Metformin overdose causes platelet mitochondrial dysfunction in humans

Alessandro Protti, Anna Lecchi, Francesco Fortunato, Andrea Artoni, Noemi Greppi, Sarah Vecchio, Gigliola Fagiolari, Maurizio Moggio, Giacomo Pietro Comi, Giovanni Mistraletti, Barbara Lanticina, Loredana Faraldi, Luciano Gattinoni, Alessandro Protti, Anna Lecchi, Francesco Fortunato, Andrea Artoni, Noemi Greppi, Sarah Vecchio, Gigliola Fagiolari, Maurizio Moggio, Giacomo Pietro Comi, Giovanni Mistraletti, Barbara Lanticina, Loredana Faraldi, Luciano Gattinoni

Abstract

Introduction: We have recently demonstrated that metformin intoxication causes mitochondrial dysfunction in several porcine tissues, including platelets. The aim of the present work was to clarify whether it also causes mitochondrial dysfunction (and secondary lactate overproduction) in human platelets, in vitro and ex vivo.

Methods: Human platelets were incubated for 72 hours with saline or increasing doses of metformin (in vitro experiments). Lactate production, respiratory chain complex activities (spectrophotometry), mitochondrial membrane potential (flow-cytometry after staining with JC-1) and oxygen consumption (Clark-type electrode) were then measured. Platelets were also obtained from ten patients with lactic acidosis (arterial pH 6.97 ± 0.18 and lactate 16 ± 7 mmol/L) due to accidental metformin intoxication (serum drug level 32 ± 14 mg/L) and ten healthy volunteers of similar sex and age. Respiratory chain complex activities were measured as above (ex vivo experiments).

Results: In vitro, metformin dose-dependently increased lactate production (P < 0.001), decreased respiratory chain complex I activity (P = 0.009), mitochondrial membrane potential (P = 0.003) and oxygen consumption (P < 0.001) of human platelets. Ex vivo, platelets taken from intoxicated patients had significantly lower complex I (P = 0.045) and complex IV (P < 0.001) activity compared to controls.

Conclusions: Depending on dose, metformin can cause mitochondrial dysfunction and lactate overproduction in human platelets in vitro and, possibly, in vivo.

Trial registration: NCT 00942123.

Trial registration: ClinicalTrials.gov NCT00942123.

Figures

Figure 1
Figure 1
Effects of metformin on human platelet mitochondrial function. Platelets from healthy donors were incubated in plasma with saline (white bar) or metformin diluted in saline (concentration: 1.66 mg/L, grey bar; 166 mg/L, dark grey bar; or 16,600 mg/L, black bar). After 72 hours, (a) plasma pH (P < 0.001; one-way ANOVA), (b) lactate (P < 0.001; ANOVA on ranks) and (c) glucose (P < 0.001; ANOVA on ranks) concentrations, (d) platelet complex I (relative to citrate synthase, CI/CS) activity (P = 0.009; one-way ANOVA), (e) the proportion between normally polarized and abnormally depolarized mitochondria (JC-1 fluorescence ratio) (P = 0.003; one-way ANOVA) and (f) oxygen consumption (VO2) (P < 0.001; one-way ANOVA) were measured. Data are mean and SD, from four to eight experiments. * P < 0.05 versus saline (Holm-Sidak method). ANOVA, analysis of variance; SD, standard deviation.
Figure 2
Figure 2
Effects of pH on human platelet oxygen consumption. Platelets from healthy donors were incubated in plasma with saline (white bar) or metformin diluted in saline (16,600 mg/L; grey bar), lactic acid (to mimic metformin-induced lactic acidosis; dark grey bar) or metformin diluted in saline (16600 mg/L) plus sodium bicarbonate (to correct metabolic acidosis; black bar). After 72 hours, (a) plasma pH (P < 0.001; one-way ANOVA), (b) lactate (P < 0.001; one-way ANOVA) and (c) bicarbonate (P < 0.001; one-way ANOVA) concentrations and (d) platelet oxygen consumption (P < 0.001; ANOVA on ranks) (VO2) were measured. Data are mean and SD, from four experiments. * P < 0.05 versus saline (Holm-Sidak method). ANOVA, analysis of variance; SD, standard deviation.
Figure 3
Figure 3
Platelet mitochondrial function of metformin-intoxicated patients. Ten healthy subjects (white bars) and ten metformin-intoxicated patients (black bars) were studied. The activity of platelet respiratory chain (a) complex I (CI) (P = 0.045; rank sum test), (b) complex II and III (CII+III) (P = 0.571; rank sum test) and (c) complex IV (CIV; t test) (P < 0.001) are expressed relative to that of (d) citrate synthase (CS) (P = 0.307; rank sum test). (e) The proportion between normally polarized and abnormally depolarized mitochondria was assessed in terms of JC-1 fluorescence ratio (FL2/FL1) (healthy subjects, n = 6; metformin-intoxicated, n = 4) (P = 0.051; t test). Data are mean and SD. * P < 0.05 versus healthy subjects;° P = 0.05 versus healthy subjects. SD, standard deviation.

References

    1. Nathan DM, Buse JB, Davidson MB, Ferrannini E, Holman RR, Sherwin R, Zinman B. American Diabetes Association, European Association for the Study of Diabetes. Medical management of hyperglycaemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetologia. 2009;16:17–30. doi: 10.1007/s00125-008-1157-y.
    1. IMS Institute for Healthcare Informatics. The use of medicines in the United States: review of 2011.
    1. Gruppo lavoro OsMed. L'uso dei farmaci in Italia. Rapporto nazionale Gennaio-Settembre 2011. Rome; 2011.
    1. Salpeter SR, Greyber E, Pasternak GA, Salpeter EE. Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. Cochrane Database Syst Rev. 2010. p. CD002967.
    1. Peters N, Jay N, Barraud D, Cravoisy A, Nace L, Bollaert PE, Gibot S. Metformin-associated lactic acidosis in an intensive care unit. Crit Care. 2008;16:R149. doi: 10.1186/cc7137.
    1. Seidowsky A, Nseir S, Houdret N, Fourrier F. Metformin-associated lactic acidosis: a prognostic and therapeutic study. Crit Care Med. 2009;16:2191–2196. doi: 10.1097/CCM.0b013e3181a02490.
    1. Protti A, Russo R, Tagliabue P, Vecchio S, Singer M, Rudiger A, Foti G, Rossi A, Mistraletti G, Gattinoni L. Oxygen consumption is depressed in patients with lactic acidosis due to biguanide intoxication. Crit Care. 2010;16:R22. doi: 10.1186/cc8885.
    1. Personne M. Alarming increase of the number of metformin intoxications. Ten times doubled number of inquiries to the Swedish Poison Information Center since 2000. Lakartidningen. 2009;16:994.
    1. Lalau JD, Race JM. Lactic acidosis in metformin therapy: searching for a link with metformin in reports of 'metformin-associated lactic acidosis'. Diabetes Obes Metab. 2001;16:195–201. doi: 10.1046/j.1463-1326.2001.00128.x.
    1. Wills BK, Bryant SM, Buckley P, Seo B. Can acute overdose of metformin lead to lactic acidosis? Am J Emerg Med. 2010;16:857–861. doi: 10.1016/j.ajem.2009.04.012.
    1. Wang DS, Kusuhara H, Kato Y, Jonker JW, Schinkel AH, Sugiyama Y. Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin. J Pharmacol Exp Ther. 2002;16:510–515. doi: 10.1124/jpet.102.034140.
    1. El-Mir MY, Nogueira V, Fontaine E, Avéret N, Rigoulet M, Leverve X. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem. 2000;16:223–228. doi: 10.1074/jbc.275.1.223.
    1. Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J. 2000;16:607–614. doi: 10.1042/0264-6021:3480607.
    1. Dykens JA, Jamieson J, Marroquin L, Nadanaciva S, Billis PA, Will Y. Biguanide-induced mitochondrial dysfunction yields increased lactate production and cytotoxicity of aerobically-poised HepG2 cells and human hepatocytes in vitro. Toxicol Appl Pharmacol. 2008;16:203–210. doi: 10.1016/j.taap.2008.08.013.
    1. Stephenne X, Foretz M, Taleux N, van der Zon GC, Sokal E, Hue L, Viollet B, Guigas B. Metformin activates AMP-activated protein kinase in primary human hepatocytes by decreasing cellular energy status. Diabetologia. 2011;16:3101–3110. doi: 10.1007/s00125-011-2311-5.
    1. Fujita Y, Hosokawa M, Fujimoto S, Mukai E, Abudukadier A, Obara A, Ogura M, Nakamura Y, Toyoda K, Nagashima K, Seino Y, Inagaki N. Metformin suppresses hepatic gluconeogenesis and lowers fasting blood glucose levels through reactive nitrogen species in mice. Diabetologia. 2010;16:1472–1481. doi: 10.1007/s00125-010-1729-5.
    1. Wang DS, Kusuhara H, Kato Y, Jonker JW, Schinkel AH, Sugiyama Y. Involvement of organic cation transporter 1 in the lactic acidosis caused by metformin. Mol Pharmacol. 2003;16:844–848. doi: 10.1124/mol.63.4.844.
    1. Protti A, Fortunato F, Monti M, Vecchio S, Gatti S, Comi GP, De Giuseppe R, Gattinoni L. Metformin overdose, but not lactic acidosis per se, inhibits oxygen consumption in pigs. Crit Care. 2012;16:R75. doi: 10.1186/cc11332.
    1. El-Mir MY, Detaille D, R-Villanueva G, Delgado-Esteban M, Guigas B, Attia S, Fontaine E, Almeida A, Leverve X. Neuroprotective role of antidiabetic drug metformin against apoptotic cell death in primary cortical neurons. J Mol Neurosci. 2008;16:77–87. doi: 10.1007/s12031-007-9002-1.
    1. Hinke SA, Martens GA, Cai Y, Finsi J, Heimberg H, Pipeleers D, Van de Casteele M. Methyl succinate antagonises biguanide-induced AMPK-activation and death of pancreatic beta-cells through restoration of mitochondrial electron transfer. Br J Pharmacol. 2007;16:1031–1043.
    1. Zmijewski JW, Lorne E, Zhao X, Tsuruta Y, Sha Y, Liu G, Siegal GP, Abraham E. Mitochondrial respiratory complex I regulates neutrophil activation and severity of lung injury. Am J Respir Crit Care Med. 2008;16:168–179. doi: 10.1164/rccm.200710-1602OC.
    1. Detaille D, Guigas B, Leverve X, Wiernsperger N, Devos P. Obligatory role of membrane events in the regulatory effect of metformin on the respiratory chain function. Biochem Pharmacol. 2002;16:1259–1272. doi: 10.1016/S0006-2952(02)00858-4.
    1. Detaille D, Guigas B, Chauvin C, Batandier C, Fontaine E, Wiernsperger N, Leverve X. Metformin prevents high-glucose-induced endothelial cell death through a mitochondrial permeability transition-dependent process. Diabetes. 2005;16:2179–2187. doi: 10.2337/diabetes.54.7.2179.
    1. Guigas B, Detaille D, Chauvin C, Batandier C, De Oliveira F, Fontaine E, Leverve X. Metformin inhibits mitochondrial permeability transition and cell death: a pharmacological in vitro study. Biochem J. 2004;16:877–884. doi: 10.1042/BJ20040885.
    1. Hirsch A, Hahn D, Kempná P, Hofer G, Nuoffer JM, Mullis PE, Flück CE. Metformin inhibits human androgen production by regulating steroidogenic enzymes HSD3B2 and CYP17A1 and Complex I activity of the respiratory chain. Endocrinology. 2012;16:4354–4366.
    1. Ragan CI, Wilson MT, Darley-Usmar VM, Lowe PN. In: Mitochondria: A Practical Approach. Darley-Usmar VM, Rickwood D, Wilson MT, editor. Oxford: IRL Press; 1987. Subfractionation of mitochondria and isolation of the proteins of oxidative phosphorylation; pp. 79–112.
    1. Verhoeven AJ, Verhaar R, Gouwerok EG, de Korte D. The mitochondrial membrane potential in human platelets: a sensitive parameter for platelet quality. Transfusion. 2005;16:82–89. doi: 10.1111/j.1537-2995.2005.04023.x.
    1. Protti A, Carré J, Frost MT, Taylor V, Stidwill R, Rudiger A, Singer M. Succinate recovers mitochondrial oxygen consumption in septic rat skeletal muscle. Crit Care Med. 2007;16:2150–2155. doi: 10.1097/01.ccm.0000281448.00095.4d.
    1. Lenhard JM, Kliewer SA, Paulik MA, Plunket KD, Lehmann JM, Weiel JE. Effects of troglitazone and metformin on glucose and lipid metabolism: alterations of two distinct molecular pathways. Biochem Pharmacol. 1997;16:801–808. doi: 10.1016/S0006-2952(97)00229-3.
    1. Brunmair B, Staniek K, Gras F, Scharf N, Althaym A, Clara R, Roden M, Gnaiger E, Nohl H, Waldhäusl W, Fürnsinn C. Thiazolidinediones, like metformin, inhibit respiratory complex I: a common mechanism contributing to their antidiabetic actions? Diabetes. 2004;16:1052–1059. doi: 10.2337/diabetes.53.4.1052.
    1. Bailey CJ, Wilcock C, Scarpello JH. Metformin and the intestine. Diabetologia. 2008;16:1552–1553. doi: 10.1007/s00125-008-1053-5.
    1. Vecchio S, Protti A. Metformin-induced lactic acidosis: no one left behind. Crit Care. 2011;16:107. doi: 10.1186/cc9404.

Source: PubMed

3
Předplatit