
    1. Kemp S, Biswas R, Neumann V, Coughlan A. The value of melatonin for sleep disorders occurring post-head injury: a pilot RCT. Brain Inj. 2004;18(9):911–19. doi: 10.1080/02699050410001671892.
    1. Spong J, Kennedy GA, Tseng J, Brown DJ, Armstrong S, Berlowitz DJ. Sleep disruption in tetraplegia: a randomised, double-blind, placebo-controlled crossover trial of 3 mg melatonin. Spinal Cord. 2014;52(8):629–34. doi: 10.1038/sc.2014.84.
    1. Haimov I, Lavie P, Laudon M, Herer P, Vigder C, Zisapel I. Melatonin replacement therapy of elderly insomniacs. Sleep. 1995;18(7):598–603. doi: 10.1093/sleep/18.7.598.
    1. Spong J, Kennedy GA, Brown Jr RD, Armstrong BG, Berlowitz D. Melatonin supplementation in patients with complete tetraplegia and poor sleep. Sleep Disord. 2013;2013(128197):1-8.
    1. Scheer FAJL, Zeitzer JM, Ayas NT, Brown R, Czeisler CA, Shea SA. Reduced sleep efficiency in cervical spinal cord injury; association with abolished night time melatonin secretion. Spinal Cord. 2006;44(2):78–81. doi: 10.1038/sj.sc.3101784.
    1. Zeitzer JM, Ayas NT, Shea SA, Brown R, Czeisler CA. Absence of detectable melatonin and preservation of cortisol and thyrotropin rhythms in tetraplegia. J Clin Endocrinol Metab. 2000;85(6):2189–96.
    1. Shochat T, Luboshitzky R, Lavie P. Nocturnal melatonin onset is phase locked to the primary sleep gate. Am J Physiol. 1997;273(1 Pt 2):R364–70.
    1. Lavie P. Melatonin: role in gating nocturnal rise in sleep propensity. J Biol Rhythm. 1997;12(6):657–65. doi: 10.1177/074873049701200622.
    1. Liu C, Weaver DR, Jin X, Shearman LP, Pieschl RL, Gribkoff VK, et al. Molecular dissection of two distinct actions of melatonin on the suprachiasmatic circadian clock. Neuron. 1997;19(1):91–102. doi: 10.1016/S0896-6273(00)80350-5.
    1. Rajaratnam SMW, Cohen DA, Rogers NL. Melatonin and melatonin analogues. Sleep Med Clin. 2009;4(2):179–93. doi: 10.1016/j.jsmc.2009.02.007.
    1. Cagnacci A, Elliott JA, Yen SSC. Melatonin: a major regulator of the circadian rhythm of core temperature in humans. J Clin Endocrinol Metab. 1992;75:447–52.
    1. Rogers NL, Dinges DF, Kennaway DJ, Dawson D. Potential action of melatonin in insomnia. Sleep. 2003;26(8):1058–9.
    1. Pierrefiche G, Zerbib R, Laborit H. Anxiolytic activity of melatonin in mice: involvement of benzodiazepine receptors. Res Commun Chem Pathol Pharmacol. 1993;82(2):131–42.
    1. Golombek DA, Martini M, Cardinali DP. Melatonin as an anxiolytic in rats: time dependence and interaction with the central GABAergic system. Eur J Pharmacol. 1993;237(2-3):231–6. doi: 10.1016/0014-2999(93)90273-K.
    1. Marseglia L, D'Angelo G, Manti S, Aversa S, Arrigo T, Reiter RJ, et al. Analgesic, anxiolytic and anaesthetic effects of melatonin: new potential uses in pediatrics. Int J Mol Sci. 2015;16(1):1209–20. doi: 10.3390/ijms16011209.
    1. Wade AG, Crawford G, Ford I, McConnachie A, Nir T, Laudon M, et al. Prolonged release melatonin in the treatment of primary insomnia: evaluation of the age cut-off for short- and long-term response. Curr Med Res Opin. 2011;27(1):87–98. doi: 10.1185/03007995.2010.537317.
    1. Department of Health and Ageing, Therapeutic goods administration. Australian Public Assessment Report for Melatonin. In: Australian Government. 2009. p. 42–53.
    1. Larson EB, Zollman FS. The effect of sleep medications on cognitive recovery from traumatic brain injury. J Head Trauma Rehabil. 2010;25(1):61–7.
    1. Li Pi Shan RS, Ashworth NL. Comparison of lorazepam and zopiclone for insomnia in patients with stroke and brain injury: a randomized, crossover, double-blinded trial. Am J Phys Med Rehabil. 2004;83(6):421–7. doi: 10.1097/00002060-200406000-00003.
    1. Cunnington D, Junge MF, Fernando AT. Insomnia: prevalence, consequences and effective treatment. Med J Aust. 2013;199(8):S36–40. doi: 10.5694/mja13.10718.
    1. Valko PO, Gavrilov V, Yamamoto M, Noain D, Reddy H, Haybaeck J, et al. Damage to arousal-promoting brainstem neurons with traumatic brain injury. Sleep. 2016;39(6):1249–52. doi: 10.5665/sleep.5844.
    1. Valko PO, Gavrilov YV, Yamamoto M, Finn K, Reddy H, Haybaeck J, et al. Damage to histaminergic tuberomammillary neurons and other hypothalamic neurons with traumatic brain injury. Ann Neurol. 2014;77(1):177–82. doi: 10.1002/ana.24298.
    1. Baumann CR. Loss of hypocretin (orexin) neurons with traumatic brain injury. Ann Neurol. 2009;66(4):555–9. doi: 10.1002/ana.21836.
    1. Lavigne G, Khoury S, Chauny JM, Desautels A. Pain and sleep in post-concussion/mild traumatic brain injury. Pain. 2015;156(Suppl 1):S75–85. doi: 10.1097/j.pain.0000000000000111.
    1. Khoury S, Chouchou F, Amzica F, Giguère JF, Denis R, Rouleau GA, et al. Rapid EEG activity during sleep dominates in mild traumatic brain injury patients with acute pain. J Neurotrauma. 2013;30(8):633–41. doi: 10.1089/neu.2012.2519.
    1. Ponsford JL, Parcell DL, Sinclair KL, Roper M, Rajaratnam SMW. Changes in sleep patterns following traumatic brain injury: a controlled study. Neurorehabil Neural Repair. 2013;27(7):613–21. doi: 10.1177/1545968313481283.
    1. Nguyen S, McKay A, Wong D, Rajaratnam SMW, Spitz G, Williams G, et al. Cognitive behavior therapy to treat sleep disturbance and fatigue after traumatic brain injury: a pilot randomized controlled trial. Arch Phys Med Rehabil. 2017;98(8):1508–1517.e1502.

Source: PubMed

3
Předplatit