Effect of age and the APOE gene on metabolite concentrations in the posterior cingulate cortex

Sana Suri, Uzay Emir, Charlotte J Stagg, Jamie Near, Ralf Mekle, Florian Schubert, Enikő Zsoldos, Abda Mahmood, Archana Singh-Manoux, Mika Kivimäki, Klaus P Ebmeier, Clare E Mackay, Nicola Filippini, Sana Suri, Uzay Emir, Charlotte J Stagg, Jamie Near, Ralf Mekle, Florian Schubert, Enikő Zsoldos, Abda Mahmood, Archana Singh-Manoux, Mika Kivimäki, Klaus P Ebmeier, Clare E Mackay, Nicola Filippini

Abstract

Proton magnetic resonance spectroscopy (1H-MRS) has provided valuable information about the neurochemical profile of Alzheimer's disease (AD). However, its clinical utility has been limited in part by the lack of consistent information on how metabolite concentrations vary in the normal aging brain and in carriers of apolipoprotein E (APOE) ε4, an established risk gene for AD. We quantified metabolites within an 8cm3 voxel within the posterior cingulate cortex (PCC)/precuneus in 30 younger (20-40 years) and 151 cognitively healthy older individuals (60-85 years). All 1H-MRS scans were performed at 3T using the short-echo SPECIAL sequence and analyzed with LCModel. The effect of APOE was assessed in a sub-set of 130 volunteers. Older participants had significantly higher myo-inositol and creatine, and significantly lower glutathione and glutamate than younger participants. There was no significant effect of APOE or an interaction between APOE and age on the metabolite profile. Our data suggest that creatine, a commonly used reference metabolite in 1H-MRS studies, does not remain stable across adulthood within this region and therefore may not be a suitable reference in studies involving a broad age-range. Increases in creatine and myo-inositol may reflect age-related glial proliferation; decreases in glutamate and glutathione suggest a decline in synaptic and antioxidant efficiency. Our findings inform longitudinal clinical studies by characterizing age-related metabolite changes in a non-clinical sample.

Keywords: APOE gene; Aging; Magnetic resonance spectroscopy; Metabolites; Posterior cingulate cortex; Precuneus.

Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

Figures

Fig. 1
Fig. 1
(A) Placement of the 8 cm3 1H-MRS voxel in the PCC/precuneus on a midline T1-weighted image. (B-C) Example 1H-MRS spectra showing the LCModel fit (Version 6.3-1B) for a participant from the (B) younger and (C) older age group. The lower black curve is the baseline. The data is plotted as a thin black spectrum and the LCModel fit to the data is the thick red spectrum. The top panel contains the residuals, which are fairly scattered about zero, indicating a good fit of the model to the data. Abbreviations: A: anterior, P: posterior, S: superior, I: inferior.
Fig. 2
Fig. 2
The effect of age on metabolites. Graphs show significant reductions in glutathione and glutamate, and increases in myo-inositol and creatine in the older group. Spectral line width, sex, voxel GM and CSF content were included as covariates. Metabolites are expressed as normalised concentrations. Bars represent means±SD. *p

References

    1. Allaili N., Valabregue R., Auerbach E.J., Guillemot V., Yahia-Cherif L., Bardinet E., Jabourian M., Fossati P., Lehericy S., Marjanska M. Single-voxel H spectroscopy in the human hippocampus at 3 T using the LASER sequence: characterization of neurochemical profile and reproducibility. NMR Biomed. 2015
    1. Andronesi O.C., Gagoski B. a, Sorensen a G. Neurologic 3D MR spectroscopic imaging with low-power adiabatic pulses and fast spiral acquisition. Radiology. 2012;262:647–661.
    1. Angelie E., Bonmartin A., Boudraa A., Gonnaud P.-M., Mallet J.-J., Sappey-Marinier D. Regional differences and metabolic changes in normal aging of the human brain: proton MR spectroscopic imaging study. AJNR Am. J. Neuroradiol. 2001;22:119–127.
    1. Beckman K.B., Ames B.N. The free radical theory of aging matures. Physiol. Rev. 1998;78:547–581.
    1. Bednarik P., Moheet A., Deelchand D.K., Emir U.E., Eberly L.E., Bares M., Seaquist E.R., Oz G. Feasibility and reproducibility of neurochemical profile quantification in the human hippocampus at 3 T. NMR Biomed. 2015;28:685–693.
    1. Bertram L., Tanzi R.E. Genome-wide association studies in Alzheimer's disease. Hum. Mol. Genet. 2009;18:R137–R145.
    1. Brand A., Richter-Landsberg C., Leibfritz D. Multinuclear NMR studies on the energy metabolism of glial and neuronal cells. Dev. Neurosci. 1993;15:289–298.
    1. Brooks J.C., Roberts N., Kemp G.J., Gosney M.A., Lye M., Whitehouse G.H. A proton magnetic resonance spectroscopy study of age-related changes in frontal lobe metabolite concentrations. Cereb. Cortex. 2001;11:598–605.
    1. Buckner R.L., Snyder A.Z., Shannon B.J., LaRossa G., Sachs R., Fotenos A.F., Sheline Y.I., Klunk W.E., Mathis C.A., Morris J.C., Mintun M.A. Molecular, structural, and functional characterization of Alzheimer's disease: evidence for a relationship between default activity, amyloid, and memory. J. Neurosci. 2005;25:7709–7717.
    1. Calderon-Garciduenas L., Mora-Tiscareno A., Melo-Sanchez G., Rodriguez-Diaz J., Torres-Jardon R., Styner M., Mukherjee P.S., Lin W., Jewells V. A critical proton MR spectroscopy marker of Alzheimer's disease early neurodegenerative change: low hippocampal NAA/Cr ratio impacts APOE?? 4 Mexico City children and their parents. J. Alzheimer's Dis. 2015;48:1065–1075.
    1. Callot V., Galanaud D., Le Fur Y., Confort-Gouny S., Ranjeva J.-P., Cozzone P.J. (1)H MR spectroscopy of human brain tumours: a practical approach. Eur. J. Radiol. 2008;67:268–274.
    1. Cecil K.M. MR spectroscopy of metabolic disorders. Neuroimaging Clin. N. Am. 2006;16:87–116.
    1. Chang L., Jiang C.S., Ernst T. Effects of age and sex on brain glutamate and other metabolites. Magn. Reson. Imaging. 2009;27:142–145.
    1. Chang L., Ernst T., Poland R.E., Jenden D.J. In vivo proton magnetic resonance spectroscopy of the normal aging human brain. Life Sci. 1996;58:2049–2056.
    1. Charlton R.A., McIntyre D.J.O., Howe F.A., Morris R.G., Markus H.S. The relationship between white matter brain metabolites and cognition in normal aging: the GENIE study. Brain Res. 2007;1164:108–116.
    1. Chiu P.-W., Mak H.K.-F., Yau K.K.-W., Chan Q., Chang R.C.-C., Chu L.-W. Metabolic changes in the anterior and posterior cingulate cortices of the normal aging brain: proton magnetic resonance spectroscopy study at 3 T. Age. 2014;36:251–264.
    1. Deelchand D.K., Marjańska M., Hodges J.S., Terpstra M. Sensitivity and specificity of human brain glutathione concentrations measured using short-TE 1 H MRS at 7 T. NMR Biomed. 2016;29:600–606.
    1. Driscoll I., Hamilton D.A., Petropoulos H., Yeo R.A., Brooks W.M., Baumgartner R.N., Sutherland R.J. The aging hippocampus: cognitive, biochemical and structural findings. Cereb. Cortex. 2003;13:1344–1351.
    1. Emir U.E., Deelchand D., Henry P.-G., Terpstra M. Noninvasive quantification of T2 and concentrations of ascorbate and glutathione in the human brain from the same double-edited spectra. NMR Biomed. 2011;24:263–269.
    1. Emir U.E., Raatz S., McPherson S., Hodges J.S., Torkelson C., Tawfik P., White T., Terpstra M. Noninvasive quantification of ascorbate and glutathione concentration in the elderly human brain. NMR Biomed. 2011;24:888–894.
    1. Filippini N., Zsoldos E., Haapakoski R., Sexton C.E., Mahmood A., Allan C.L., Topiwala A., Valkanova V., Brunner E.J., Shipley M.J., Auerbach E., Moeller S., Uğurbil K., Xu J., Yacoub E., Andersson J., Bijsterbosch J., Clare S., Griffanti L., Hess A.T., Jenkinson M., Miller K.L., Salimi-Khorshidi G., Sotiropoulos S.N., Voets N.L., Smith S.M., Geddes J.R., Singh-Manoux A., Mackay C.E., Kivimäki M., Ebmeier K.P. Study protocol: the Whitehall II imaging sub-study. BMC Psychiatry. 2014;14:159.
    1. Forman H.J., Zhang H., Rinna A. Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol. Asp. Med. 2009;30:1–12.
    1. Geurts J.J.G., Barkhof F., Castelijns J.A., Uitdehaag B.M.J., Polman C.H., Pouwels P.J.W. Quantitative 1H-MRS of healthy human cortex, hippocampus, and thalamus: metabolite concentrations, quantification precision, and reproducibility. J. Magn. Reson. Imaging. 2004;20:366–371.
    1. Godlewska B.R., Near J., Cowen P.J. Neurochemistry of major depression: a study using magnetic resonance spectroscopy. Psychopharmacology. 2015;232:501–507.
    1. Gomar J.J., Gordon M.L., Dickinson D., Kingsley P.B., Uluğ A.M., Keehlisen L., Huet S., Buthorn J.J., Koppel J., Christen E., Conejero-Goldberg C., Davies P., Goldberg T.E. APOE genotype modulates proton magnetic resonance spectroscopy metabolites in the aging brain. Biol. Psychiatry. 2014;75:686–692.
    1. Grachev I.D., Apkarian A.V. Aging alters regional multichemical profile of the human brain: an in vivo 1H-MRS study of young versus middle-aged subjects. J. Neurochem. 2001;76:582–593.
    1. Graff-Radford J., Kantarci K. Magnetic resonance spectroscopy in Alzheimer's disease. Neuropsychiatr. Dis. Treat. 2013;9:687–696.
    1. Greicius M.D., Srivastava G., Reiss A.L., Menon V. Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc. Natl. Acad. Sci. USA. 2004;101:4637–4642.
    1. Gruber S., Pinker K., Riederer F., Chmelík M., Stadlbauer A., Bittsanský M., Mlynárik V., Frey R., Serles W., Bodamer O., Moser E. Metabolic changes in the normal ageing brain: consistent findings from short and long echo time proton spectroscopy. Eur. J. Radiol. 2008;68:320–327.
    1. Haga K.K., Khor Y.P., Farrall A., Wardlaw J.M. A systematic review of brain metabolite changes, measured with 1H magnetic resonance spectroscopy, in healthy aging. Neurobiol. Aging. 2009;30:353–363.
    1. Harada M., Miyoshi H., Otsuka H., Nishitani H., Uno M. Multivariate analysis of regional metabolic differences in normal ageing on localised quantitative proton MR spectroscopy. Neuroradiology. 2001;43:448–452.
    1. Jahng G.-H., Oh J., Lee D.-W., Kim H.-G., Rhee H.Y., Shin W., Paik J.-W., Lee K.M., Park S., Choe B.-Y., Ryu C.-W. Glutamine and glutamate complex, as measured by functional magnetic resonance spectroscopy, alters during face-name association task in patients with mild cognitive impairment and Alzheimer's disease. J. Alzheimer's Dis. 2016;52:145–159.
    1. Jansen J.F.A., Backes W.H., Nicolay K., Kooi M.E. 1H MR spectroscopy of the brain: absolute quantification of metabolites. Radiology. 2006;240:318–332.
    1. Kaiser L.G., Schuff N., Cashdollar N., Weiner M.W. Age-related glutamate and glutamine concentration changes in normal human brain: 1H MR spectroscopy study at 4 T. Neurobiol. Aging. 2005;26:665–672.
    1. Kantarci K., Smith G.E., Ivnik R.J., Petersen R.C., Boeve B.F., Knopman D.S., Tangalos E.G., Jack C.R. 1H magnetic resonance spectroscopy, cognitive function, and apolipoprotein E genotype in normal aging, mild cognitive impairment and Alzheimer's disease. J. Int. Neuropsychol. Soc. 2002;8:934–942.
    1. Kantarci K., Jack C.R., Xu Y.C., Campeau N.G., O’Brien P.C., Smith G.E., Ivnik R.J., Boeve B.F., Kokmen E., Tangalos E.G., Petersen R.C. Regional metabolic patterns in mild cognitive impairment and Alzheimer's disease: a 1H MRS study. Neurology. 2000;55:210–217.
    1. Kantarci K., Petersen R.C., Boeve B.F., Knopman D.S., Tang-Wai D.F., O’Brien P.C., Weigand S.D., Edland S.D., Smith G.E., Ivnik R.J., Ferman T.J., Tangalos E.G., Jack C.R. 1H MR spectroscopy in common dementias. Neurology. 2004;63:1393–1398.
    1. Kantarci K., Weigand S.D., Petersen R.C., Boeve B.F., Knopman D.S., Gunter J., Reyes D., Shiung M., O’Brien P.C., Smith G.E., Ivnik R.J., Tangalos E.G., Jack C.R. Longitudinal 1H MRS changes in mild cognitive impairment and Alzheimer's disease. Neurobiol. Aging. 2007;28:1330–1339.
    1. Kantarci K., Weigand S.D., Przybelski S.A., Preboske G.M., Pankratz V.S., Vemuri P., Senjem M.L., Murphy M.C., Gunter J.L., Machulda M.M., Ivnik R.J., Roberts R.O., Boeve B.F., Rocca W.A., Knopman D.S., Petersen R.C., Jack C.R. MRI and MRS predictors of mild cognitive impairment in a population-based sample. Neurology. 2013;81:126–133.
    1. van der Kouwe A.J.W., Benner T., Salat D.H., Fischl B. Brain morphometry with multiecho MPRAGE. Neuroimage. 2008;40:559–569.
    1. Kreis R. Issues of spectral quality in clinical 1H-magnetic resonance spectroscopy and a gallery of artifacts. NMR Biomed. 2004;17:361–381.
    1. Kühn S., Schubert F., Mekle R., Wenger E., Ittermann B., Lindenberger U., Gallinat J. Neurotransmitter changes during interference task in anterior cingulate cortex: evidence from fMRI-guided functional MRS at 3 T. Brain Struct. Funct. 2016;221:2541–2551.
    1. Lange T., Zaitsev M., Buechert M. Correction of frequency drifts induced by gradient heating in 1H spectra using interleaved reference spectroscopy. J. Magn. Reson. Imaging. 2011;33:748–754.
    1. Leary S.M., Brex P.A., MacManus D.G., Parker G.J., Barker G.J., Miller D.H., Thompson A.J. A (1)H magnetic resonance spectroscopy study of aging in parietal white matter: implications for trials in multiple sclerosis. Magn. Reson. Imaging. 2000;18:455–459.
    1. Lehmann M., Rohrer J.D., Clarkson M.J., Ridgway G.R., Scahill R.I., Modat M., Warren J.D., Ourselin S., Barnes J., Rossor M.N., Fox N.C. Reduced cortical thickness in the posterior cingulate gyrus is characteristic of both typical and atypical Alzheimer's disease. J. Alzheimer's Dis. 2010;20:587–598.
    1. Lundbom N., Barnett A., Bonavita S., Patronas N., Rajapakse J., Tedeschi, Di Chiro G. MR image segmentation and tissue metabolite contrast in 1H spectroscopic imaging of normal and aging brain. Magn. Reson. Med. 1999;41:841–845.
    1. Maher P. The effects of stress and aging on glutathione metabolism. Ageing Res. Rev. 2005;4:288–314.
    1. Mandal P.K., Tripathi M., Sugunan S. Brain oxidative stress: detection and mapping of anti-oxidant marker “Glutathione” in different brain regions of healthy male/female, MCI and Alzheimer patients using non-invasive magnetic resonance spectroscopy. Biochem. Biophys. Res. Commun. 2012;417:43–48.
    1. Mandal P.K., Saharan S., Tripathi M., Murari G. Brain glutathione levels – a novel biomarker for mild cognitive impairment and Alzheimer's disease. Biol. Psychiatry. 2015;78:702–710.
    1. Marsman A., Mandl R.C.W., van den Heuvel M.P., Boer V.O., Wijnen J.P., Klomp D.W.J., Luijten P.R., Hilleke E., H.P Glutamate changes in healthy young adulthood. Eur. Neuropsychopharmacol. 2013;23:1484–1490.
    1. Mekle R., Mlynárik V., Gambarota G., Hergt M., Krueger G., Gruetter R. MR spectroscopy of the human brain with enhanced signal intensity at ultrashort echo times on a clinical platform at 3 T and 7 T. Magn. Reson. Med. 2009;61:1279–1285.
    1. Miller B.L. A review of chemical issues in 1H NMR spectroscopy: n-acetyl-l-aspartate, creatine and choline. NMR Biomed. 1991;4:47–52.
    1. Miller B.L., Moats R.A., Shonk T., Ernst T., Woolley S., Ross B.D. Alzheimer disease: depiction of increased cerebral myo-inositol with proton MR spectroscopy. Radiology. 1993;187:433–437.
    1. Narayana P.A. Magnetic resonance spectroscopy in the monitoring of multiple sclerosis. J. Neuroimaging. 2005;15:46S–57S.
    1. Nasreddine Z.S., Phillips N.A., Bédirian V., Charbonneau S., Whitehead V., Collin I., Cummings J.L., Chertkow H. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005;53:695–699.
    1. Near J., Andersson J., Maron E., Mekle R., Gruetter R., Cowen P., Jezzard P. Unedited in vivo detection and quantification of γ-aminobutyric acid in the occipital cortex using short-TE MRS at 3 T. NMR Biomed. 2013;26:1353–1362.
    1. Novotny E.J., Fulbright R.K., Pearl P.L., Gibson K.M., Rothman D.L. Magnetic resonance spectroscopy of neurotransmitters in human brain. Ann. Neurol. 2003;54(Suppl 6):S25–S31.
    1. Oz G., Alger J.R., Barker P.B., Bartha R., Bizzi A., Boesch C., Bolan P.J., Kauppinen R.A. Clinical proton MR spectroscopy in central nervous system disorders. Radiology. 2014;270:658–679.
    1. Patel A.J., Hunt A., Gordon R.D., Balázs R. The activities in different neural cell types of certain enzymes associated with the metabolic compartmentation glutamate. Brain Res. 1982;256:3–11.
    1. Pfefferbaum A., Adalsteinsson E., Spielman D., Sullivan E.V., Lim K.O. In vivo spectroscopic quantification of the N-acetyl moiety, creatine, and choline from large volumes of brain gray and white matter: effects of normal aging. Magn. Reson. Med. 1999;41:276–284.
    1. Provencher S.W. Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed. 2001;14:260–264.
    1. Raininko R., Mattsson P. Metabolite concentrations in supraventricular white matter from teenage to early old age: a short echo time 1H magnetic resonance spectroscopy (MRS) study. Acta Radiol. 2010;51:309–315.
    1. Reyngoudt H., Claeys T., Vlerick L., Verleden S., Acou M., Deblaere K., De Deene Y., Audenaert K., Goethals I., Achten E. Age-related differences in metabolites in the posterior cingulate cortex and hippocampus of normal ageing brain: a 1H-MRS study. Eur. J. Radiol. 2012;81:e223–e231.
    1. Riese F., Gietl A., Zölch N., Henning A., O’Gorman R., Kälin A.M., Leh S.E., Buck A., Warnock G., Edden R.A.E., Luechinger R., Hock C., Kollias S., Michels L. Posterior cingulate γ-aminobutyric acid and glutamate/glutamine are reduced in amnestic mild cognitive impairment and are unrelated to amyloid deposition and apolipoprotein E genotype. Neurobiol. Aging. 2015;36:53–59.
    1. Ross A.J., Sachdev P.S., Wen W., Brodaty H. Longitudinal changes during aging using proton magnetic resonance spectroscopy. J. Gerontol. A Biol. Sci. Med. Sci. 2006;61:291–298.
    1. Saharan S., Mandal P.K. The emerging role of glutathione in Alzheimer's disease. J. Alzheimer's Dis. 2014;40:519–529.
    1. Sailasuta N., Ernst T., Chang L. Regional variations and the effects of age and gender on glutamate concentrations in the human brain. Magn. Reson. Imaging. 2008;26:667–675.
    1. Saunders D.E., Howe F.A., van den Boogaart A., Griffiths J.R., Brown M.M. Aging of the adult human brain: in vivo quantitation of metabolite content with proton magnetic resonance spectroscopy. J. Magn. Reson. Imaging. 1999;9:711–716.
    1. Schott J.M., Frost C., MacManus D.G., Ibrahim F., Waldman A.D., Fox N.C. Short echo time proton magnetic resonance spectroscopy in Alzheimer's disease: a longitudinal multiple time point study. Brain. 2010;133:3315–3322.
    1. Schuff N., Amend D.L., Knowlton R., Norman D., Fein G., Weiner M.W. Age-related metabolite changes and volume loss in the hippocampus by magnetic resonance spectroscopy and imaging. Neurobiol. Aging. 1999;20:279–285.
    1. Schuff N., Ezekiel F., Gamst A.C., Amend D.L., Capizzano A.A., Maudsley A.A., Weiner M.W. Region and tissue differences of metabolites in normally aged brain using multislice 1H magnetic resonance spectroscopic imaging. Magn. Reson. Med. 2001;45:899–907.
    1. Segovia G., Porras A., Del Arco A., Mora F. Glutamatergic neurotransmission in aging: a critical perspective. Mech. Ageing Dev. 2001;122:1–29.
    1. Suri S., Heise V., Trachtenberg A.J., Mackay C.E. The forgotten APOE allele: a review of the evidence and suggested mechanisms for the protective effect of APOE ɛ2. Neurosci. Biobehav. Rev. 2013;37:2878–2886.
    1. Suri S., Mackay C.E., Kelly M.E., Germuska M., Tunbridge E.M., Frisoni G.B., Matthews P.M., Ebmeier K.P., Bulte D.P., Filippini N. Reduced cerebrovascular reactivity in young adults carrying the APOE ε4 allele. Alzheimer's Dement. 2014
    1. Terhune D.B., Murray E., Near J., Stagg, Cowey C.J., Cohen Kadosh, R A. Phosphene perception relates to visual cortex glutamate levels and covaries with atypical visuospatial awareness. Cereb. Cortex. 2015
    1. Tkác I., Andersen P., Adriany G., Merkle H., Ugurbil K., Gruetter R. In vivo 1H NMR spectroscopy of the human brain at 7 T. Magn. Reson. Med. 2001;46:451–456.
    1. Tumati S., Martens S., Aleman A. Magnetic resonance spectroscopy in mild cognitive impairment: systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2013;37:2571–2586.
    1. Urenjak J., Williams S.R., Gadian D.G., Noble M. Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J. Neurosci. 1993;13:981–989.
    1. Wijtenburg S.A., Gaston F.E., Spieker E.A., Korenic S.A., Kochunov P., Hong L.E., Rowland L.M. Reproducibility of phase rotation STEAM at 3 T: focus on glutathione. Magn. Reson. Med. 2014;72:603–609.
    1. Wu W.E., Gass A., Glodzik L., Babb J.S., Hirsch J., Sollberger M., Achtnichts L., Amann M., Monsch A.U., Gonen O. Whole brain N-acetylaspartate concentration is conserved throughout normal aging. Neurobiol. Aging. 2012;33:2440–2447.
    1. Yin Z., Wu W., Liu R., Liang X., Yu T., Chen X., Feng J., Guo A., Xie Y., Yang H., Huang M., Tian C., Zhang B., Xu Y. APOE genotype and age modifies the correlation between cognitive status and metabolites from hippocampus by a 2D 1 H-MRS in non-demented elders. PeerJ. 2015;3:e1202.
    1. Zhang Y., Brady M., Smith S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging. 2001;20:45–57.

Source: PubMed

3
Předplatit